Exploration of glottal characteristics and the vocal folds behavior for the speech under emotion

We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 410; pp. 328 - 341
Main Authors: Yao, Xiao, Bai, Wensong, Ren, Yuqian, Liu, Xin, Hui, Zhijian
Format: Journal Article
Language:English
Published: Elsevier B.V 14.10.2020
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on the behavior of the vocal folds, which may result in the variations in glottal flow. This paper investigates the physiological characteristics of the vocal folds through variation in the glottal flow under different emotions. A modified algorithm, Pitch Synchronous Iterative Adaptive Inverse Filtering using Average Magnitude Difference Function based on Empirical Mode Decomposition (AMDFEMD-PSIAIF), is proposed to estimate the glottal flow. Glottal flow is discussed and measured by parameters representing the variations in the vibration behavior of the vocal folds. The physical parameters characterizing the muscle tension and viscosity of the vocal folds are estimated using a speech production model, and a fitting method using the glottal flow is proposed. Through an evaluation on a dataset containing over 1200 voice signals, the glottal and physical parameters are measured to verify the variation mode in vocal folds vibration. We obtain the true positive rate and the average sensitivity of each 9 parameter in 6 different emotional modes. Experimental results show that vocal folds present obvious physical changes when under different emotional modes. The CT muscle of the vocal folds is contracting for fear, happy, angry and surprise mode. The TA is relaxing for happy, angry and sad, while contracting when the speaker is under surprise. Fear and surprise make the surface of the vocal folds sticker, while viscosity reduction occurs when the speaker is experiencing sadness. Therefore, the vibration mechanism and physiological properties of the vocal folds corresponding to emotion modes are preliminarily explored.
AbstractList We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on the behavior of the vocal folds, which may result in the variations in glottal flow. This paper investigates the physiological characteristics of the vocal folds through variation in the glottal flow under different emotions. A modified algorithm, Pitch Synchronous Iterative Adaptive Inverse Filtering using Average Magnitude Difference Function based on Empirical Mode Decomposition (AMDFEMD-PSIAIF), is proposed to estimate the glottal flow. Glottal flow is discussed and measured by parameters representing the variations in the vibration behavior of the vocal folds. The physical parameters characterizing the muscle tension and viscosity of the vocal folds are estimated using a speech production model, and a fitting method using the glottal flow is proposed. Through an evaluation on a dataset containing over 1200 voice signals, the glottal and physical parameters are measured to verify the variation mode in vocal folds vibration. We obtain the true positive rate and the average sensitivity of each 9 parameter in 6 different emotional modes. Experimental results show that vocal folds present obvious physical changes when under different emotional modes. The CT muscle of the vocal folds is contracting for fear, happy, angry and surprise mode. The TA is relaxing for happy, angry and sad, while contracting when the speaker is under surprise. Fear and surprise make the surface of the vocal folds sticker, while viscosity reduction occurs when the speaker is experiencing sadness. Therefore, the vibration mechanism and physiological properties of the vocal folds corresponding to emotion modes are preliminarily explored.
Author Yao, Xiao
Hui, Zhijian
Ren, Yuqian
Liu, Xin
Bai, Wensong
Author_xml – sequence: 1
  givenname: Xiao
  surname: Yao
  fullname: Yao, Xiao
  organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China
– sequence: 2
  givenname: Wensong
  surname: Bai
  fullname: Bai, Wensong
  email: wensongb@wustl.edu
  organization: Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
– sequence: 3
  givenname: Yuqian
  surname: Ren
  fullname: Ren, Yuqian
  organization: School of Cyber Science and Engineering, Southeast University, Nanjing, 210000, China
– sequence: 4
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China
– sequence: 5
  givenname: Zhijian
  surname: Hui
  fullname: Hui, Zhijian
  organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China
BookMark eNqFkM1KAzEUhYNUsFXfwEVeYMb8tJMZF4KU-gMFN7qOmZsbmzKdlCQt-vZOrSsXurocDt-B-03IqA89EnLFWckZr67XZY87CJtSMMFKVpWMsxMy5rUSRS3qakTGrBGzQkguzsgkpTVjXHHRjMnb4mPbhWiyDz0Njr53IWfTUViZaCBj9Cl7SNT0luYV0n2AoXWhs4m2uDJ7H-IQ43eZtoiworveYqS4CYfRC3LqTJfw8ueek9f7xcv8sVg-PzzN75YFSFblwjGjlGyla6RFqxwHaLlwXM7YzIhmBqga2yBIWVulLFZO1OiUkFM-bW3dynMyPe5CDClFdHob_cbET82ZPljSa320pA-WNKv0YGnAbn5h4PO3jRyN7_6Db48wDo_tPUadwGMPaH1EyNoG__fAF3_Aimc
CitedBy_id crossref_primary_10_1007_s11018_024_02330_0
crossref_primary_10_3389_fpsyg_2022_1075624
crossref_primary_10_1016_j_jvoice_2025_05_032
crossref_primary_10_1590_2317_1782_e20240116pt
crossref_primary_10_1016_j_specom_2024_103057
crossref_primary_10_1109_TASLP_2021_3078364
crossref_primary_10_1016_j_procs_2025_04_442
crossref_primary_10_1590_2317_1782_e20240116en
crossref_primary_10_3390_s22165941
Cites_doi 10.1109/TSP.2010.2097254
10.1109/ICASSP.2016.7472669
10.1016/j.specom.2019.12.001
10.1121/1.427117
10.1109/TASSP.1974.1162598
10.1016/j.jvoice.2019.08.007
10.1016/j.biopsycho.2010.03.010
10.1121/1.424266
10.1159/000263771
10.1109/TASSP.1976.1162800
10.1121/1.397819
10.23919/FRUCT48121.2019.8981498
10.1007/s004050100321
10.1016/j.jvoice.2013.08.006
10.1511/2001.28.344
10.1109/COMSNETS.2019.8711439
10.1177/000348940911800609
10.1109/79.911197
10.1016/j.neuroimage.2016.07.033
10.1109/ACCESS.2018.2860130
10.1007/s12046-011-0041-5
10.1016/0167-6393(92)90005-R
10.1159/000063410
10.1109/CSIE.2009.113
10.1109/89.905995
10.1186/1687-4722-2013-17
10.1109/ACCESS.2019.2936124
10.1121/1.398894
10.1109/MMCS.2009.5256726
10.3109/14015439.2012.679966
10.1159/000151762
10.1016/j.specom.2007.07.002
10.3109/00016489209100797
10.1016/j.neucom.2018.05.005
10.1159/000091405
10.1109/89.622558
10.1109/MSP.2018.2874549
10.15388/NA.2019.5.1
10.1109/ICMLC.2005.1527805
10.1016/0167-6393(95)00040-2
10.1006/jpho.1996.0017
10.1109/APSIPA.2016.7820699
10.1109/ICASSP.2017.7953209
10.1109/LSP.2015.2434732
10.1121/1.1853235
10.1109/ISSPIT.2008.4775670
10.1109/ICOSP.2008.4697464
10.1016/j.jvoice.2017.02.016
10.1109/ICACDOT.2016.7877753
10.1121/1.413569
10.1016/S0892-1997(03)00012-2
10.1016/j.jvoice.2008.04.004
10.1109/TAFFC.2016.2531664
10.1007/978-3-319-31056-5_11
10.1109/eStream.2017.7950316
10.1016/j.chemolab.2018.11.010
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.06.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 341
ExternalDocumentID 10_1016_j_neucom_2020_06_010
S0925231220309772
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-f0a773b3f93ded7f1ccb12f13505a295ce79d9ec338d77de6f28ef723414bd8b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579799300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:49:46 EST 2025
Sat Nov 29 07:16:51 EST 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emotion analysis
Glottal features
Vibration behavior
Vocal folds
Physiological characteristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-f0a773b3f93ded7f1ccb12f13505a295ce79d9ec338d77de6f28ef723414bd8b3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_06_010
crossref_citationtrail_10_1016_j_neucom_2020_06_010
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_010
PublicationCentury 2000
PublicationDate 2020-10-14
PublicationDateYYYYMMDD 2020-10-14
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Loweimi, Doulaty, Barker, Hain (b0070) 2015
Waaramaa, Laukkanen, Airas, Alku (b0015) 2010; 24
Waaramaa, Laukkanen, Alku, Väyrynen (b0200) 2008; 60
Avanzini (b0075) 2008; 50
Wootaek Lim, Daeyoung Jang, Taejin, Taejin Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. doi:10.1109/APSIPA.2016.7820699.
Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b0170) 2001; 18
Konnai, Scherer, Peplinski, Ryan (b0175) 2017; 31
X. Mao, L. Chen, L. Fu, Multi-level speech emotion recognition based on hmm and ann, in: 2009 WRI World Congress on Computer Science and Information Engineering, vol. 7, IEEE, 2009, pp. 225–229. doi:10.1109/CSIE.2009.113.
S. Zhang, Z. Zhao, Feature selection filtering methods for emotion recognition in chinese speech signal, in: 2008 9th international conference on signal processing, IEEE, 2008, pp. 1699–1702. doi:10.1109/ICOSP.2008.4697464.
Petrushin (b0060) 2000
Yao, Jitsuhiro, Miyajima, Kitaoka, Takeda (b0045) 2015; 22
Airas, Alku (b0285) 2004
McGowan, Cushing (b0270) 1999; 106
Hemler, Wieneke, Lebacq, Dejonckere (b0215) 2001; 258
G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M.A. Nicolaou, B. Schuller, S. Zafeiriou, Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 5200–5204. doi:10.1109/ICASSP.2016.7472669.
Kreibig (b0190) 2010; 84
Y.-L. Lin, G. Wei, Speech emotion recognition based on hmm and svm, in: 2005 International Conference on Machine Learning and Cybernetics, vol. 8, IEEE, 2005, pp. 4898–4901. doi:10.1109/ICMLC.2005.1527805.
Bandela, Kishore Kumar (b0090) 2017
P. Alku, Glottal Wave Analysis with Pitch Synchronous Iterative Adaptive Inverse Filtering, vol. 11, Elsevier, 1992. doi:10.1016/0167-6393(92)90005-R
Lucero, Koenig (b0315) 2005; 117
M.B. Akçay, K. Oğuz, Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers, Speech Commun. 116. doi:10.1016/j.specom.2019.12.001.
Alku, Vilkman (b0115) 1995; 98
Rodrigo Capobianco Guido (b0155) 2019; 36
Plutchik (b0055) 2001; 89
Fleureau, Nunes, Kachenoura, Albera, Senhadji (b0260) 2010; 59
Kincaid, Kincaid, Cheney (b0275) 2009; 2
Vilkman, Alku, Vintturi (b0280) 2002; 54
Nikita Pilnenskiy, Ivan Smetannikov, Modern implementations of feature selection algorithms and their perspectives, in: 2019 25th Conference of Open Innovations Association (FRUCT), 2019. doi:10.23919/FRUCT48121.2019.8981498.
Ross, Shaffer, Cohen, Freudberg, Manley (b0250) 1974; 22
Gintautas Tamulevicius, Rasa Karbauskaite, and Gintautas Dzemyda, [IEEE 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Vilnius, Lithuania (2017.4.27–2017.4.27)] 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Selection of fractal dimension features (2017) 1–4 doi:10.1109/eStream.2017.7950316.
Prajakta P. Dahake, Kailash Shaw, P. Malathi, Speaker dependent speech emotion recognition using MFCC and Support Vector Machine, in: International Conference on Automatic Control & Dynamic Optimization Techniques, 2016. doi:10.1109/ICACDOT.2016.7877753.
Tamulevicius, Karbauskaite, Dzemyda (b0105) 2019; 24
H. Ramya, M.R. Bhatt, Personalised emotion recognition utilising speech signal and linguistic cues, in: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), IEEE, 2019, pp. 856–860. doi:10.1109/COMSNETS.2019.8711439.
Chaokun Yan, Jingjing Ma, Huimin Luo, Patel Ashutosh, Hybrid binary Coral Reefs Optimization algorithm with Simulated Annealing for Feature Selection in high-dimensional biomedical datasets, Chemometrics and Intelligent Laboratory Systems 184. doi:10.1016/j.chemolab.2018.11.010.
H. Teffahi, A two-mass model of the vocal cords: determination of control parameters, in: 2009 International Conference on Multimedia Computing and Systems, IEEE, 2009, pp. 87–90. doi:10.1109/MMCS.2009.5256726
B. Bollepalli, M. Airaksinen, P. Alku, Lombard speech synthesis using long short-term memory recurrent neural networks, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 5505–5509. doi:10.1109/ICASSP.2017.7953209.
George, Smith (b0265) 1997; 5
H.B. Nudelman, B.D. Hoyt, Comments on two-mass models of the vocal cords for natural sounding voice synthesis[j. acoust. soc. am. 8 2, 1179–1192 (1987)], J. Acoust. Soc. Am. 85 (5) (1989) 2220–2221. doi:10.1121/1.397819.
P. Gangamohan, S.R. Kadiri, B. Yegnanarayana, Analysis of emotional speecha review, in: Toward Robotic Socially Believable Behaving Systems-Volume I, Springer, 2016, pp. 205–238. doi:10.1007/978-3-319-31056-5_11.
Ishizuka (b0180) 1972; 51
Atal, Rabiner (b0150) 1976; 24
Hirano (b0205) 1974; 26
Assaneo, Sitt, Varoquaux, Sigman, Cohen, Trevisan (b0230) 2016; 141
Haji, Mori, Omori, Isshiki (b0210) 1992; 112
Laukkanen, Vilkman, Alku, Oksanen (b0290) 1996; 24
Alku (b0085) 2011; 36
Shamim, Ghulam (b0135) 2018
Ruhul Amin Khalil, Edward Jones, Mohammad Inayatullah Babar, Tariqullah Jan, Thamer Alhussain, Speech emotion recognition using deep learning techniques: a review, IEEE Access PP (99) (2019) 1–1. doi:10.1109/ACCESS.2019.2936124.
Alku, Vilkman (b0240) 1996; 18
D.H. Klatt, L.C. Klatt, Analysis, synthesis, and perception of voice quality variations among female and male talkers, J. Acoust. Soc. Am. 87 (2) (1990) 820–857. doi:10.1121/1.398894.
Liu, Xie, Wu, Cao, Mei, Mao (b0305) 2018; 309
Kwak, Stasney, Hathway, Minard, Ongkasuwan (b0030) 2014; 28
G. Muhammad, Noise robust pitch detection based on extended amdf, in: 2008 IEEE International Symposium on Signal Processing and Information Technology, IEEE, 2008, pp. 133–138. doi:10.1109/ISSPIT.2008.4775670.
Agarwal, Scherer, Hollien (b0185) 2003; 17
Waaramaa, Kankare (b0025) 2013; 38
Yao, Jitsuhiro, Miyajima, Kitaoka, Takeda (b0050) 2013; 2013
M. Airas, P. Alku, Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient, Phonetica 63 (1).
Yao, Xu, Liu, Jiang, Zhang (b0035) 2018; 6
I.R. Titze, D.W. Martin, Principles of voice production (1998). doi:10.1121/1.424266
Wiikmann, Da Silva, Arêas, Tsuji, Sennes (b0235) 2009; 118
J. Sundberg, G.L. Salomão, K.R. Scherer, Analyzing emotion expression in singing via flow glottograms, long-term-average spectra, and expert listener evaluation, J. Voice doi: 10.1016/j.jvoice.2019.08.007.
Mencattini, Martinelli, Ringeval, Schuller, Di Natale (b0005) 2016; 8
Zhou, Hansen, Kaiser (b0195) 2001; 9
10.1016/j.neucom.2020.06.010_b0255
Yao (10.1016/j.neucom.2020.06.010_b0045) 2015; 22
Ross (10.1016/j.neucom.2020.06.010_b0250) 1974; 22
10.1016/j.neucom.2020.06.010_b0010
Alku (10.1016/j.neucom.2020.06.010_b0115) 1995; 98
Avanzini (10.1016/j.neucom.2020.06.010_b0075) 2008; 50
Waaramaa (10.1016/j.neucom.2020.06.010_b0200) 2008; 60
Assaneo (10.1016/j.neucom.2020.06.010_b0230) 2016; 141
Kreibig (10.1016/j.neucom.2020.06.010_b0190) 2010; 84
Kincaid (10.1016/j.neucom.2020.06.010_b0275) 2009; 2
Shamim (10.1016/j.neucom.2020.06.010_b0135) 2018
Vilkman (10.1016/j.neucom.2020.06.010_b0280) 2002; 54
Fleureau (10.1016/j.neucom.2020.06.010_b0260) 2010; 59
10.1016/j.neucom.2020.06.010_b0130
10.1016/j.neucom.2020.06.010_b0295
Atal (10.1016/j.neucom.2020.06.010_b0150) 1976; 24
10.1016/j.neucom.2020.06.010_b0095
10.1016/j.neucom.2020.06.010_b0165
10.1016/j.neucom.2020.06.010_b0120
McGowan (10.1016/j.neucom.2020.06.010_b0270) 1999; 106
Haji (10.1016/j.neucom.2020.06.010_b0210) 1992; 112
10.1016/j.neucom.2020.06.010_b0125
10.1016/j.neucom.2020.06.010_b0245
Waaramaa (10.1016/j.neucom.2020.06.010_b0015) 2010; 24
cr-split#-10.1016/j.neucom.2020.06.010_b0225.2
Liu (10.1016/j.neucom.2020.06.010_b0305) 2018; 309
Petrushin (10.1016/j.neucom.2020.06.010_b0060) 2000
Konnai (10.1016/j.neucom.2020.06.010_b0175) 2017; 31
Yao (10.1016/j.neucom.2020.06.010_b0050) 2013; 2013
Waaramaa (10.1016/j.neucom.2020.06.010_b0025) 2013; 38
Hirano (10.1016/j.neucom.2020.06.010_b0205) 1974; 26
Lucero (10.1016/j.neucom.2020.06.010_b0315) 2005; 117
10.1016/j.neucom.2020.06.010_b0080
Zhou (10.1016/j.neucom.2020.06.010_b0195) 2001; 9
Bandela (10.1016/j.neucom.2020.06.010_b0090) 2017
Agarwal (10.1016/j.neucom.2020.06.010_b0185) 2003; 17
10.1016/j.neucom.2020.06.010_b0040
10.1016/j.neucom.2020.06.010_b0160
10.1016/j.neucom.2020.06.010_b0310
Loweimi (10.1016/j.neucom.2020.06.010_b0070) 2015
10.1016/j.neucom.2020.06.010_b0110
Laukkanen (10.1016/j.neucom.2020.06.010_b0290) 1996; 24
Cowie (10.1016/j.neucom.2020.06.010_b0170) 2001; 18
Airas (10.1016/j.neucom.2020.06.010_b0285) 2004
Plutchik (10.1016/j.neucom.2020.06.010_b0055) 2001; 89
Hemler (10.1016/j.neucom.2020.06.010_b0215) 2001; 258
Wiikmann (10.1016/j.neucom.2020.06.010_b0235) 2009; 118
George (10.1016/j.neucom.2020.06.010_b0265) 1997; 5
Mencattini (10.1016/j.neucom.2020.06.010_b0005) 2016; 8
Alku (10.1016/j.neucom.2020.06.010_b0085) 2011; 36
cr-split#-10.1016/j.neucom.2020.06.010_b0225.1
10.1016/j.neucom.2020.06.010_b0145
10.1016/j.neucom.2020.06.010_b0100
10.1016/j.neucom.2020.06.010_b0220
10.1016/j.neucom.2020.06.010_b0065
Yao (10.1016/j.neucom.2020.06.010_b0035) 2018; 6
10.1016/j.neucom.2020.06.010_b0300
Tamulevicius (10.1016/j.neucom.2020.06.010_b0105) 2019; 24
Ishizuka (10.1016/j.neucom.2020.06.010_b0180) 1972; 51
10.1016/j.neucom.2020.06.010_b0020
Kwak (10.1016/j.neucom.2020.06.010_b0030) 2014; 28
10.1016/j.neucom.2020.06.010_b0140
Alku (10.1016/j.neucom.2020.06.010_b0240) 1996; 18
Rodrigo Capobianco Guido (10.1016/j.neucom.2020.06.010_b0155) 2019; 36
References_xml – reference: Wootaek Lim, Daeyoung Jang, Taejin, Taejin Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. doi:10.1109/APSIPA.2016.7820699.
– reference: D.H. Klatt, L.C. Klatt, Analysis, synthesis, and perception of voice quality variations among female and male talkers, J. Acoust. Soc. Am. 87 (2) (1990) 820–857. doi:10.1121/1.398894.
– volume: 54
  start-page: 144
  year: 2002
  end-page: 157
  ident: b0280
  article-title: Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative
  publication-title: Folia Phoniatr. Logopaed.
– reference: B. Bollepalli, M. Airaksinen, P. Alku, Lombard speech synthesis using long short-term memory recurrent neural networks, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 5505–5509. doi:10.1109/ICASSP.2017.7953209.
– start-page: 173
  year: 2015
  end-page: 184
  ident: b0070
  article-title: Long-term statistical feature extraction from speech signal and its application in emotion recognition
  publication-title: International Conference on Statistical Language and Speech Processing
– reference: Y.-L. Lin, G. Wei, Speech emotion recognition based on hmm and svm, in: 2005 International Conference on Machine Learning and Cybernetics, vol. 8, IEEE, 2005, pp. 4898–4901. doi:10.1109/ICMLC.2005.1527805.
– volume: 22
  start-page: 353
  year: 1974
  end-page: 362
  ident: b0250
  article-title: Average magnitude difference function pitch extractor
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– reference: J. Sundberg, G.L. Salomão, K.R. Scherer, Analyzing emotion expression in singing via flow glottograms, long-term-average spectra, and expert listener evaluation, J. Voice doi: 10.1016/j.jvoice.2019.08.007.
– reference: P. Alku, Glottal Wave Analysis with Pitch Synchronous Iterative Adaptive Inverse Filtering, vol. 11, Elsevier, 1992. doi:10.1016/0167-6393(92)90005-R
– volume: 36
  start-page: 154
  year: 2019
  end-page: 158
  ident: b0155
  article-title: Paraconsistent feature engineering [Lecture Notes]
  publication-title: IEEE Signal Process. Mag.
– reference: G. Muhammad, Noise robust pitch detection based on extended amdf, in: 2008 IEEE International Symposium on Signal Processing and Information Technology, IEEE, 2008, pp. 133–138. doi:10.1109/ISSPIT.2008.4775670.
– volume: 84
  start-page: 394
  year: 2010
  end-page: 421
  ident: b0190
  article-title: Autonomic nervous system activity in emotion: A review
  publication-title: Biol. Psychol.
– volume: 18
  start-page: 32
  year: 2001
  end-page: 80
  ident: b0170
  article-title: Emotion recognition in human-computer interaction
  publication-title: IEEE Signal Process. Mag.
– reference: Nikita Pilnenskiy, Ivan Smetannikov, Modern implementations of feature selection algorithms and their perspectives, in: 2019 25th Conference of Open Innovations Association (FRUCT), 2019. doi:10.23919/FRUCT48121.2019.8981498.
– volume: 6
  start-page: 44473
  year: 2018
  end-page: 44482
  ident: b0035
  article-title: Research on speech under stress based on glottal source using a physical speech production model
  publication-title: IEEE Access
– reference: H. Teffahi, A two-mass model of the vocal cords: determination of control parameters, in: 2009 International Conference on Multimedia Computing and Systems, IEEE, 2009, pp. 87–90. doi:10.1109/MMCS.2009.5256726
– reference: H.B. Nudelman, B.D. Hoyt, Comments on two-mass models of the vocal cords for natural sounding voice synthesis[j. acoust. soc. am. 8 2, 1179–1192 (1987)], J. Acoust. Soc. Am. 85 (5) (1989) 2220–2221. doi:10.1121/1.397819.
– reference: G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M.A. Nicolaou, B. Schuller, S. Zafeiriou, Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 5200–5204. doi:10.1109/ICASSP.2016.7472669.
– volume: 141
  start-page: 31
  year: 2016
  end-page: 39
  ident: b0230
  article-title: Exploring the anatomical encoding of voice with a mathematical model of the vocal system
  publication-title: Neuroimage
– volume: 22
  start-page: 1801
  year: 2015
  end-page: 1805
  ident: b0045
  article-title: Modeling of physical characteristics of speech under stress
  publication-title: IEEE Signal Process. Lett.
– volume: 5
  start-page: 389
  year: 1997
  end-page: 406
  ident: b0265
  article-title: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 117
  start-page: 1362
  year: 2005
  end-page: 1372
  ident: b0315
  article-title: Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control
  publication-title: J. Acoust. Soc. Am.
– volume: 31
  start-page: 773
  year: 2017
  end-page: e11
  ident: b0175
  article-title: Whisper and phonation: aerodynamic comparisons across adduction and loudness
  publication-title: J. Voice
– volume: 24
  start-page: 313
  year: 1996
  end-page: 335
  ident: b0290
  article-title: Physical variations related to stress and emotional state: a preliminary study
  publication-title: J. Phonet.
– volume: 50
  start-page: 95
  year: 2008
  end-page: 108
  ident: b0075
  article-title: Simulation of vocal fold oscillation with a pseudo-one-mass physical model
  publication-title: Speech Commun.
– reference: M. Airas, P. Alku, Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient, Phonetica 63 (1).
– volume: 118
  start-page: 461
  year: 2009
  end-page: 464
  ident: b0235
  article-title: Measurement of the viscoelastic properties of the vocal folds
  publication-title: Ann. Otol. Rhinol. Laryngol.
– volume: 28
  start-page: 191
  year: 2014
  end-page: 195
  ident: b0030
  article-title: Knowledge, experience, and anxieties of young classical singers in training
  publication-title: J. Voice
– reference: Chaokun Yan, Jingjing Ma, Huimin Luo, Patel Ashutosh, Hybrid binary Coral Reefs Optimization algorithm with Simulated Annealing for Feature Selection in high-dimensional biomedical datasets, Chemometrics and Intelligent Laboratory Systems 184. doi:10.1016/j.chemolab.2018.11.010.
– year: 2017
  ident: b0090
  article-title: Stressed speech emotion recognition using feature fusion of teager energy operator and MFCC
  publication-title: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)
– volume: 60
  start-page: 249
  year: 2008
  end-page: 255
  ident: b0200
  article-title: Monopitched expression of emotions in different vowels
  publication-title: Folia Phoniatr. Logopaed.
– reference: M.B. Akçay, K. Oğuz, Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers, Speech Commun. 116. doi:10.1016/j.specom.2019.12.001.
– volume: 18
  start-page: 131
  year: 1996
  end-page: 138
  ident: b0240
  article-title: Amplitude domain quotient for characterization of the glottal volume velocity waveform estimated by inverse filtering
  publication-title: Speech Commun.
– reference: S. Zhang, Z. Zhao, Feature selection filtering methods for emotion recognition in chinese speech signal, in: 2008 9th international conference on signal processing, IEEE, 2008, pp. 1699–1702. doi:10.1109/ICOSP.2008.4697464.
– reference: Prajakta P. Dahake, Kailash Shaw, P. Malathi, Speaker dependent speech emotion recognition using MFCC and Support Vector Machine, in: International Conference on Automatic Control & Dynamic Optimization Techniques, 2016. doi:10.1109/ICACDOT.2016.7877753.
– reference: Gintautas Tamulevicius, Rasa Karbauskaite, and Gintautas Dzemyda, [IEEE 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Vilnius, Lithuania (2017.4.27–2017.4.27)] 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Selection of fractal dimension features (2017) 1–4 doi:10.1109/eStream.2017.7950316.
– reference: X. Mao, L. Chen, L. Fu, Multi-level speech emotion recognition based on hmm and ann, in: 2009 WRI World Congress on Computer Science and Information Engineering, vol. 7, IEEE, 2009, pp. 225–229. doi:10.1109/CSIE.2009.113.
– volume: 26
  start-page: 89
  year: 1974
  end-page: 94
  ident: b0205
  article-title: Morphological structure of the vocal cord as a vibrator and its variations
  publication-title: Folia Phoniatr. Logopaed.
– volume: 258
  start-page: 125
  year: 2001
  end-page: 129
  ident: b0215
  article-title: Laryngeal mucosa elasticity and viscosity in high and low relative air humidity
  publication-title: Eur. Arch. Oto-rhino-laryngol.
– volume: 36
  start-page: 623
  year: 2011
  end-page: 650
  ident: b0085
  article-title: Glottal inverse filtering analysis of human voice production a review of estimation and parameterization methods of the glottal excitation and their applications
  publication-title: Sadhana
– volume: 24
  start-page: 201
  year: 1976
  end-page: 212
  ident: b0150
  article-title: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 51
  start-page: 1233
  year: 1972
  end-page: 1268
  ident: b0180
  article-title: Synthesis of voiced sounds from a two mass model of the vocal cords
  publication-title: BSTJ
– volume: 17
  start-page: 97
  year: 2003
  end-page: 113
  ident: b0185
  article-title: The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings
  publication-title: J. Voice
– volume: 59
  start-page: 1309
  year: 2010
  end-page: 1316
  ident: b0260
  article-title: Turning tangent empirical mode decomposition: a framework for mono-and multivariate signals
  publication-title: IEEE Trans. Signal Process.
– reference: H. Ramya, M.R. Bhatt, Personalised emotion recognition utilising speech signal and linguistic cues, in: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), IEEE, 2019, pp. 856–860. doi:10.1109/COMSNETS.2019.8711439.
– reference: I.R. Titze, D.W. Martin, Principles of voice production (1998). doi:10.1121/1.424266
– volume: 89
  start-page: 344
  year: 2001
  ident: b0055
  article-title: The nature of emotions
  publication-title: Am. Sci.
– year: 2018
  ident: b0135
  article-title: Emotion recognition using deep learning approach from audio-visual emotional big data
  publication-title: Inf. Fusion
– volume: 2
  year: 2009
  ident: b0275
  article-title: Numerical analysis: mathematics of scientific computing
  publication-title: Am. Math. Soc.
– volume: 112
  start-page: 151
  year: 1992
  end-page: 159
  ident: b0210
  article-title: Experimental studies on the viscoelasticity of the vocal fold
  publication-title: Acta Oto-laryngol.
– volume: 24
  start-page: 679
  year: 2019
  end-page: 695
  ident: b0105
  article-title: Speech emotion classification using fractal dimension-based features
  publication-title: Nonlinear Anal. Model. Control
– volume: 98
  start-page: 763
  year: 1995
  end-page: 767
  ident: b0115
  article-title: Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering
  publication-title: J. Acoust. Soc. Am.
– volume: 9
  start-page: 201
  year: 2001
  end-page: 216
  ident: b0195
  article-title: Nonlinear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 38
  start-page: 11
  year: 2013
  end-page: 18
  ident: b0025
  article-title: Acoustic and egg analyses of emotional utterances
  publication-title: Logoped. Phoniatr. Vocol.
– volume: 2013
  start-page: 17
  year: 2013
  ident: b0050
  article-title: Classification of speech under stress based on modeling of the vocal folds and vocal tract
  publication-title: EURASIP J. Audio Speech Music Process.
– volume: 8
  start-page: 314
  year: 2016
  end-page: 327
  ident: b0005
  article-title: Continuous estimation of emotions in speech by dynamic cooperative speaker models
  publication-title: IEEE Trans. Affect. Comput.
– reference: P. Gangamohan, S.R. Kadiri, B. Yegnanarayana, Analysis of emotional speecha review, in: Toward Robotic Socially Believable Behaving Systems-Volume I, Springer, 2016, pp. 205–238. doi:10.1007/978-3-319-31056-5_11.
– volume: 24
  start-page: 30
  year: 2010
  end-page: 38
  ident: b0015
  article-title: Perception of emotional valences and activity levels from vowel segments of continuous speech
  publication-title: J. Voice
– year: 2000
  ident: b0060
  article-title: Emotion recognition in speech signal: experimental study, development, and application
  publication-title: Sixth International Conference on Spoken Language Processing
– volume: 106
  start-page: 1090
  year: 1999
  end-page: 1105
  ident: b0270
  article-title: Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis
  publication-title: J. Acoust. Soc. Am.
– start-page: 13
  year: 2004
  end-page: 24
  ident: b0285
  article-title: Emotions in short vowel segments: effects of the glottal flow as reflected by the normalized amplitude quotient
  publication-title: Tutor. Res. Workshop Affect. Dialogue Syst.
– reference: Ruhul Amin Khalil, Edward Jones, Mohammad Inayatullah Babar, Tariqullah Jan, Thamer Alhussain, Speech emotion recognition using deep learning techniques: a review, IEEE Access PP (99) (2019) 1–1. doi:10.1109/ACCESS.2019.2936124.
– volume: 309
  start-page: 145
  year: 2018
  end-page: 156
  ident: b0305
  article-title: Speech emotion recognition based on an improved brain emotion learning model
  publication-title: Neurocomputing
– volume: 59
  start-page: 1309
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2020.06.010_b0260
  article-title: Turning tangent empirical mode decomposition: a framework for mono-and multivariate signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2097254
– ident: 10.1016/j.neucom.2020.06.010_b0300
  doi: 10.1109/ICASSP.2016.7472669
– start-page: 13
  year: 2004
  ident: 10.1016/j.neucom.2020.06.010_b0285
  article-title: Emotions in short vowel segments: effects of the glottal flow as reflected by the normalized amplitude quotient
– ident: 10.1016/j.neucom.2020.06.010_b0310
  doi: 10.1016/j.specom.2019.12.001
– volume: 106
  start-page: 1090
  issue: 2
  year: 1999
  ident: 10.1016/j.neucom.2020.06.010_b0270
  article-title: Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.427117
– volume: 22
  start-page: 353
  issue: 5
  year: 1974
  ident: 10.1016/j.neucom.2020.06.010_b0250
  article-title: Average magnitude difference function pitch extractor
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1974.1162598
– ident: 10.1016/j.neucom.2020.06.010_b0020
  doi: 10.1016/j.jvoice.2019.08.007
– ident: #cr-split#-10.1016/j.neucom.2020.06.010_b0225.1
– volume: 84
  start-page: 394
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2020.06.010_b0190
  article-title: Autonomic nervous system activity in emotion: A review
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.03.010
– ident: 10.1016/j.neucom.2020.06.010_b0220
  doi: 10.1121/1.424266
– volume: 26
  start-page: 89
  issue: 2
  year: 1974
  ident: 10.1016/j.neucom.2020.06.010_b0205
  article-title: Morphological structure of the vocal cord as a vibrator and its variations
  publication-title: Folia Phoniatr. Logopaed.
  doi: 10.1159/000263771
– volume: 24
  start-page: 201
  issue: 3
  year: 1976
  ident: 10.1016/j.neucom.2020.06.010_b0150
  article-title: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1976.1162800
– ident: #cr-split#-10.1016/j.neucom.2020.06.010_b0225.2
  doi: 10.1121/1.397819
– ident: 10.1016/j.neucom.2020.06.010_b0160
  doi: 10.23919/FRUCT48121.2019.8981498
– volume: 258
  start-page: 125
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2020.06.010_b0215
  article-title: Laryngeal mucosa elasticity and viscosity in high and low relative air humidity
  publication-title: Eur. Arch. Oto-rhino-laryngol.
  doi: 10.1007/s004050100321
– volume: 28
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2020.06.010_b0030
  article-title: Knowledge, experience, and anxieties of young classical singers in training
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2013.08.006
– volume: 89
  start-page: 344
  issue: 4
  year: 2001
  ident: 10.1016/j.neucom.2020.06.010_b0055
  article-title: The nature of emotions
  publication-title: Am. Sci.
  doi: 10.1511/2001.28.344
– ident: 10.1016/j.neucom.2020.06.010_b0065
  doi: 10.1109/COMSNETS.2019.8711439
– volume: 118
  start-page: 461
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2020.06.010_b0235
  article-title: Measurement of the viscoelastic properties of the vocal folds
  publication-title: Ann. Otol. Rhinol. Laryngol.
  doi: 10.1177/000348940911800609
– volume: 18
  start-page: 32
  issue: 1
  year: 2001
  ident: 10.1016/j.neucom.2020.06.010_b0170
  article-title: Emotion recognition in human-computer interaction
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.911197
– volume: 141
  start-page: 31
  year: 2016
  ident: 10.1016/j.neucom.2020.06.010_b0230
  article-title: Exploring the anatomical encoding of voice with a mathematical model of the vocal system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.033
– volume: 6
  start-page: 44473
  year: 2018
  ident: 10.1016/j.neucom.2020.06.010_b0035
  article-title: Research on speech under stress based on glottal source using a physical speech production model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2860130
– volume: 36
  start-page: 623
  issue: 5
  year: 2011
  ident: 10.1016/j.neucom.2020.06.010_b0085
  article-title: Glottal inverse filtering analysis of human voice production a review of estimation and parameterization methods of the glottal excitation and their applications
  publication-title: Sadhana
  doi: 10.1007/s12046-011-0041-5
– ident: 10.1016/j.neucom.2020.06.010_b0245
  doi: 10.1016/0167-6393(92)90005-R
– volume: 54
  start-page: 144
  issue: 3
  year: 2002
  ident: 10.1016/j.neucom.2020.06.010_b0280
  article-title: Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative
  publication-title: Folia Phoniatr. Logopaed.
  doi: 10.1159/000063410
– ident: 10.1016/j.neucom.2020.06.010_b0125
  doi: 10.1109/CSIE.2009.113
– year: 2018
  ident: 10.1016/j.neucom.2020.06.010_b0135
  article-title: Emotion recognition using deep learning approach from audio-visual emotional big data
  publication-title: Inf. Fusion
– volume: 9
  start-page: 201
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2020.06.010_b0195
  article-title: Nonlinear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.905995
– volume: 2013
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.06.010_b0050
  article-title: Classification of speech under stress based on modeling of the vocal folds and vocal tract
  publication-title: EURASIP J. Audio Speech Music Process.
  doi: 10.1186/1687-4722-2013-17
– ident: 10.1016/j.neucom.2020.06.010_b0140
  doi: 10.1109/ACCESS.2019.2936124
– ident: 10.1016/j.neucom.2020.06.010_b0295
  doi: 10.1121/1.398894
– ident: 10.1016/j.neucom.2020.06.010_b0080
  doi: 10.1109/MMCS.2009.5256726
– volume: 38
  start-page: 11
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.06.010_b0025
  article-title: Acoustic and egg analyses of emotional utterances
  publication-title: Logoped. Phoniatr. Vocol.
  doi: 10.3109/14015439.2012.679966
– volume: 60
  start-page: 249
  issue: 5
  year: 2008
  ident: 10.1016/j.neucom.2020.06.010_b0200
  article-title: Monopitched expression of emotions in different vowels
  publication-title: Folia Phoniatr. Logopaed.
  doi: 10.1159/000151762
– volume: 50
  start-page: 95
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2020.06.010_b0075
  article-title: Simulation of vocal fold oscillation with a pseudo-one-mass physical model
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2007.07.002
– volume: 112
  start-page: 151
  issue: 1
  year: 1992
  ident: 10.1016/j.neucom.2020.06.010_b0210
  article-title: Experimental studies on the viscoelasticity of the vocal fold
  publication-title: Acta Oto-laryngol.
  doi: 10.3109/00016489209100797
– volume: 309
  start-page: 145
  year: 2018
  ident: 10.1016/j.neucom.2020.06.010_b0305
  article-title: Speech emotion recognition based on an improved brain emotion learning model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.005
– ident: 10.1016/j.neucom.2020.06.010_b0110
  doi: 10.1159/000091405
– volume: 5
  start-page: 389
  issue: 5
  year: 1997
  ident: 10.1016/j.neucom.2020.06.010_b0265
  article-title: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.622558
– volume: 36
  start-page: 154
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.06.010_b0155
  article-title: Paraconsistent feature engineering [Lecture Notes]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2874549
– volume: 24
  start-page: 679
  issue: 5
  year: 2019
  ident: 10.1016/j.neucom.2020.06.010_b0105
  article-title: Speech emotion classification using fractal dimension-based features
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2019.5.1
– year: 2000
  ident: 10.1016/j.neucom.2020.06.010_b0060
  article-title: Emotion recognition in speech signal: experimental study, development, and application
– volume: 51
  start-page: 1233
  year: 1972
  ident: 10.1016/j.neucom.2020.06.010_b0180
  article-title: Synthesis of voiced sounds from a two mass model of the vocal cords
  publication-title: BSTJ
– start-page: 173
  year: 2015
  ident: 10.1016/j.neucom.2020.06.010_b0070
  article-title: Long-term statistical feature extraction from speech signal and its application in emotion recognition
– ident: 10.1016/j.neucom.2020.06.010_b0130
  doi: 10.1109/ICMLC.2005.1527805
– volume: 18
  start-page: 131
  issue: 2
  year: 1996
  ident: 10.1016/j.neucom.2020.06.010_b0240
  article-title: Amplitude domain quotient for characterization of the glottal volume velocity waveform estimated by inverse filtering
  publication-title: Speech Commun.
  doi: 10.1016/0167-6393(95)00040-2
– volume: 24
  start-page: 313
  issue: 3
  year: 1996
  ident: 10.1016/j.neucom.2020.06.010_b0290
  article-title: Physical variations related to stress and emotional state: a preliminary study
  publication-title: J. Phonet.
  doi: 10.1006/jpho.1996.0017
– ident: 10.1016/j.neucom.2020.06.010_b0145
  doi: 10.1109/APSIPA.2016.7820699
– ident: 10.1016/j.neucom.2020.06.010_b0040
  doi: 10.1109/ICASSP.2017.7953209
– volume: 22
  start-page: 1801
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2020.06.010_b0045
  article-title: Modeling of physical characteristics of speech under stress
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2434732
– volume: 117
  start-page: 1362
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2020.06.010_b0315
  article-title: Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1853235
– ident: 10.1016/j.neucom.2020.06.010_b0255
  doi: 10.1109/ISSPIT.2008.4775670
– ident: 10.1016/j.neucom.2020.06.010_b0120
  doi: 10.1109/ICOSP.2008.4697464
– volume: 2
  year: 2009
  ident: 10.1016/j.neucom.2020.06.010_b0275
  article-title: Numerical analysis: mathematics of scientific computing
  publication-title: Am. Math. Soc.
– volume: 31
  start-page: 773
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2020.06.010_b0175
  article-title: Whisper and phonation: aerodynamic comparisons across adduction and loudness
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2017.02.016
– ident: 10.1016/j.neucom.2020.06.010_b0095
  doi: 10.1109/ICACDOT.2016.7877753
– volume: 98
  start-page: 763
  issue: 2
  year: 1995
  ident: 10.1016/j.neucom.2020.06.010_b0115
  article-title: Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.413569
– volume: 17
  start-page: 97
  issue: 2
  year: 2003
  ident: 10.1016/j.neucom.2020.06.010_b0185
  article-title: The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings
  publication-title: J. Voice
  doi: 10.1016/S0892-1997(03)00012-2
– volume: 24
  start-page: 30
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2020.06.010_b0015
  article-title: Perception of emotional valences and activity levels from vowel segments of continuous speech
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2008.04.004
– year: 2017
  ident: 10.1016/j.neucom.2020.06.010_b0090
  article-title: Stressed speech emotion recognition using feature fusion of teager energy operator and MFCC
– volume: 8
  start-page: 314
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2020.06.010_b0005
  article-title: Continuous estimation of emotions in speech by dynamic cooperative speaker models
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2016.2531664
– ident: 10.1016/j.neucom.2020.06.010_b0010
  doi: 10.1007/978-3-319-31056-5_11
– ident: 10.1016/j.neucom.2020.06.010_b0100
  doi: 10.1109/eStream.2017.7950316
– ident: 10.1016/j.neucom.2020.06.010_b0165
  doi: 10.1016/j.chemolab.2018.11.010
SSID ssj0017129
Score 2.3390758
Snippet We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 328
SubjectTerms Emotion analysis
Glottal features
Physiological characteristics
Vibration behavior
Vocal folds
Title Exploration of glottal characteristics and the vocal folds behavior for the speech under emotion
URI https://dx.doi.org/10.1016/j.neucom.2020.06.010
Volume 410
WOSCitedRecordID wos000579799300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9RKMgHbihoYydxfFyholJVFRJFbE8h8aNstU2Wfak_gh_N2ONkA1vxktiDtZvEWcvzZTIezzdDyEuhWSWSlEUy0zZKEl1FYMdBI5WNM5vHBonCJ-L0NB-P5fvB4FvLhVlPRV3n19dy9l9FDcdA2I46-xfi7m4KB-A7CB1aEDu0fyR4jKrrLMGLabN0hEd1Q2ZmZ3SuG-QwTvWi4-x3sYeLmTHqi6-VO39lsOJP35z1qT2ULwwRXA6jK5d5QTuYdS6G89L7Y8eTstk4Tn0UwSfjuGcX3a4P6sDz1dceaE8mK-xd9z0UsBx1AR8bD-U2dQb9jyyNwLhEVWxQ--aCeV57Xz0nIewVFSwPVHJ8V3NMmrX1GkCPxOXr2qxcTJAblM_SGm71Y4LtD24obiTMbTfBauMW2WUilaAjd0fvDsfH3a6UiBnmbgxDb6mYPl5w-79uNnV65svZHrkb1h10hHi5TwamfkDutTU9aFDxD8nnHnxoY2mAD_0JPhTgQwEh1MOHevjQFj7wc-5PInyohw8N8HlEPr49PHtzFIUqHJGC5eQyssNSCF5xK7k2WthYqSpmNuZgO5dMpsoIqaVRnOdaCG0yy3JjBQPZJJXOK_6Y7NRNbZ4QOoSLYzaEFYf7CFvqLCvT2EhRCW6t2ie8nbBChRT1rlLKtGhjES8LnObCTXPhQjLj4T6Jul4zTNHym-tFK4simJloPhYAn1_2fPrPPZ-RO5sn44DsLOcr85zcVuvlZDF_EXD2HfYOpdA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+glottal+characteristics+and+the+vocal+folds+behavior+for+the+speech+under+emotion&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yao%2C+Xiao&rft.au=Bai%2C+Wensong&rft.au=Ren%2C+Yuqian&rft.au=Liu%2C+Xin&rft.date=2020-10-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=410&rft.spage=328&rft.epage=341&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.010&rft.externalDocID=S0925231220309772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon