Exploration of glottal characteristics and the vocal folds behavior for the speech under emotion
We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 410; s. 328 - 341 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
14.10.2020
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on the behavior of the vocal folds, which may result in the variations in glottal flow. This paper investigates the physiological characteristics of the vocal folds through variation in the glottal flow under different emotions. A modified algorithm, Pitch Synchronous Iterative Adaptive Inverse Filtering using Average Magnitude Difference Function based on Empirical Mode Decomposition (AMDFEMD-PSIAIF), is proposed to estimate the glottal flow. Glottal flow is discussed and measured by parameters representing the variations in the vibration behavior of the vocal folds. The physical parameters characterizing the muscle tension and viscosity of the vocal folds are estimated using a speech production model, and a fitting method using the glottal flow is proposed. Through an evaluation on a dataset containing over 1200 voice signals, the glottal and physical parameters are measured to verify the variation mode in vocal folds vibration. We obtain the true positive rate and the average sensitivity of each 9 parameter in 6 different emotional modes. Experimental results show that vocal folds present obvious physical changes when under different emotional modes. The CT muscle of the vocal folds is contracting for fear, happy, angry and surprise mode. The TA is relaxing for happy, angry and sad, while contracting when the speaker is under surprise. Fear and surprise make the surface of the vocal folds sticker, while viscosity reduction occurs when the speaker is experiencing sadness. Therefore, the vibration mechanism and physiological properties of the vocal folds corresponding to emotion modes are preliminarily explored. |
|---|---|
| AbstractList | We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech production representing the vocal folds behavior will be mainly discussed. We believe that emotion of the human subject has specific impact on the behavior of the vocal folds, which may result in the variations in glottal flow. This paper investigates the physiological characteristics of the vocal folds through variation in the glottal flow under different emotions. A modified algorithm, Pitch Synchronous Iterative Adaptive Inverse Filtering using Average Magnitude Difference Function based on Empirical Mode Decomposition (AMDFEMD-PSIAIF), is proposed to estimate the glottal flow. Glottal flow is discussed and measured by parameters representing the variations in the vibration behavior of the vocal folds. The physical parameters characterizing the muscle tension and viscosity of the vocal folds are estimated using a speech production model, and a fitting method using the glottal flow is proposed. Through an evaluation on a dataset containing over 1200 voice signals, the glottal and physical parameters are measured to verify the variation mode in vocal folds vibration. We obtain the true positive rate and the average sensitivity of each 9 parameter in 6 different emotional modes. Experimental results show that vocal folds present obvious physical changes when under different emotional modes. The CT muscle of the vocal folds is contracting for fear, happy, angry and surprise mode. The TA is relaxing for happy, angry and sad, while contracting when the speaker is under surprise. Fear and surprise make the surface of the vocal folds sticker, while viscosity reduction occurs when the speaker is experiencing sadness. Therefore, the vibration mechanism and physiological properties of the vocal folds corresponding to emotion modes are preliminarily explored. |
| Author | Yao, Xiao Hui, Zhijian Ren, Yuqian Liu, Xin Bai, Wensong |
| Author_xml | – sequence: 1 givenname: Xiao surname: Yao fullname: Yao, Xiao organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China – sequence: 2 givenname: Wensong surname: Bai fullname: Bai, Wensong email: wensongb@wustl.edu organization: Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 3 givenname: Yuqian surname: Ren fullname: Ren, Yuqian organization: School of Cyber Science and Engineering, Southeast University, Nanjing, 210000, China – sequence: 4 givenname: Xin surname: Liu fullname: Liu, Xin organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China – sequence: 5 givenname: Zhijian surname: Hui fullname: Hui, Zhijian organization: The College of IoT Engineering, Hohai University, Changzhou 213000, China |
| BookMark | eNqFkM1KAzEUhYNUsFXfwEVeYMb8tJMZF4KU-gMFN7qOmZsbmzKdlCQt-vZOrSsXurocDt-B-03IqA89EnLFWckZr67XZY87CJtSMMFKVpWMsxMy5rUSRS3qakTGrBGzQkguzsgkpTVjXHHRjMnb4mPbhWiyDz0Njr53IWfTUViZaCBj9Cl7SNT0luYV0n2AoXWhs4m2uDJ7H-IQ43eZtoiworveYqS4CYfRC3LqTJfw8ueek9f7xcv8sVg-PzzN75YFSFblwjGjlGyla6RFqxwHaLlwXM7YzIhmBqga2yBIWVulLFZO1OiUkFM-bW3dynMyPe5CDClFdHob_cbET82ZPljSa320pA-WNKv0YGnAbn5h4PO3jRyN7_6Db48wDo_tPUadwGMPaH1EyNoG__fAF3_Aimc |
| CitedBy_id | crossref_primary_10_1007_s11018_024_02330_0 crossref_primary_10_3389_fpsyg_2022_1075624 crossref_primary_10_1016_j_jvoice_2025_05_032 crossref_primary_10_1590_2317_1782_e20240116pt crossref_primary_10_1016_j_specom_2024_103057 crossref_primary_10_1109_TASLP_2021_3078364 crossref_primary_10_1016_j_procs_2025_04_442 crossref_primary_10_1590_2317_1782_e20240116en crossref_primary_10_3390_s22165941 |
| Cites_doi | 10.1109/TSP.2010.2097254 10.1109/ICASSP.2016.7472669 10.1016/j.specom.2019.12.001 10.1121/1.427117 10.1109/TASSP.1974.1162598 10.1016/j.jvoice.2019.08.007 10.1016/j.biopsycho.2010.03.010 10.1121/1.424266 10.1159/000263771 10.1109/TASSP.1976.1162800 10.1121/1.397819 10.23919/FRUCT48121.2019.8981498 10.1007/s004050100321 10.1016/j.jvoice.2013.08.006 10.1511/2001.28.344 10.1109/COMSNETS.2019.8711439 10.1177/000348940911800609 10.1109/79.911197 10.1016/j.neuroimage.2016.07.033 10.1109/ACCESS.2018.2860130 10.1007/s12046-011-0041-5 10.1016/0167-6393(92)90005-R 10.1159/000063410 10.1109/CSIE.2009.113 10.1109/89.905995 10.1186/1687-4722-2013-17 10.1109/ACCESS.2019.2936124 10.1121/1.398894 10.1109/MMCS.2009.5256726 10.3109/14015439.2012.679966 10.1159/000151762 10.1016/j.specom.2007.07.002 10.3109/00016489209100797 10.1016/j.neucom.2018.05.005 10.1159/000091405 10.1109/89.622558 10.1109/MSP.2018.2874549 10.15388/NA.2019.5.1 10.1109/ICMLC.2005.1527805 10.1016/0167-6393(95)00040-2 10.1006/jpho.1996.0017 10.1109/APSIPA.2016.7820699 10.1109/ICASSP.2017.7953209 10.1109/LSP.2015.2434732 10.1121/1.1853235 10.1109/ISSPIT.2008.4775670 10.1109/ICOSP.2008.4697464 10.1016/j.jvoice.2017.02.016 10.1109/ICACDOT.2016.7877753 10.1121/1.413569 10.1016/S0892-1997(03)00012-2 10.1016/j.jvoice.2008.04.004 10.1109/TAFFC.2016.2531664 10.1007/978-3-319-31056-5_11 10.1109/eStream.2017.7950316 10.1016/j.chemolab.2018.11.010 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.06.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 341 |
| ExternalDocumentID | 10_1016_j_neucom_2020_06_010 S0925231220309772 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-f0a773b3f93ded7f1ccb12f13505a295ce79d9ec338d77de6f28ef723414bd8b3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579799300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 21:49:46 EST 2025 Sat Nov 29 07:16:51 EST 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Emotion analysis Glottal features Vibration behavior Vocal folds Physiological characteristics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-f0a773b3f93ded7f1ccb12f13505a295ce79d9ec338d77de6f28ef723414bd8b3 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_06_010 crossref_citationtrail_10_1016_j_neucom_2020_06_010 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-14 |
| PublicationDateYYYYMMDD | 2020-10-14 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Loweimi, Doulaty, Barker, Hain (b0070) 2015 Waaramaa, Laukkanen, Airas, Alku (b0015) 2010; 24 Waaramaa, Laukkanen, Alku, Väyrynen (b0200) 2008; 60 Avanzini (b0075) 2008; 50 Wootaek Lim, Daeyoung Jang, Taejin, Taejin Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. doi:10.1109/APSIPA.2016.7820699. Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b0170) 2001; 18 Konnai, Scherer, Peplinski, Ryan (b0175) 2017; 31 X. Mao, L. Chen, L. Fu, Multi-level speech emotion recognition based on hmm and ann, in: 2009 WRI World Congress on Computer Science and Information Engineering, vol. 7, IEEE, 2009, pp. 225–229. doi:10.1109/CSIE.2009.113. S. Zhang, Z. Zhao, Feature selection filtering methods for emotion recognition in chinese speech signal, in: 2008 9th international conference on signal processing, IEEE, 2008, pp. 1699–1702. doi:10.1109/ICOSP.2008.4697464. Petrushin (b0060) 2000 Yao, Jitsuhiro, Miyajima, Kitaoka, Takeda (b0045) 2015; 22 Airas, Alku (b0285) 2004 McGowan, Cushing (b0270) 1999; 106 Hemler, Wieneke, Lebacq, Dejonckere (b0215) 2001; 258 G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M.A. Nicolaou, B. Schuller, S. Zafeiriou, Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 5200–5204. doi:10.1109/ICASSP.2016.7472669. Kreibig (b0190) 2010; 84 Y.-L. Lin, G. Wei, Speech emotion recognition based on hmm and svm, in: 2005 International Conference on Machine Learning and Cybernetics, vol. 8, IEEE, 2005, pp. 4898–4901. doi:10.1109/ICMLC.2005.1527805. Bandela, Kishore Kumar (b0090) 2017 P. Alku, Glottal Wave Analysis with Pitch Synchronous Iterative Adaptive Inverse Filtering, vol. 11, Elsevier, 1992. doi:10.1016/0167-6393(92)90005-R Lucero, Koenig (b0315) 2005; 117 M.B. Akçay, K. Oğuz, Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers, Speech Commun. 116. doi:10.1016/j.specom.2019.12.001. Alku, Vilkman (b0115) 1995; 98 Rodrigo Capobianco Guido (b0155) 2019; 36 Plutchik (b0055) 2001; 89 Fleureau, Nunes, Kachenoura, Albera, Senhadji (b0260) 2010; 59 Kincaid, Kincaid, Cheney (b0275) 2009; 2 Vilkman, Alku, Vintturi (b0280) 2002; 54 Nikita Pilnenskiy, Ivan Smetannikov, Modern implementations of feature selection algorithms and their perspectives, in: 2019 25th Conference of Open Innovations Association (FRUCT), 2019. doi:10.23919/FRUCT48121.2019.8981498. Ross, Shaffer, Cohen, Freudberg, Manley (b0250) 1974; 22 Gintautas Tamulevicius, Rasa Karbauskaite, and Gintautas Dzemyda, [IEEE 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Vilnius, Lithuania (2017.4.27–2017.4.27)] 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Selection of fractal dimension features (2017) 1–4 doi:10.1109/eStream.2017.7950316. Prajakta P. Dahake, Kailash Shaw, P. Malathi, Speaker dependent speech emotion recognition using MFCC and Support Vector Machine, in: International Conference on Automatic Control & Dynamic Optimization Techniques, 2016. doi:10.1109/ICACDOT.2016.7877753. Tamulevicius, Karbauskaite, Dzemyda (b0105) 2019; 24 H. Ramya, M.R. Bhatt, Personalised emotion recognition utilising speech signal and linguistic cues, in: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), IEEE, 2019, pp. 856–860. doi:10.1109/COMSNETS.2019.8711439. Chaokun Yan, Jingjing Ma, Huimin Luo, Patel Ashutosh, Hybrid binary Coral Reefs Optimization algorithm with Simulated Annealing for Feature Selection in high-dimensional biomedical datasets, Chemometrics and Intelligent Laboratory Systems 184. doi:10.1016/j.chemolab.2018.11.010. H. Teffahi, A two-mass model of the vocal cords: determination of control parameters, in: 2009 International Conference on Multimedia Computing and Systems, IEEE, 2009, pp. 87–90. doi:10.1109/MMCS.2009.5256726 B. Bollepalli, M. Airaksinen, P. Alku, Lombard speech synthesis using long short-term memory recurrent neural networks, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 5505–5509. doi:10.1109/ICASSP.2017.7953209. George, Smith (b0265) 1997; 5 H.B. Nudelman, B.D. Hoyt, Comments on two-mass models of the vocal cords for natural sounding voice synthesis[j. acoust. soc. am. 8 2, 1179–1192 (1987)], J. Acoust. Soc. Am. 85 (5) (1989) 2220–2221. doi:10.1121/1.397819. P. Gangamohan, S.R. Kadiri, B. Yegnanarayana, Analysis of emotional speecha review, in: Toward Robotic Socially Believable Behaving Systems-Volume I, Springer, 2016, pp. 205–238. doi:10.1007/978-3-319-31056-5_11. Ishizuka (b0180) 1972; 51 Atal, Rabiner (b0150) 1976; 24 Hirano (b0205) 1974; 26 Assaneo, Sitt, Varoquaux, Sigman, Cohen, Trevisan (b0230) 2016; 141 Haji, Mori, Omori, Isshiki (b0210) 1992; 112 Laukkanen, Vilkman, Alku, Oksanen (b0290) 1996; 24 Alku (b0085) 2011; 36 Shamim, Ghulam (b0135) 2018 Ruhul Amin Khalil, Edward Jones, Mohammad Inayatullah Babar, Tariqullah Jan, Thamer Alhussain, Speech emotion recognition using deep learning techniques: a review, IEEE Access PP (99) (2019) 1–1. doi:10.1109/ACCESS.2019.2936124. Alku, Vilkman (b0240) 1996; 18 D.H. Klatt, L.C. Klatt, Analysis, synthesis, and perception of voice quality variations among female and male talkers, J. Acoust. Soc. Am. 87 (2) (1990) 820–857. doi:10.1121/1.398894. Liu, Xie, Wu, Cao, Mei, Mao (b0305) 2018; 309 Kwak, Stasney, Hathway, Minard, Ongkasuwan (b0030) 2014; 28 G. Muhammad, Noise robust pitch detection based on extended amdf, in: 2008 IEEE International Symposium on Signal Processing and Information Technology, IEEE, 2008, pp. 133–138. doi:10.1109/ISSPIT.2008.4775670. Agarwal, Scherer, Hollien (b0185) 2003; 17 Waaramaa, Kankare (b0025) 2013; 38 Yao, Jitsuhiro, Miyajima, Kitaoka, Takeda (b0050) 2013; 2013 M. Airas, P. Alku, Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient, Phonetica 63 (1). Yao, Xu, Liu, Jiang, Zhang (b0035) 2018; 6 I.R. Titze, D.W. Martin, Principles of voice production (1998). doi:10.1121/1.424266 Wiikmann, Da Silva, Arêas, Tsuji, Sennes (b0235) 2009; 118 J. Sundberg, G.L. Salomão, K.R. Scherer, Analyzing emotion expression in singing via flow glottograms, long-term-average spectra, and expert listener evaluation, J. Voice doi: 10.1016/j.jvoice.2019.08.007. Mencattini, Martinelli, Ringeval, Schuller, Di Natale (b0005) 2016; 8 Zhou, Hansen, Kaiser (b0195) 2001; 9 10.1016/j.neucom.2020.06.010_b0255 Yao (10.1016/j.neucom.2020.06.010_b0045) 2015; 22 Ross (10.1016/j.neucom.2020.06.010_b0250) 1974; 22 10.1016/j.neucom.2020.06.010_b0010 Alku (10.1016/j.neucom.2020.06.010_b0115) 1995; 98 Avanzini (10.1016/j.neucom.2020.06.010_b0075) 2008; 50 Waaramaa (10.1016/j.neucom.2020.06.010_b0200) 2008; 60 Assaneo (10.1016/j.neucom.2020.06.010_b0230) 2016; 141 Kreibig (10.1016/j.neucom.2020.06.010_b0190) 2010; 84 Kincaid (10.1016/j.neucom.2020.06.010_b0275) 2009; 2 Shamim (10.1016/j.neucom.2020.06.010_b0135) 2018 Vilkman (10.1016/j.neucom.2020.06.010_b0280) 2002; 54 Fleureau (10.1016/j.neucom.2020.06.010_b0260) 2010; 59 10.1016/j.neucom.2020.06.010_b0130 10.1016/j.neucom.2020.06.010_b0295 Atal (10.1016/j.neucom.2020.06.010_b0150) 1976; 24 10.1016/j.neucom.2020.06.010_b0095 10.1016/j.neucom.2020.06.010_b0165 10.1016/j.neucom.2020.06.010_b0120 McGowan (10.1016/j.neucom.2020.06.010_b0270) 1999; 106 Haji (10.1016/j.neucom.2020.06.010_b0210) 1992; 112 10.1016/j.neucom.2020.06.010_b0125 10.1016/j.neucom.2020.06.010_b0245 Waaramaa (10.1016/j.neucom.2020.06.010_b0015) 2010; 24 cr-split#-10.1016/j.neucom.2020.06.010_b0225.2 Liu (10.1016/j.neucom.2020.06.010_b0305) 2018; 309 Petrushin (10.1016/j.neucom.2020.06.010_b0060) 2000 Konnai (10.1016/j.neucom.2020.06.010_b0175) 2017; 31 Yao (10.1016/j.neucom.2020.06.010_b0050) 2013; 2013 Waaramaa (10.1016/j.neucom.2020.06.010_b0025) 2013; 38 Hirano (10.1016/j.neucom.2020.06.010_b0205) 1974; 26 Lucero (10.1016/j.neucom.2020.06.010_b0315) 2005; 117 10.1016/j.neucom.2020.06.010_b0080 Zhou (10.1016/j.neucom.2020.06.010_b0195) 2001; 9 Bandela (10.1016/j.neucom.2020.06.010_b0090) 2017 Agarwal (10.1016/j.neucom.2020.06.010_b0185) 2003; 17 10.1016/j.neucom.2020.06.010_b0040 10.1016/j.neucom.2020.06.010_b0160 10.1016/j.neucom.2020.06.010_b0310 Loweimi (10.1016/j.neucom.2020.06.010_b0070) 2015 10.1016/j.neucom.2020.06.010_b0110 Laukkanen (10.1016/j.neucom.2020.06.010_b0290) 1996; 24 Cowie (10.1016/j.neucom.2020.06.010_b0170) 2001; 18 Airas (10.1016/j.neucom.2020.06.010_b0285) 2004 Plutchik (10.1016/j.neucom.2020.06.010_b0055) 2001; 89 Hemler (10.1016/j.neucom.2020.06.010_b0215) 2001; 258 Wiikmann (10.1016/j.neucom.2020.06.010_b0235) 2009; 118 George (10.1016/j.neucom.2020.06.010_b0265) 1997; 5 Mencattini (10.1016/j.neucom.2020.06.010_b0005) 2016; 8 Alku (10.1016/j.neucom.2020.06.010_b0085) 2011; 36 cr-split#-10.1016/j.neucom.2020.06.010_b0225.1 10.1016/j.neucom.2020.06.010_b0145 10.1016/j.neucom.2020.06.010_b0100 10.1016/j.neucom.2020.06.010_b0220 10.1016/j.neucom.2020.06.010_b0065 Yao (10.1016/j.neucom.2020.06.010_b0035) 2018; 6 10.1016/j.neucom.2020.06.010_b0300 Tamulevicius (10.1016/j.neucom.2020.06.010_b0105) 2019; 24 Ishizuka (10.1016/j.neucom.2020.06.010_b0180) 1972; 51 10.1016/j.neucom.2020.06.010_b0020 Kwak (10.1016/j.neucom.2020.06.010_b0030) 2014; 28 10.1016/j.neucom.2020.06.010_b0140 Alku (10.1016/j.neucom.2020.06.010_b0240) 1996; 18 Rodrigo Capobianco Guido (10.1016/j.neucom.2020.06.010_b0155) 2019; 36 |
| References_xml | – reference: Wootaek Lim, Daeyoung Jang, Taejin, Taejin Lee, Speech emotion recognition using convolutional and recurrent neural networks, in: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), IEEE, 2016, pp. 1–4. doi:10.1109/APSIPA.2016.7820699. – reference: D.H. Klatt, L.C. Klatt, Analysis, synthesis, and perception of voice quality variations among female and male talkers, J. Acoust. Soc. Am. 87 (2) (1990) 820–857. doi:10.1121/1.398894. – volume: 54 start-page: 144 year: 2002 end-page: 157 ident: b0280 article-title: Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative publication-title: Folia Phoniatr. Logopaed. – reference: B. Bollepalli, M. Airaksinen, P. Alku, Lombard speech synthesis using long short-term memory recurrent neural networks, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 5505–5509. doi:10.1109/ICASSP.2017.7953209. – start-page: 173 year: 2015 end-page: 184 ident: b0070 article-title: Long-term statistical feature extraction from speech signal and its application in emotion recognition publication-title: International Conference on Statistical Language and Speech Processing – reference: Y.-L. Lin, G. Wei, Speech emotion recognition based on hmm and svm, in: 2005 International Conference on Machine Learning and Cybernetics, vol. 8, IEEE, 2005, pp. 4898–4901. doi:10.1109/ICMLC.2005.1527805. – volume: 22 start-page: 353 year: 1974 end-page: 362 ident: b0250 article-title: Average magnitude difference function pitch extractor publication-title: IEEE Trans. Acoust. Speech Signal Process. – reference: J. Sundberg, G.L. Salomão, K.R. Scherer, Analyzing emotion expression in singing via flow glottograms, long-term-average spectra, and expert listener evaluation, J. Voice doi: 10.1016/j.jvoice.2019.08.007. – reference: P. Alku, Glottal Wave Analysis with Pitch Synchronous Iterative Adaptive Inverse Filtering, vol. 11, Elsevier, 1992. doi:10.1016/0167-6393(92)90005-R – volume: 36 start-page: 154 year: 2019 end-page: 158 ident: b0155 article-title: Paraconsistent feature engineering [Lecture Notes] publication-title: IEEE Signal Process. Mag. – reference: G. Muhammad, Noise robust pitch detection based on extended amdf, in: 2008 IEEE International Symposium on Signal Processing and Information Technology, IEEE, 2008, pp. 133–138. doi:10.1109/ISSPIT.2008.4775670. – volume: 84 start-page: 394 year: 2010 end-page: 421 ident: b0190 article-title: Autonomic nervous system activity in emotion: A review publication-title: Biol. Psychol. – volume: 18 start-page: 32 year: 2001 end-page: 80 ident: b0170 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag. – reference: Nikita Pilnenskiy, Ivan Smetannikov, Modern implementations of feature selection algorithms and their perspectives, in: 2019 25th Conference of Open Innovations Association (FRUCT), 2019. doi:10.23919/FRUCT48121.2019.8981498. – volume: 6 start-page: 44473 year: 2018 end-page: 44482 ident: b0035 article-title: Research on speech under stress based on glottal source using a physical speech production model publication-title: IEEE Access – reference: H. Teffahi, A two-mass model of the vocal cords: determination of control parameters, in: 2009 International Conference on Multimedia Computing and Systems, IEEE, 2009, pp. 87–90. doi:10.1109/MMCS.2009.5256726 – reference: H.B. Nudelman, B.D. Hoyt, Comments on two-mass models of the vocal cords for natural sounding voice synthesis[j. acoust. soc. am. 8 2, 1179–1192 (1987)], J. Acoust. Soc. Am. 85 (5) (1989) 2220–2221. doi:10.1121/1.397819. – reference: G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M.A. Nicolaou, B. Schuller, S. Zafeiriou, Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network, in: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 5200–5204. doi:10.1109/ICASSP.2016.7472669. – volume: 141 start-page: 31 year: 2016 end-page: 39 ident: b0230 article-title: Exploring the anatomical encoding of voice with a mathematical model of the vocal system publication-title: Neuroimage – volume: 22 start-page: 1801 year: 2015 end-page: 1805 ident: b0045 article-title: Modeling of physical characteristics of speech under stress publication-title: IEEE Signal Process. Lett. – volume: 5 start-page: 389 year: 1997 end-page: 406 ident: b0265 article-title: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model publication-title: IEEE Trans. Speech Audio Process. – volume: 117 start-page: 1362 year: 2005 end-page: 1372 ident: b0315 article-title: Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control publication-title: J. Acoust. Soc. Am. – volume: 31 start-page: 773 year: 2017 end-page: e11 ident: b0175 article-title: Whisper and phonation: aerodynamic comparisons across adduction and loudness publication-title: J. Voice – volume: 24 start-page: 313 year: 1996 end-page: 335 ident: b0290 article-title: Physical variations related to stress and emotional state: a preliminary study publication-title: J. Phonet. – volume: 50 start-page: 95 year: 2008 end-page: 108 ident: b0075 article-title: Simulation of vocal fold oscillation with a pseudo-one-mass physical model publication-title: Speech Commun. – reference: M. Airas, P. Alku, Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient, Phonetica 63 (1). – volume: 118 start-page: 461 year: 2009 end-page: 464 ident: b0235 article-title: Measurement of the viscoelastic properties of the vocal folds publication-title: Ann. Otol. Rhinol. Laryngol. – volume: 28 start-page: 191 year: 2014 end-page: 195 ident: b0030 article-title: Knowledge, experience, and anxieties of young classical singers in training publication-title: J. Voice – reference: Chaokun Yan, Jingjing Ma, Huimin Luo, Patel Ashutosh, Hybrid binary Coral Reefs Optimization algorithm with Simulated Annealing for Feature Selection in high-dimensional biomedical datasets, Chemometrics and Intelligent Laboratory Systems 184. doi:10.1016/j.chemolab.2018.11.010. – year: 2017 ident: b0090 article-title: Stressed speech emotion recognition using feature fusion of teager energy operator and MFCC publication-title: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) – volume: 60 start-page: 249 year: 2008 end-page: 255 ident: b0200 article-title: Monopitched expression of emotions in different vowels publication-title: Folia Phoniatr. Logopaed. – reference: M.B. Akçay, K. Oğuz, Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers, Speech Commun. 116. doi:10.1016/j.specom.2019.12.001. – volume: 18 start-page: 131 year: 1996 end-page: 138 ident: b0240 article-title: Amplitude domain quotient for characterization of the glottal volume velocity waveform estimated by inverse filtering publication-title: Speech Commun. – reference: S. Zhang, Z. Zhao, Feature selection filtering methods for emotion recognition in chinese speech signal, in: 2008 9th international conference on signal processing, IEEE, 2008, pp. 1699–1702. doi:10.1109/ICOSP.2008.4697464. – reference: Prajakta P. Dahake, Kailash Shaw, P. Malathi, Speaker dependent speech emotion recognition using MFCC and Support Vector Machine, in: International Conference on Automatic Control & Dynamic Optimization Techniques, 2016. doi:10.1109/ICACDOT.2016.7877753. – reference: Gintautas Tamulevicius, Rasa Karbauskaite, and Gintautas Dzemyda, [IEEE 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Vilnius, Lithuania (2017.4.27–2017.4.27)] 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream) – Selection of fractal dimension features (2017) 1–4 doi:10.1109/eStream.2017.7950316. – reference: X. Mao, L. Chen, L. Fu, Multi-level speech emotion recognition based on hmm and ann, in: 2009 WRI World Congress on Computer Science and Information Engineering, vol. 7, IEEE, 2009, pp. 225–229. doi:10.1109/CSIE.2009.113. – volume: 26 start-page: 89 year: 1974 end-page: 94 ident: b0205 article-title: Morphological structure of the vocal cord as a vibrator and its variations publication-title: Folia Phoniatr. Logopaed. – volume: 258 start-page: 125 year: 2001 end-page: 129 ident: b0215 article-title: Laryngeal mucosa elasticity and viscosity in high and low relative air humidity publication-title: Eur. Arch. Oto-rhino-laryngol. – volume: 36 start-page: 623 year: 2011 end-page: 650 ident: b0085 article-title: Glottal inverse filtering analysis of human voice production a review of estimation and parameterization methods of the glottal excitation and their applications publication-title: Sadhana – volume: 24 start-page: 201 year: 1976 end-page: 212 ident: b0150 article-title: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 51 start-page: 1233 year: 1972 end-page: 1268 ident: b0180 article-title: Synthesis of voiced sounds from a two mass model of the vocal cords publication-title: BSTJ – volume: 17 start-page: 97 year: 2003 end-page: 113 ident: b0185 article-title: The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings publication-title: J. Voice – volume: 59 start-page: 1309 year: 2010 end-page: 1316 ident: b0260 article-title: Turning tangent empirical mode decomposition: a framework for mono-and multivariate signals publication-title: IEEE Trans. Signal Process. – reference: H. Ramya, M.R. Bhatt, Personalised emotion recognition utilising speech signal and linguistic cues, in: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), IEEE, 2019, pp. 856–860. doi:10.1109/COMSNETS.2019.8711439. – reference: I.R. Titze, D.W. Martin, Principles of voice production (1998). doi:10.1121/1.424266 – volume: 89 start-page: 344 year: 2001 ident: b0055 article-title: The nature of emotions publication-title: Am. Sci. – year: 2018 ident: b0135 article-title: Emotion recognition using deep learning approach from audio-visual emotional big data publication-title: Inf. Fusion – volume: 2 year: 2009 ident: b0275 article-title: Numerical analysis: mathematics of scientific computing publication-title: Am. Math. Soc. – volume: 112 start-page: 151 year: 1992 end-page: 159 ident: b0210 article-title: Experimental studies on the viscoelasticity of the vocal fold publication-title: Acta Oto-laryngol. – volume: 24 start-page: 679 year: 2019 end-page: 695 ident: b0105 article-title: Speech emotion classification using fractal dimension-based features publication-title: Nonlinear Anal. Model. Control – volume: 98 start-page: 763 year: 1995 end-page: 767 ident: b0115 article-title: Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering publication-title: J. Acoust. Soc. Am. – volume: 9 start-page: 201 year: 2001 end-page: 216 ident: b0195 article-title: Nonlinear feature based classification of speech under stress publication-title: IEEE Trans. Speech Audio Process. – volume: 38 start-page: 11 year: 2013 end-page: 18 ident: b0025 article-title: Acoustic and egg analyses of emotional utterances publication-title: Logoped. Phoniatr. Vocol. – volume: 2013 start-page: 17 year: 2013 ident: b0050 article-title: Classification of speech under stress based on modeling of the vocal folds and vocal tract publication-title: EURASIP J. Audio Speech Music Process. – volume: 8 start-page: 314 year: 2016 end-page: 327 ident: b0005 article-title: Continuous estimation of emotions in speech by dynamic cooperative speaker models publication-title: IEEE Trans. Affect. Comput. – reference: P. Gangamohan, S.R. Kadiri, B. Yegnanarayana, Analysis of emotional speecha review, in: Toward Robotic Socially Believable Behaving Systems-Volume I, Springer, 2016, pp. 205–238. doi:10.1007/978-3-319-31056-5_11. – volume: 24 start-page: 30 year: 2010 end-page: 38 ident: b0015 article-title: Perception of emotional valences and activity levels from vowel segments of continuous speech publication-title: J. Voice – year: 2000 ident: b0060 article-title: Emotion recognition in speech signal: experimental study, development, and application publication-title: Sixth International Conference on Spoken Language Processing – volume: 106 start-page: 1090 year: 1999 end-page: 1105 ident: b0270 article-title: Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis publication-title: J. Acoust. Soc. Am. – start-page: 13 year: 2004 end-page: 24 ident: b0285 article-title: Emotions in short vowel segments: effects of the glottal flow as reflected by the normalized amplitude quotient publication-title: Tutor. Res. Workshop Affect. Dialogue Syst. – reference: Ruhul Amin Khalil, Edward Jones, Mohammad Inayatullah Babar, Tariqullah Jan, Thamer Alhussain, Speech emotion recognition using deep learning techniques: a review, IEEE Access PP (99) (2019) 1–1. doi:10.1109/ACCESS.2019.2936124. – volume: 309 start-page: 145 year: 2018 end-page: 156 ident: b0305 article-title: Speech emotion recognition based on an improved brain emotion learning model publication-title: Neurocomputing – volume: 59 start-page: 1309 issue: 3 year: 2010 ident: 10.1016/j.neucom.2020.06.010_b0260 article-title: Turning tangent empirical mode decomposition: a framework for mono-and multivariate signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2097254 – ident: 10.1016/j.neucom.2020.06.010_b0300 doi: 10.1109/ICASSP.2016.7472669 – start-page: 13 year: 2004 ident: 10.1016/j.neucom.2020.06.010_b0285 article-title: Emotions in short vowel segments: effects of the glottal flow as reflected by the normalized amplitude quotient – ident: 10.1016/j.neucom.2020.06.010_b0310 doi: 10.1016/j.specom.2019.12.001 – volume: 106 start-page: 1090 issue: 2 year: 1999 ident: 10.1016/j.neucom.2020.06.010_b0270 article-title: Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.427117 – volume: 22 start-page: 353 issue: 5 year: 1974 ident: 10.1016/j.neucom.2020.06.010_b0250 article-title: Average magnitude difference function pitch extractor publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1974.1162598 – ident: 10.1016/j.neucom.2020.06.010_b0020 doi: 10.1016/j.jvoice.2019.08.007 – ident: #cr-split#-10.1016/j.neucom.2020.06.010_b0225.1 – volume: 84 start-page: 394 issue: 3 year: 2010 ident: 10.1016/j.neucom.2020.06.010_b0190 article-title: Autonomic nervous system activity in emotion: A review publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.03.010 – ident: 10.1016/j.neucom.2020.06.010_b0220 doi: 10.1121/1.424266 – volume: 26 start-page: 89 issue: 2 year: 1974 ident: 10.1016/j.neucom.2020.06.010_b0205 article-title: Morphological structure of the vocal cord as a vibrator and its variations publication-title: Folia Phoniatr. Logopaed. doi: 10.1159/000263771 – volume: 24 start-page: 201 issue: 3 year: 1976 ident: 10.1016/j.neucom.2020.06.010_b0150 article-title: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1976.1162800 – ident: #cr-split#-10.1016/j.neucom.2020.06.010_b0225.2 doi: 10.1121/1.397819 – ident: 10.1016/j.neucom.2020.06.010_b0160 doi: 10.23919/FRUCT48121.2019.8981498 – volume: 258 start-page: 125 issue: 3 year: 2001 ident: 10.1016/j.neucom.2020.06.010_b0215 article-title: Laryngeal mucosa elasticity and viscosity in high and low relative air humidity publication-title: Eur. Arch. Oto-rhino-laryngol. doi: 10.1007/s004050100321 – volume: 28 start-page: 191 issue: 2 year: 2014 ident: 10.1016/j.neucom.2020.06.010_b0030 article-title: Knowledge, experience, and anxieties of young classical singers in training publication-title: J. Voice doi: 10.1016/j.jvoice.2013.08.006 – volume: 89 start-page: 344 issue: 4 year: 2001 ident: 10.1016/j.neucom.2020.06.010_b0055 article-title: The nature of emotions publication-title: Am. Sci. doi: 10.1511/2001.28.344 – ident: 10.1016/j.neucom.2020.06.010_b0065 doi: 10.1109/COMSNETS.2019.8711439 – volume: 118 start-page: 461 issue: 6 year: 2009 ident: 10.1016/j.neucom.2020.06.010_b0235 article-title: Measurement of the viscoelastic properties of the vocal folds publication-title: Ann. Otol. Rhinol. Laryngol. doi: 10.1177/000348940911800609 – volume: 18 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.neucom.2020.06.010_b0170 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.911197 – volume: 141 start-page: 31 year: 2016 ident: 10.1016/j.neucom.2020.06.010_b0230 article-title: Exploring the anatomical encoding of voice with a mathematical model of the vocal system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.033 – volume: 6 start-page: 44473 year: 2018 ident: 10.1016/j.neucom.2020.06.010_b0035 article-title: Research on speech under stress based on glottal source using a physical speech production model publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2860130 – volume: 36 start-page: 623 issue: 5 year: 2011 ident: 10.1016/j.neucom.2020.06.010_b0085 article-title: Glottal inverse filtering analysis of human voice production a review of estimation and parameterization methods of the glottal excitation and their applications publication-title: Sadhana doi: 10.1007/s12046-011-0041-5 – ident: 10.1016/j.neucom.2020.06.010_b0245 doi: 10.1016/0167-6393(92)90005-R – volume: 54 start-page: 144 issue: 3 year: 2002 ident: 10.1016/j.neucom.2020.06.010_b0280 article-title: Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative publication-title: Folia Phoniatr. Logopaed. doi: 10.1159/000063410 – ident: 10.1016/j.neucom.2020.06.010_b0125 doi: 10.1109/CSIE.2009.113 – year: 2018 ident: 10.1016/j.neucom.2020.06.010_b0135 article-title: Emotion recognition using deep learning approach from audio-visual emotional big data publication-title: Inf. Fusion – volume: 9 start-page: 201 issue: 3 year: 2001 ident: 10.1016/j.neucom.2020.06.010_b0195 article-title: Nonlinear feature based classification of speech under stress publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.905995 – volume: 2013 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.06.010_b0050 article-title: Classification of speech under stress based on modeling of the vocal folds and vocal tract publication-title: EURASIP J. Audio Speech Music Process. doi: 10.1186/1687-4722-2013-17 – ident: 10.1016/j.neucom.2020.06.010_b0140 doi: 10.1109/ACCESS.2019.2936124 – ident: 10.1016/j.neucom.2020.06.010_b0295 doi: 10.1121/1.398894 – ident: 10.1016/j.neucom.2020.06.010_b0080 doi: 10.1109/MMCS.2009.5256726 – volume: 38 start-page: 11 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.06.010_b0025 article-title: Acoustic and egg analyses of emotional utterances publication-title: Logoped. Phoniatr. Vocol. doi: 10.3109/14015439.2012.679966 – volume: 60 start-page: 249 issue: 5 year: 2008 ident: 10.1016/j.neucom.2020.06.010_b0200 article-title: Monopitched expression of emotions in different vowels publication-title: Folia Phoniatr. Logopaed. doi: 10.1159/000151762 – volume: 50 start-page: 95 issue: 2 year: 2008 ident: 10.1016/j.neucom.2020.06.010_b0075 article-title: Simulation of vocal fold oscillation with a pseudo-one-mass physical model publication-title: Speech Commun. doi: 10.1016/j.specom.2007.07.002 – volume: 112 start-page: 151 issue: 1 year: 1992 ident: 10.1016/j.neucom.2020.06.010_b0210 article-title: Experimental studies on the viscoelasticity of the vocal fold publication-title: Acta Oto-laryngol. doi: 10.3109/00016489209100797 – volume: 309 start-page: 145 year: 2018 ident: 10.1016/j.neucom.2020.06.010_b0305 article-title: Speech emotion recognition based on an improved brain emotion learning model publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.005 – ident: 10.1016/j.neucom.2020.06.010_b0110 doi: 10.1159/000091405 – volume: 5 start-page: 389 issue: 5 year: 1997 ident: 10.1016/j.neucom.2020.06.010_b0265 article-title: Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.622558 – volume: 36 start-page: 154 issue: 1 year: 2019 ident: 10.1016/j.neucom.2020.06.010_b0155 article-title: Paraconsistent feature engineering [Lecture Notes] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2874549 – volume: 24 start-page: 679 issue: 5 year: 2019 ident: 10.1016/j.neucom.2020.06.010_b0105 article-title: Speech emotion classification using fractal dimension-based features publication-title: Nonlinear Anal. Model. Control doi: 10.15388/NA.2019.5.1 – year: 2000 ident: 10.1016/j.neucom.2020.06.010_b0060 article-title: Emotion recognition in speech signal: experimental study, development, and application – volume: 51 start-page: 1233 year: 1972 ident: 10.1016/j.neucom.2020.06.010_b0180 article-title: Synthesis of voiced sounds from a two mass model of the vocal cords publication-title: BSTJ – start-page: 173 year: 2015 ident: 10.1016/j.neucom.2020.06.010_b0070 article-title: Long-term statistical feature extraction from speech signal and its application in emotion recognition – ident: 10.1016/j.neucom.2020.06.010_b0130 doi: 10.1109/ICMLC.2005.1527805 – volume: 18 start-page: 131 issue: 2 year: 1996 ident: 10.1016/j.neucom.2020.06.010_b0240 article-title: Amplitude domain quotient for characterization of the glottal volume velocity waveform estimated by inverse filtering publication-title: Speech Commun. doi: 10.1016/0167-6393(95)00040-2 – volume: 24 start-page: 313 issue: 3 year: 1996 ident: 10.1016/j.neucom.2020.06.010_b0290 article-title: Physical variations related to stress and emotional state: a preliminary study publication-title: J. Phonet. doi: 10.1006/jpho.1996.0017 – ident: 10.1016/j.neucom.2020.06.010_b0145 doi: 10.1109/APSIPA.2016.7820699 – ident: 10.1016/j.neucom.2020.06.010_b0040 doi: 10.1109/ICASSP.2017.7953209 – volume: 22 start-page: 1801 issue: 10 year: 2015 ident: 10.1016/j.neucom.2020.06.010_b0045 article-title: Modeling of physical characteristics of speech under stress publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2434732 – volume: 117 start-page: 1362 issue: 3 year: 2005 ident: 10.1016/j.neucom.2020.06.010_b0315 article-title: Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1853235 – ident: 10.1016/j.neucom.2020.06.010_b0255 doi: 10.1109/ISSPIT.2008.4775670 – ident: 10.1016/j.neucom.2020.06.010_b0120 doi: 10.1109/ICOSP.2008.4697464 – volume: 2 year: 2009 ident: 10.1016/j.neucom.2020.06.010_b0275 article-title: Numerical analysis: mathematics of scientific computing publication-title: Am. Math. Soc. – volume: 31 start-page: 773 issue: 6 year: 2017 ident: 10.1016/j.neucom.2020.06.010_b0175 article-title: Whisper and phonation: aerodynamic comparisons across adduction and loudness publication-title: J. Voice doi: 10.1016/j.jvoice.2017.02.016 – ident: 10.1016/j.neucom.2020.06.010_b0095 doi: 10.1109/ICACDOT.2016.7877753 – volume: 98 start-page: 763 issue: 2 year: 1995 ident: 10.1016/j.neucom.2020.06.010_b0115 article-title: Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.413569 – volume: 17 start-page: 97 issue: 2 year: 2003 ident: 10.1016/j.neucom.2020.06.010_b0185 article-title: The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings publication-title: J. Voice doi: 10.1016/S0892-1997(03)00012-2 – volume: 24 start-page: 30 issue: 1 year: 2010 ident: 10.1016/j.neucom.2020.06.010_b0015 article-title: Perception of emotional valences and activity levels from vowel segments of continuous speech publication-title: J. Voice doi: 10.1016/j.jvoice.2008.04.004 – year: 2017 ident: 10.1016/j.neucom.2020.06.010_b0090 article-title: Stressed speech emotion recognition using feature fusion of teager energy operator and MFCC – volume: 8 start-page: 314 issue: 3 year: 2016 ident: 10.1016/j.neucom.2020.06.010_b0005 article-title: Continuous estimation of emotions in speech by dynamic cooperative speaker models publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2531664 – ident: 10.1016/j.neucom.2020.06.010_b0010 doi: 10.1007/978-3-319-31056-5_11 – ident: 10.1016/j.neucom.2020.06.010_b0100 doi: 10.1109/eStream.2017.7950316 – ident: 10.1016/j.neucom.2020.06.010_b0165 doi: 10.1016/j.chemolab.2018.11.010 |
| SSID | ssj0017129 |
| Score | 2.3390758 |
| Snippet | We preliminarily explore physiological characteristics of the vocal folds when the subject is under different emotional modes. Glottal variations from speech... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 328 |
| SubjectTerms | Emotion analysis Glottal features Physiological characteristics Vibration behavior Vocal folds |
| Title | Exploration of glottal characteristics and the vocal folds behavior for the speech under emotion |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.06.010 |
| Volume | 410 |
| WOSCitedRecordID | wos000579799300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3oi3fOCGghI7qe3jChUBQhUSRWxPIfGjbLVNln2pP4IfzdjjZANb8ZK4RFlnnViez-OZ8TwIeeZgi8pZpRJp0zrJi_ogkdIAlrXWdWoqbXIXik2IoyM5maj3o9G3LhZmMxNNIy8u1Py_khragNg-dPYvyN2_FBrgHogOVyA7XP-I8OhV10uCp7N25QMe9SWZmb3QuWkxhnFmln3Mfu97uJxbq7-EWrmL5xYr_gzF2ZDaQ4fCENHkMD73mReMh1lvYjipgj12Mq3areE0eBF8sj727LQ_9UEeeLL-OgDtu-kaezdDCwWoo97hY2uh3A2dQfsjKxIQLpEVW-S-UrAQ1z5kz3l0e0UGy2MoOe7VHJNm7WwDaJE4e9HYtfcJ8oMKWVrjq35MsP3BD8WPhPnjJtA2rpB9JgoFPHJ__OZw8rY_lRIZw9yNcehdKGbwF9z91uWizkB8Ob5Jrke9g44RL7fIyDa3yY2upgeNLP4O-TyAD20djfChP8GHAnwoIIQG-NAAH9rBB34uwkOEDw3woRE-d8nHV4fHL18nsQpHokGdXCUurYTgNXeKG2uEy2ARZ8xlHGTniqlCW6GMsppzWOPC2APHpHWCAW3y2sia3yN7TdvY-4SmunDQrB23Nne5kapysMWASiGMqVn6gPBuwkodU9T7SimzsvNFPCtxmks_zaV3ycygV9L3mmOKlt_8X3S0KKOYieJjCfD5Zc-H_9zzEbm2XRmPyd5qsbZPyFW9WU2Xi6cRZ98B1RSmqA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+glottal+characteristics+and+the+vocal+folds+behavior+for+the+speech+under+emotion&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yao%2C+Xiao&rft.au=Bai%2C+Wensong&rft.au=Ren%2C+Yuqian&rft.au=Liu%2C+Xin&rft.date=2020-10-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=410&rft.spage=328&rft.epage=341&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.010&rft.externalDocID=S0925231220309772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |