Vector approximate message passing algorithm for compressed sensing with structured matrix perturbation

•Study the CS with structured matrix perturbation via Bayesian methods.•Develop the perturbation considered vector approximate message passing (PC-VAMP) algorithm.•Show the excellent performance of PC-VAMP. In this paper, we consider a general form of noisy compressive sensing (CS) where the sensing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 166; s. 107248
Hlavní autoři: Zhu, Jiang, Zhang, Qi, Meng, Xiangming, Xu, Zhiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2020
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Study the CS with structured matrix perturbation via Bayesian methods.•Develop the perturbation considered vector approximate message passing (PC-VAMP) algorithm.•Show the excellent performance of PC-VAMP. In this paper, we consider a general form of noisy compressive sensing (CS) where the sensing matrix is not precisely known. Such cases exist when there are imperfections or unknown calibration parameters during the measurement process. Particularly, the sensing matrix may have some structure, which makes the perturbation follow a fixed pattern. Previous work has focused on extending the approximate message passing (AMP) and LASSO algorithm to deal with the independent and identically distributed (i.i.d.) perturbation. Based on the recent VAMP algorithm, we take the structured perturbation into account and propose the perturbation considered vector approximate message passing (PC-VAMP) algorithm. Numerical results demonstrate the effectiveness of PC-VAMP.
AbstractList •Study the CS with structured matrix perturbation via Bayesian methods.•Develop the perturbation considered vector approximate message passing (PC-VAMP) algorithm.•Show the excellent performance of PC-VAMP. In this paper, we consider a general form of noisy compressive sensing (CS) where the sensing matrix is not precisely known. Such cases exist when there are imperfections or unknown calibration parameters during the measurement process. Particularly, the sensing matrix may have some structure, which makes the perturbation follow a fixed pattern. Previous work has focused on extending the approximate message passing (AMP) and LASSO algorithm to deal with the independent and identically distributed (i.i.d.) perturbation. Based on the recent VAMP algorithm, we take the structured perturbation into account and propose the perturbation considered vector approximate message passing (PC-VAMP) algorithm. Numerical results demonstrate the effectiveness of PC-VAMP.
ArticleNumber 107248
Author Zhu, Jiang
Zhang, Qi
Meng, Xiangming
Xu, Zhiwei
Author_xml – sequence: 1
  givenname: Jiang
  orcidid: 0000-0002-7646-2776
  surname: Zhu
  fullname: Zhu, Jiang
  email: jiangzhu16@zju.edu.cn
  organization: Ocean College, Zhejiang University, Zhoushan, 316021, China
– sequence: 2
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  email: zhangqi13@zju.edu.cn
  organization: Ocean College, Zhejiang University, Zhoushan, 316021, China
– sequence: 3
  givenname: Xiangming
  surname: Meng
  fullname: Meng, Xiangming
  organization: Huawei Technologies, Co. Ltd, Shanghai, 201206, China
– sequence: 4
  givenname: Zhiwei
  surname: Xu
  fullname: Xu, Zhiwei
  email: xuzw@zju.edu.cn
  organization: Ocean College, Zhejiang University, Zhoushan, 316021, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6T4kTgJCyRU8ZIqsQG2luOMg6s2jmwXyt_jNqxYwMry-J4rz5mhSe96QOiSkgUlVFytF8F2g3cLRmidRiXLqxM0pVXJsrIoygmapliRUVHlZ2gWwpoQQrkgU9S9gY7OYzUkfm-3KgLeQgiqAzyoEGzfYbXpnLfxfYtNSmq3HXxKQIsD9MfAZ3rEIfqdjjuf5qnF2z0ewKd7o6J1_Tk6NWoT4OLnnKPX-7uX5WO2en54Wt6uMs2JiJmhuiFlIagAo5uGVC3VoFhbM5UDNLxsagbcCNJWOQPNuTa15pUwCvKK1YrPUT72au9C8GDk4NNW_ktSIg-y5FqOsuRBlhxlJez6F6ZtPH48emU3_8E3IwxpsQ8LXgZtodfQWp_sytbZvwu-AVTKjv0
CitedBy_id crossref_primary_10_1109_TSP_2020_3044847
crossref_primary_10_1016_j_dsp_2025_105410
crossref_primary_10_1016_j_sigpro_2020_107601
crossref_primary_10_1016_j_sigpro_2020_107711
Cites_doi 10.1109/TSP.2013.2272287
10.1109/TSP.2014.2330350
10.1109/TSP.2007.914323
10.1109/TSP.2011.2109956
10.1109/TSP.2012.2201152
10.1109/ISIT.2011.6033942
10.1109/ISIT.2017.8006797
10.1109/JSTSP.2009.2039170
10.1109/JSTSP.2011.2169232
10.1214/10-AOS793
10.1073/pnas.0909892106
10.1109/TSP.2012.2222377
10.1109/JSTSP.2014.2313766
10.1109/ICASSP.2017.7952957
10.1137/090756338
10.1109/LSP.2015.2391287
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2019.107248
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2019_107248
S0165168419302944
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-f1cb075616efcbb08d1cea2d92a4eeb37b92e3f60d842ec33cf9c386fae4829a3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491683100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:26:49 EST 2025
Tue Nov 18 21:41:11 EST 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords VAMP
Compressed sensing
Structured perturbation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f1cb075616efcbb08d1cea2d92a4eeb37b92e3f60d842ec33cf9c386fae4829a3
ORCID 0000-0002-7646-2776
ParticipantIDs crossref_primary_10_1016_j_sigpro_2019_107248
crossref_citationtrail_10_1016_j_sigpro_2019_107248
elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_107248
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ding, Chen, Gu (bib0005) 2013; 61
A.K. Fletcher, P. Schniter, Learning and free energies for vector approximate message passing, 2018, arXiv
Zhu, Lin (bib0003) 2014
Yang, Zhang, Xie (bib0008) 2012; 60
Wu, Kuang, Ni, Lu, Huang, Guo, Sel (bib0014) 2014; 8
S. Rangan, Generalized approximate message passing for estimation with random linear mixing, 2012, arXiv
Meng, Wu, Kuang, Lu (bib0015) 2015; 22
Zhu, Leus, Giannakis (bib0006) 2011; 59
Schniter (bib0011) 2011; 5
Hansen, Nagy, O’Leary (bib0021) 2006
Zhu, Wang, Lin, Gu (bib0002) 2014; 62
S. Rangan, P. Schniter, A. Fletcher, Vector approximate message passing, 2018, arXiv
Herman, Strohmer (bib0004) 2010; 4
Krzakala, Mezard, Zdeborová (bib0020) 2013
Parker, Cevher, Schniter, CA (bib0019) 2011
.
Minka (bib0013) 2001
Ma, Ping (bib0012) 2017; 5
Beck, Eldar (bib0022) 2010; 31
Vila, Schniter (bib0017) 2013; 61
Donoho, Maleki, Montanari (bib0009) 2009
Wiesel, Eldar, Yeredor (bib0001) 2008; 56
Rosenbaum, Tsybakov (bib0007) 2010; 38
Ma (10.1016/j.sigpro.2019.107248_bib0012) 2017; 5
Ding (10.1016/j.sigpro.2019.107248_bib0005) 2013; 61
10.1016/j.sigpro.2019.107248_bib0010
Parker (10.1016/j.sigpro.2019.107248_bib0019) 2011
Hansen (10.1016/j.sigpro.2019.107248_bib0021) 2006
Donoho (10.1016/j.sigpro.2019.107248_bib0009) 2009
Wu (10.1016/j.sigpro.2019.107248_bib0014) 2014; 8
Zhu (10.1016/j.sigpro.2019.107248_bib0002) 2014; 62
Minka (10.1016/j.sigpro.2019.107248_sbref0012) 2001
Yang (10.1016/j.sigpro.2019.107248_bib0008) 2012; 60
Wiesel (10.1016/j.sigpro.2019.107248_bib0001) 2008; 56
Zhu (10.1016/j.sigpro.2019.107248_bib0003) 2014
Herman (10.1016/j.sigpro.2019.107248_bib0004) 2010; 4
Rosenbaum (10.1016/j.sigpro.2019.107248_bib0007) 2010; 38
Beck (10.1016/j.sigpro.2019.107248_bib0022) 2010; 31
Schniter (10.1016/j.sigpro.2019.107248_bib0011) 2011; 5
10.1016/j.sigpro.2019.107248_bib0016
Meng (10.1016/j.sigpro.2019.107248_bib0015) 2015; 22
Vila (10.1016/j.sigpro.2019.107248_bib0017) 2013; 61
10.1016/j.sigpro.2019.107248_bib0018
Zhu (10.1016/j.sigpro.2019.107248_bib0006) 2011; 59
Krzakala (10.1016/j.sigpro.2019.107248_bib0020) 2013
References_xml – start-page: 18914
  year: 2009
  end-page: 18919
  ident: bib0009
  article-title: Message passing algorithms for compressed sensing
  publication-title: Proc. Natl. Acad. Sci.
– volume: 56
  start-page: 2194
  year: 2008
  end-page: 2205
  ident: bib0001
  article-title: Linear regression with gaussian model uncertainty: algorithms and bounds
  publication-title: IEEE Trans. Signal Process.
– year: 2006
  ident: bib0021
  article-title: Deblurring Images: Matrices, Spectra, and Filtering
– start-page: 48
  year: 2014
  end-page: 53
  ident: bib0003
  article-title: Sparse estimation from sign measurements with general sensing matrix perturbation
  publication-title: International Conference on Digital Signal Processing, Hong Kong
– reference: S. Rangan, Generalized approximate message passing for estimation with random linear mixing, 2012, arXiv:
– year: 2013
  ident: bib0020
  article-title: Compressed sensing under matrix uncertainty: optimum thresholds and robust approximate message passing
  publication-title: ICASSP
– reference: .
– volume: 22
  start-page: 1194
  year: 2015
  end-page: 1197
  ident: bib0015
  article-title: An expectation propagation perspective on approximate message passing
  publication-title: IEEE Signal Process. Lett.
– volume: 59
  start-page: 2002
  year: 2011
  end-page: 2016
  ident: bib0006
  article-title: Sparsity-cognizant total leastsquares for perturbed compressive sampling
  publication-title: IEEE Trans. Signal Process.
– volume: 31
  start-page: 2623
  year: 2010
  end-page: 2649
  ident: bib0022
  article-title: Structured total maximum likelihood: an alternative to structured total least squares
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 62
  start-page: 3741
  year: 2014
  end-page: 3753
  ident: bib0002
  article-title: Maximum likelihood estimation from sign measurements with sensing matrix perturbation
  publication-title: IEEE Trans. Signal Process.
– volume: 60
  start-page: 4658
  year: 2012
  end-page: 4671
  ident: bib0008
  article-title: Robustly stable signal recovery in compressed sensing with structured matrix perturbation
  publication-title: IEEE Trans. Signal Process.
– volume: 5
  start-page: 1462
  year: 2011
  end-page: 1474
  ident: bib0011
  article-title: A message-passing receiver for BICM-OFDM over unknown clustered-sparse channels
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 5
  start-page: 5
  year: 2017
  end-page: 2033
  ident: bib0012
  article-title: Orthogonal AMP
  publication-title: IEEE Access
– reference: S. Rangan, P. Schniter, A. Fletcher, Vector approximate message passing, 2018, arXiv:
– volume: 61
  start-page: 4658
  year: 2013
  end-page: 4672
  ident: bib0017
  article-title: Expectation-maximization Gaussian-mixture approximate message passing
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 2620
  year: 2010
  end-page: 2651
  ident: bib0007
  article-title: Sparse recovery under matrix uncertainty
  publication-title: Ann. Stat.
– year: 2001
  ident: bib0013
  article-title: A family of algorithms for approximate Bayesian inference
  publication-title: Mass. Inst. Technol.
– volume: 8
  start-page: 902
  year: 2014
  end-page: 915
  ident: bib0014
  article-title: Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing
  publication-title: IEEE. Top. Signal Process.
– reference: A.K. Fletcher, P. Schniter, Learning and free energies for vector approximate message passing, 2018, arXiv:
– volume: 61
  start-page: 398
  year: 2013
  end-page: 410
  ident: bib0005
  article-title: Perturbation analysis of orthogonal matching pursuit
  publication-title: IEEE Trans. Signal Process.
– volume: 4
  start-page: 342
  year: 2010
  end-page: 349
  ident: bib0004
  article-title: General deviants: an analysis of perturbations in compressed sensing
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 804
  year: 2011
  end-page: 808
  ident: bib0019
  article-title: Compressive sensing under matrix uncertainties: an approximate message passing approach
  publication-title: ASILOMAR
– volume: 61
  start-page: 4658
  issue: 19
  year: 2013
  ident: 10.1016/j.sigpro.2019.107248_bib0017
  article-title: Expectation-maximization Gaussian-mixture approximate message passing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2272287
– volume: 62
  start-page: 3741
  issue: 15
  year: 2014
  ident: 10.1016/j.sigpro.2019.107248_bib0002
  article-title: Maximum likelihood estimation from sign measurements with sensing matrix perturbation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2330350
– year: 2006
  ident: 10.1016/j.sigpro.2019.107248_bib0021
– start-page: 48
  year: 2014
  ident: 10.1016/j.sigpro.2019.107248_bib0003
  article-title: Sparse estimation from sign measurements with general sensing matrix perturbation
– volume: 56
  start-page: 2194
  issue: 6
  year: 2008
  ident: 10.1016/j.sigpro.2019.107248_bib0001
  article-title: Linear regression with gaussian model uncertainty: algorithms and bounds
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914323
– start-page: 804
  year: 2011
  ident: 10.1016/j.sigpro.2019.107248_bib0019
  article-title: Compressive sensing under matrix uncertainties: an approximate message passing approach
– volume: 59
  start-page: 2002
  issue: 5
  year: 2011
  ident: 10.1016/j.sigpro.2019.107248_bib0006
  article-title: Sparsity-cognizant total leastsquares for perturbed compressive sampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2109956
– volume: 60
  start-page: 4658
  issue: 9
  year: 2012
  ident: 10.1016/j.sigpro.2019.107248_bib0008
  article-title: Robustly stable signal recovery in compressed sensing with structured matrix perturbation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2201152
– ident: 10.1016/j.sigpro.2019.107248_bib0010
  doi: 10.1109/ISIT.2011.6033942
– ident: 10.1016/j.sigpro.2019.107248_bib0016
  doi: 10.1109/ISIT.2017.8006797
– volume: 4
  start-page: 342
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2019.107248_bib0004
  article-title: General deviants: an analysis of perturbations in compressed sensing
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2009.2039170
– volume: 5
  start-page: 1462
  issue: 8
  year: 2011
  ident: 10.1016/j.sigpro.2019.107248_bib0011
  article-title: A message-passing receiver for BICM-OFDM over unknown clustered-sparse channels
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2169232
– volume: 5
  start-page: 5
  year: 2017
  ident: 10.1016/j.sigpro.2019.107248_bib0012
  article-title: Orthogonal AMP
  publication-title: IEEE Access
– volume: 38
  start-page: 2620
  issue: 5
  year: 2010
  ident: 10.1016/j.sigpro.2019.107248_bib0007
  article-title: Sparse recovery under matrix uncertainty
  publication-title: Ann. Stat.
  doi: 10.1214/10-AOS793
– start-page: 18914
  year: 2009
  ident: 10.1016/j.sigpro.2019.107248_bib0009
  article-title: Message passing algorithms for compressed sensing
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0909892106
– volume: 61
  start-page: 398
  issue: 2
  year: 2013
  ident: 10.1016/j.sigpro.2019.107248_bib0005
  article-title: Perturbation analysis of orthogonal matching pursuit
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2222377
– volume: 8
  start-page: 902
  issue: 5
  year: 2014
  ident: 10.1016/j.sigpro.2019.107248_bib0014
  article-title: Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing
  publication-title: IEEE. Top. Signal Process.
  doi: 10.1109/JSTSP.2014.2313766
– ident: 10.1016/j.sigpro.2019.107248_bib0018
  doi: 10.1109/ICASSP.2017.7952957
– volume: 31
  start-page: 2623
  issue: 5
  year: 2010
  ident: 10.1016/j.sigpro.2019.107248_bib0022
  article-title: Structured total maximum likelihood: an alternative to structured total least squares
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090756338
– year: 2001
  ident: 10.1016/j.sigpro.2019.107248_sbref0012
  article-title: A family of algorithms for approximate Bayesian inference
– volume: 22
  start-page: 1194
  issue: 8
  year: 2015
  ident: 10.1016/j.sigpro.2019.107248_bib0015
  article-title: An expectation propagation perspective on approximate message passing
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2391287
– year: 2013
  ident: 10.1016/j.sigpro.2019.107248_bib0020
  article-title: Compressed sensing under matrix uncertainty: optimum thresholds and robust approximate message passing
  publication-title: ICASSP
SSID ssj0001360
Score 2.3241322
Snippet •Study the CS with structured matrix perturbation via Bayesian methods.•Develop the perturbation considered vector approximate message passing (PC-VAMP)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107248
SubjectTerms Compressed sensing
Structured perturbation
VAMP
Title Vector approximate message passing algorithm for compressed sensing with structured matrix perturbation
URI https://dx.doi.org/10.1016/j.sigpro.2019.107248
Volume 166
WOSCitedRecordID wos000491683100043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9tfMkHbpWnxk6d-DihIUBoAjGmiEsUO06Wqc2qtRv583n-SGIYGuzAJWot20nzfvX7-em9nxF6A3-CuFBVTGKZKAIeuiRFpSVhfAFcrgIGbYW0Tz4lR0dplonPk0nX18JcLZO2TbtOrP-rqaENjG1KZ29h7mFSaIDPYHS4gtnh-k-GP7FxeCcW3jVASPVsZc45qfVsDUzZFiUu6_OLZnu6skmGJqvcSoiXs41JZ--js05a9tIkqK-MkH9nNI7huxyN6Vnt16Y2pHbtig56Z2jD0ZcWJoDBoM2HqL80g7W1a8lMv1UwPrPDv582P3QTxifoPIhP-JAlX5CIu4PghjWXh6smbEGp09u8tqC72MLZ_qap4UeYVDyxP3b_VT_7N782ZBv2iWxnuZslN7PkbpY7aIcmC5FO0c7Bh8Ps4-DFI2YrzIen78subW7g9af5M60JqMrxQ_TA7zHwgcPGIzTR7WN0P1CefIJqhxIcoAR7lGCPEjygBANK8IgS7FGCDUrwiBLsUIJDlDxF394dHr99T_yZG0TB5nFLqkhJYJE84rpSUs7TMlK6oKWgRay1ZIkUVLOKz8s0ploxpiqhWMqrQscpFQV7hqbteat3EY5ECXtrKWCHK2PBqVzQWM45uBAmSsnVHmL9K8uVF6Q356Is85sMtofIMGrtBFn-0j_prZF7UunIYg4Qu3Hk81ve6QW6N-L_JZrC69ev0F11tW02F689vn4CeL6guQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+approximate+message+passing+algorithm+for+compressed+sensing+with+structured+matrix+perturbation&rft.jtitle=Signal+processing&rft.au=Zhu%2C+Jiang&rft.au=Zhang%2C+Qi&rft.au=Meng%2C+Xiangming&rft.au=Xu%2C+Zhiwei&rft.date=2020-01-01&rft.issn=0165-1684&rft.volume=166&rft.spage=107248&rft_id=info:doi/10.1016%2Fj.sigpro.2019.107248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2019_107248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon