Online sequential extreme learning machine based adaptive control for wastewater treatment plant

Wastewater Treatment Plant (WWTP) is challenging to regulate for its complex chemical and biological characteristics, and its precise mathematical model is usually not accessible due to the limitation of available measurement. Traditional methods highly rely on human intervention and cannot adapt to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 408; s. 169 - 175
Hlavní autoři: Cao, Weiwei, Yang, Qinmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 30.09.2020
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wastewater Treatment Plant (WWTP) is challenging to regulate for its complex chemical and biological characteristics, and its precise mathematical model is usually not accessible due to the limitation of available measurement. Traditional methods highly rely on human intervention and cannot adapt to the varying environment. Meanwhile, adaptive neural network based control strategies are encountered with dilemmas of local minima, slow convergence, huge time consumption, and low efficiency. To overcome such challenges, in this paper, a novel Online Sequential Extreme Learning Machine (OS-ELM) based adaptive control is discussed. In contrast, no a prior human experience or off-line training phase is required. It also has fast training speed thanks to randomly generated parameters of the hidden layer and Moore–Penrose pseudo-inverse. Moreover, the performance of the system is guaranteed even in the presence of time-varying dynamics and uncertainties through a learning mechanism in an online manner. The stability of the closed-loop system is shown strictly and extensive comparison case studies substantiate the feasibility of the scheme.
AbstractList Wastewater Treatment Plant (WWTP) is challenging to regulate for its complex chemical and biological characteristics, and its precise mathematical model is usually not accessible due to the limitation of available measurement. Traditional methods highly rely on human intervention and cannot adapt to the varying environment. Meanwhile, adaptive neural network based control strategies are encountered with dilemmas of local minima, slow convergence, huge time consumption, and low efficiency. To overcome such challenges, in this paper, a novel Online Sequential Extreme Learning Machine (OS-ELM) based adaptive control is discussed. In contrast, no a prior human experience or off-line training phase is required. It also has fast training speed thanks to randomly generated parameters of the hidden layer and Moore–Penrose pseudo-inverse. Moreover, the performance of the system is guaranteed even in the presence of time-varying dynamics and uncertainties through a learning mechanism in an online manner. The stability of the closed-loop system is shown strictly and extensive comparison case studies substantiate the feasibility of the scheme.
Author Yang, Qinmin
Cao, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  orcidid: 0000-0002-2295-6340
  surname: Cao
  fullname: Cao, Weiwei
  email: cww@zju.edu.cn
– sequence: 2
  givenname: Qinmin
  orcidid: 0000-0002-1602-8986
  surname: Yang
  fullname: Yang, Qinmin
  email: qmyang@zju.edu.cn
BookMark eNqFkM1OwzAQhC1UJNrCG3DwCySsncZJOCChij-pUi9wNo6zAVeJU2y3hbfHUTlxgNOuRvONNDMjEztYJOSSQcqAiatNanGnhz7lwKoU8qhWJ2TKyoInJS_FhEyh4nnCM8bPyMz7DQArGK-m5HVtO2ORevzYoQ1GdRQ_g8MeaYfKWWPfaK_0--iplceGqkZtg9kj1YMNbuhoOzh6UD7gQQV0NMIq9DGLbjtlwzk5bVXn8eLnzsnL_d3z8jFZrR-elrerRGcgQoI6Y4KDaJuiaTAXkNc8voXOo6JQAMtqvSihhloUdVlCocWiaDirlYY60nOyOOZqN3jvsJVbZ3rlviQDOa4kN_K4khxXkpBHtYrY9S9Mm6CCGbsp0_0H3xxhjMX2Bp302qDV2BiHOshmMH8HfANvGItZ
CitedBy_id crossref_primary_10_1016_j_psep_2020_10_013
crossref_primary_10_3390_app132413023
crossref_primary_10_3390_app13084752
crossref_primary_10_1016_j_chemosphere_2024_142477
crossref_primary_10_1016_j_ins_2023_03_047
crossref_primary_10_1080_1573062X_2025_2559273
crossref_primary_10_2166_wst_2022_281
crossref_primary_10_1016_j_scitotenv_2021_147138
crossref_primary_10_1007_s11431_022_2403_8
crossref_primary_10_1016_j_jclepro_2025_145854
crossref_primary_10_1016_j_neucom_2021_06_074
crossref_primary_10_1016_j_jprocont_2022_06_004
crossref_primary_10_1016_j_bej_2023_109009
crossref_primary_10_1016_j_jenvman_2023_119230
crossref_primary_10_1080_00207721_2024_2414904
crossref_primary_10_1021_acsestengg_5c00493
crossref_primary_10_1109_TII_2023_3240937
crossref_primary_10_1016_j_rser_2023_113638
crossref_primary_10_1109_TETCI_2022_3230400
crossref_primary_10_1109_TCYB_2025_3552926
crossref_primary_10_1177_01423312211039048
crossref_primary_10_1016_j_cja_2023_08_012
crossref_primary_10_1111_wej_12945
crossref_primary_10_1016_j_jwpe_2024_106600
crossref_primary_10_1109_TFUZZ_2024_3369422
crossref_primary_10_1016_j_psep_2022_01_065
crossref_primary_10_1080_10643389_2023_2183699
crossref_primary_10_3390_w16020305
crossref_primary_10_1016_j_jclepro_2020_123811
crossref_primary_10_1016_j_jenvman_2024_120510
crossref_primary_10_1016_j_watres_2024_122179
crossref_primary_10_1016_j_aei_2022_101736
crossref_primary_10_1109_TII_2023_3296878
crossref_primary_10_1109_TSMC_2021_3122802
crossref_primary_10_1016_j_cej_2020_128070
crossref_primary_10_1016_j_cjche_2022_01_028
crossref_primary_10_3390_su151813802
crossref_primary_10_3390_toxics13050349
crossref_primary_10_1007_s13042_024_02422_x
Cites_doi 10.1016/j.bej.2009.04.016
10.1016/j.neucom.2014.01.025
10.1109/TNNLS.2015.2470175
10.1016/j.compchemeng.2007.06.008
10.1109/TSMCB.2011.2166384
10.2175/106143098X124948
10.1016/j.neucom.2017.08.059
10.1109/TNN.2006.880583
10.4236/jwarp.2011.31001
10.1016/j.compchemeng.2011.09.011
10.2166/wst.1998.0210
10.2166/wst.2001.0422
10.1016/j.isatra.2016.07.012
10.1002/asjc.758
10.1016/j.asoc.2011.02.014
10.1016/j.conengprac.2012.01.001
10.1016/j.neucom.2005.12.126
10.1007/s00521-014-1738-2
10.1109/TIE.2013.2266086
10.1109/TNNLS.2015.2465174
10.1016/j.cej.2009.02.019
10.1016/j.cej.2005.05.004
10.1109/TNNLS.2013.2261574
10.1109/TAC.2019.2892391
10.1109/TNNLS.2016.2561300
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.05.109
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 175
ExternalDocumentID 10_1016_j_neucom_2019_05_109
S0925231220303416
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1609214; 61673347; 61751205
  funderid: https://doi.org/10.13039/501100011002
– fundername: Key R&D Program of Guangdong Province
  grantid: 2018B010107002
  funderid: https://doi.org/10.13039/501100012165
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-ec316206fd7dde5605b2d7d7c5fd7ae6013bc480b0b67b8807c647d21bac0bec3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571573400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:59 EST 2025
Tue Nov 18 22:33:07 EST 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wastewater treatment plant
OS-ELM algorithm
Adaptive control
Benchmark simulation model no.1 (BSM1)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ec316206fd7dde5605b2d7d7c5fd7ae6013bc480b0b67b8807c647d21bac0bec3
ORCID 0000-0002-2295-6340
0000-0002-1602-8986
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_neucom_2019_05_109
crossref_citationtrail_10_1016_j_neucom_2019_05_109
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_05_109
PublicationCentury 2000
PublicationDate 2020-09-30
PublicationDateYYYYMMDD 2020-09-30
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Belchior, Araujo, Landeck (bib0032) 2012; 37
Yang, Wei, You, Chadli, Zhang (bib0007) 2014; 136
Han, Qiao (bib0014) 2013; 61
Suescun, Joaquin, Irizar, Ostolaza, Ayesa (bib0001) 1998; 70
Copp (bib0020) 2001
Francesco (bib0028) 2007
Punal, Rodriguez, Franco (bib0005) 2001; 43
Qiao, Han, Han (bib0009) 2014; 16
Traor, Grieu, Puig, Corominas, Thiery, Polit, Colprim (bib0004) 2005; 111
Wahab, Katebi, Balderud (bib0002) 2009; 45
Yang, Jagannathan, Sun (bib0017) 2015; 26
Qiao, Hou, Zhang, Han (bib0011) 2018; 275
Han, Qiao (bib0010) 2011; 11
Chong, Żak (bib0024) 2013
Han, Qiao (bib0012) 2012; 20
Ferrer, Rodrigo, Seco, Penya-Roja (bib0003) 1998; 38
Huang, Zhu, Siew (bib0023) 2006; 70
Fu, Qiao, Han, Meng (bib0033) 2015
Zhu, Peng, Ma, Yu, Yin (bib0006) 2009; 151
Fan, Yang, Jagannathan (bib0037) 2019; 64
Jia, Li, Wang, Ding (bib0026) 2016; 65
Zhu, Zhao, Li (bib0008) 2017; 28
Huang, Zhu, Siew (bib0022) 2004; 2
Alex, Benedetti, Copp, Garnaey, Jeppsson, Nopens, Pons, Rieger, Rosen, Steyer, Vanrolleghem, Winkler (bib0021) 2018
Li, Jia, Liu, Ding (bib0025) 2014; 2014
Liang, Huang, Saratchandran, Sundararajan (bib0019) 2006; 17
Le, Nguyen, Nguyen (bib0029) 2017
Yang, Jagannathan (bib36) 2012; 42
Zhu, Zhao (bib0016) 2015; 26
Han, Zhang, Hou, Qiao (bib0015) 2016; 27
Goodwin, Sin (bib0034) 1984
Vilanova, Katebi, Wahab (bib0030) 2011; 3
Holenda, Domokos, Redey, et al (bib0031) 2008; 32
Zhou (bib0027) 2017; 68
Han, Wu, Qiao (bib0013) 2013; 24
Han, Wang, Qiao (bib0018) 2014; 128
Huang (10.1016/j.neucom.2019.05.109_bib0023) 2006; 70
Copp (10.1016/j.neucom.2019.05.109_bib0020) 2001
Jia (10.1016/j.neucom.2019.05.109_bib0026) 2016; 65
Han (10.1016/j.neucom.2019.05.109_bib0014) 2013; 61
Huang (10.1016/j.neucom.2019.05.109_bib0022) 2004; 2
Chong (10.1016/j.neucom.2019.05.109_bib0024) 2013
Fu (10.1016/j.neucom.2019.05.109_bib0033) 2015
Li (10.1016/j.neucom.2019.05.109_bib0025) 2014; 2014
Holenda (10.1016/j.neucom.2019.05.109_bib0031) 2008; 32
Wahab (10.1016/j.neucom.2019.05.109_bib0002) 2009; 45
Yang (10.1016/j.neucom.2019.05.109_bib36) 2012; 42
Qiao (10.1016/j.neucom.2019.05.109_bib0009) 2014; 16
Han (10.1016/j.neucom.2019.05.109_bib0015) 2016; 27
Zhu (10.1016/j.neucom.2019.05.109_bib0016) 2015; 26
Liang (10.1016/j.neucom.2019.05.109_bib0019) 2006; 17
Ferrer (10.1016/j.neucom.2019.05.109_bib0003) 1998; 38
Fan (10.1016/j.neucom.2019.05.109_bib0037) 2019; 64
Yang (10.1016/j.neucom.2019.05.109_bib0007) 2014; 136
Zhou (10.1016/j.neucom.2019.05.109_bib0027) 2017; 68
Francesco (10.1016/j.neucom.2019.05.109_bib0028) 2007
Goodwin (10.1016/j.neucom.2019.05.109_bib0034) 1984
Han (10.1016/j.neucom.2019.05.109_bib0013) 2013; 24
Zhu (10.1016/j.neucom.2019.05.109_bib0008) 2017; 28
Zhu (10.1016/j.neucom.2019.05.109_bib0006) 2009; 151
Suescun (10.1016/j.neucom.2019.05.109_bib0001) 1998; 70
Belchior (10.1016/j.neucom.2019.05.109_bib0032) 2012; 37
Qiao (10.1016/j.neucom.2019.05.109_bib0011) 2018; 275
Han (10.1016/j.neucom.2019.05.109_bib0012) 2012; 20
Punal (10.1016/j.neucom.2019.05.109_bib0005) 2001; 43
Yang (10.1016/j.neucom.2019.05.109_bib0017) 2015; 26
Han (10.1016/j.neucom.2019.05.109_bib0018) 2014; 128
Han (10.1016/j.neucom.2019.05.109_bib0010) 2011; 11
Alex (10.1016/j.neucom.2019.05.109_bib0021) 2018
Traor (10.1016/j.neucom.2019.05.109_bib0004) 2005; 111
Le (10.1016/j.neucom.2019.05.109_bib0029) 2017
Vilanova (10.1016/j.neucom.2019.05.109_bib0030) 2011; 3
References_xml – volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib0019
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib0023
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 70
  start-page: 316
  year: 1998
  end-page: 322
  ident: bib0001
  article-title: Dissolved oxygen control and simultaneous estimation of oxygen uptake rate in activated-sludge plants
  publication-title: Water Environ. Res.
– volume: 24
  start-page: 1425
  year: 2013
  end-page: 1436
  ident: bib0013
  article-title: Real-time model predictive control using a self-organizing neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 43
  start-page: 191
  year: 2001
  end-page: 198
  ident: bib0005
  article-title: Advanced monitoring and control of anaerobic wastewater treatment plants: diagnosis and supervision by a fuzzy-based expert system
  publication-title: Water Sci. Technol.
– volume: 26
  start-page: 3278
  year: 2015
  end-page: 3286
  ident: bib0017
  article-title: Robust integral of neural network and error sign control of mimo nonlinear systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 465
  year: 2012
  end-page: 476
  ident: bib0012
  article-title: Model predictive control of dissolved oxygen concentration based on a self-organizing rbf neural network
  publication-title: Control Eng. Pract.
– volume: 151
  start-page: 195
  year: 2009
  end-page: 201
  ident: bib0006
  article-title: Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal
  publication-title: Chem. Eng. J.
– volume: 128
  start-page: 128
  year: 2014
  end-page: 135
  ident: bib0018
  article-title: Hierarchical extreme learning machine for feedforward neural network
  publication-title: Neurocomputing
– volume: 111
  start-page: 13
  year: 2005
  end-page: 19
  ident: bib0004
  article-title: Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 239
  year: 2009
  end-page: 248
  ident: bib0002
  article-title: Multivariable pid control design for activated sludge process with nitrification and denitrification
  publication-title: Biochem. Eng. J.
– volume: 136
  start-page: 88
  year: 2014
  end-page: 95
  ident: bib0007
  article-title: Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes
  publication-title: Neurocomputing
– volume: 3
  start-page: 1
  year: 2011
  end-page: 11
  ident: bib0030
  article-title: N-Removal on wastewater treatment plants: a process control approach
  publication-title: J. Water Resource Prot.
– volume: 61
  start-page: 1970
  year: 2013
  end-page: 1982
  ident: bib0014
  article-title: Nonlinear model predictive control for industrial processes: an application to wastewater treatment process
  publication-title: IEEE Trans. Ind. Electron.
– year: 2017
  ident: bib0029
  article-title: Gogp: fast online regression with gaussian processes
  publication-title: 2017 IEEE International Conference on Data Mining
– volume: 11
  start-page: 3812
  year: 2011
  end-page: 3820
  ident: bib0010
  article-title: Adaptive dissolved oxygen control based on dynamic structure neural networ
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 775
  year: 2015
  end-page: 787
  ident: bib0016
  article-title: A data-based online reinforcement learning algorithm satisfying probably approximately correct principle
  publication-title: Neural Comput. Appl.
– volume: 2
  start-page: 985
  year: 2004
  end-page: 990
  ident: bib0022
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, 2004.
– year: 2015
  ident: bib0033
  article-title: Dissolved oxygen control system based on the t-s fuzzy neural network
  publication-title: International Joint Conference on Neural Networks
– year: 2013
  ident: bib0024
  article-title: An Introduction to Optimization (four edition)
– volume: 37
  start-page: 152â162
  year: 2012
  ident: bib0032
  article-title: Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control
  publication-title: Comput. Chem. Eng.
– volume: 64
  start-page: 3936
  year: 2019
  end-page: 3942
  ident: bib0037
  article-title: Output-constrained control of nonaffine multiagent systems with partially unknown control directions
  publication-title: IEEE Trans. Automat. Contr.
– year: 2007
  ident: bib0028
  publication-title: Online Support Vector Machines for Regression
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0025
  article-title: Adaptive control of nonlinear discrete-time systems by using os-elm neural networks
  publication-title: Abstr. Appl. Anal.
– volume: 38
  start-page: 209
  year: 1998
  end-page: 217
  ident: bib0003
  article-title: Energy saving in the aeration process by fuzzy logic control
  publication-title: Water Sci. Technol.
– volume: 16
  start-page: 1213
  year: 2014
  end-page: 1223
  ident: bib0009
  article-title: Neural network on-line modeling and controlling method for multi-variable control of wastewater treatment processes
  publication-title: Asian J. Control
– volume: 275
  start-page: 383
  year: 2018
  end-page: 393
  ident: bib0011
  article-title: Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation
  publication-title: Neurocomputing
– start-page: 7
  year: 2018
  end-page: 8
  ident: bib0021
  article-title: Benchmark Simulation Model No.1 (Bsm1)
– volume: 65
  start-page: 125
  year: 2016
  end-page: 132
  ident: bib0026
  article-title: Adaptive control of nonlinear system using online error minimum neural network
  publication-title: ISA Trans.
– volume: 68
  start-page: 1516
  year: 2017
  end-page: 1524
  ident: bib0027
  article-title: Dissolved oxygen control of wastewater treatment process using self-organizing fuzzy neural network
  publication-title: CIESC J.
– start-page: 123
  year: 2001
  end-page: 133
  ident: bib0020
  article-title: The Cost Simulation Benchmark Description and Simulator Manual
– volume: 32
  start-page: 1270
  year: 2008
  end-page: 1278
  ident: bib0031
  article-title: Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control
  publication-title: Comput. Chem. Eng.
– volume: 28
  start-page: 714
  year: 2017
  end-page: 725
  ident: bib0008
  article-title: Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 27
  start-page: 402
  year: 2016
  ident: bib0015
  article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 42
  start-page: 377
  year: 2012
  end-page: 390
  ident: bib36
  article-title: Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators
  publication-title: IEEE Trans. Syst., Man, Cybern. B, Cybern
– year: 1984
  ident: bib0034
  article-title: Adaptive Filtering, Prediction and Control
– volume: 45
  start-page: 239
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2019.05.109_bib0002
  article-title: Multivariable pid control design for activated sludge process with nitrification and denitrification
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2009.04.016
– volume: 136
  start-page: 88
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2019.05.109_bib0007
  article-title: Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.025
– year: 1984
  ident: 10.1016/j.neucom.2019.05.109_bib0034
– volume: 26
  start-page: 3278
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2019.05.109_bib0017
  article-title: Robust integral of neural network and error sign control of mimo nonlinear systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2470175
– volume: 32
  start-page: 1270
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2019.05.109_bib0031
  article-title: Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.06.008
– start-page: 123
  year: 2001
  ident: 10.1016/j.neucom.2019.05.109_bib0020
– volume: 42
  start-page: 377
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2019.05.109_bib36
  article-title: Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators
  publication-title: IEEE Trans. Syst., Man, Cybern. B, Cybern
  doi: 10.1109/TSMCB.2011.2166384
– volume: 70
  start-page: 316
  issue: 3
  year: 1998
  ident: 10.1016/j.neucom.2019.05.109_bib0001
  article-title: Dissolved oxygen control and simultaneous estimation of oxygen uptake rate in activated-sludge plants
  publication-title: Water Environ. Res.
  doi: 10.2175/106143098X124948
– volume: 275
  start-page: 383
  year: 2018
  ident: 10.1016/j.neucom.2019.05.109_bib0011
  article-title: Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.059
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2019.05.109_bib0019
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– year: 2013
  ident: 10.1016/j.neucom.2019.05.109_bib0024
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.neucom.2019.05.109_bib0030
  article-title: N-Removal on wastewater treatment plants: a process control approach
  publication-title: J. Water Resource Prot.
  doi: 10.4236/jwarp.2011.31001
– volume: 37
  start-page: 152â162
  year: 2012
  ident: 10.1016/j.neucom.2019.05.109_bib0032
  article-title: Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.09.011
– volume: 38
  start-page: 209
  issue: 3
  year: 1998
  ident: 10.1016/j.neucom.2019.05.109_bib0003
  article-title: Energy saving in the aeration process by fuzzy logic control
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1998.0210
– volume: 43
  start-page: 191
  issue: 7
  year: 2001
  ident: 10.1016/j.neucom.2019.05.109_bib0005
  article-title: Advanced monitoring and control of anaerobic wastewater treatment plants: diagnosis and supervision by a fuzzy-based expert system
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2001.0422
– year: 2015
  ident: 10.1016/j.neucom.2019.05.109_bib0033
  article-title: Dissolved oxygen control system based on the t-s fuzzy neural network
– volume: 65
  start-page: 125
  year: 2016
  ident: 10.1016/j.neucom.2019.05.109_bib0026
  article-title: Adaptive control of nonlinear system using online error minimum neural network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.07.012
– year: 2007
  ident: 10.1016/j.neucom.2019.05.109_bib0028
– volume: 16
  start-page: 1213
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2019.05.109_bib0009
  article-title: Neural network on-line modeling and controlling method for multi-variable control of wastewater treatment processes
  publication-title: Asian J. Control
  doi: 10.1002/asjc.758
– volume: 128
  start-page: 128
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2019.05.109_bib0018
  article-title: Hierarchical extreme learning machine for feedforward neural network
  publication-title: Neurocomputing
– volume: 11
  start-page: 3812
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2019.05.109_bib0010
  article-title: Adaptive dissolved oxygen control based on dynamic structure neural networ
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.02.014
– volume: 20
  start-page: 465
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2019.05.109_bib0012
  article-title: Model predictive control of dissolved oxygen concentration based on a self-organizing rbf neural network
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.01.001
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2019.05.109_bib0023
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 68
  start-page: 1516
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2019.05.109_bib0027
  article-title: Dissolved oxygen control of wastewater treatment process using self-organizing fuzzy neural network
  publication-title: CIESC J.
– volume: 26
  start-page: 775
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2019.05.109_bib0016
  article-title: A data-based online reinforcement learning algorithm satisfying probably approximately correct principle
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1738-2
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2019.05.109_bib0025
  article-title: Adaptive control of nonlinear discrete-time systems by using os-elm neural networks
  publication-title: Abstr. Appl. Anal.
– year: 2017
  ident: 10.1016/j.neucom.2019.05.109_bib0029
  article-title: Gogp: fast online regression with gaussian processes
– volume: 61
  start-page: 1970
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2019.05.109_bib0014
  article-title: Nonlinear model predictive control for industrial processes: an application to wastewater treatment process
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2266086
– volume: 2
  start-page: 985
  year: 2004
  ident: 10.1016/j.neucom.2019.05.109_bib0022
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
– volume: 27
  start-page: 402
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2019.05.109_bib0015
  article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2465174
– volume: 151
  start-page: 195
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2019.05.109_bib0006
  article-title: Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.02.019
– volume: 111
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2019.05.109_bib0004
  article-title: Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2005.05.004
– volume: 24
  start-page: 1425
  issue: 9
  year: 2013
  ident: 10.1016/j.neucom.2019.05.109_bib0013
  article-title: Real-time model predictive control using a self-organizing neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2261574
– volume: 64
  start-page: 3936
  issue: 9
  year: 2019
  ident: 10.1016/j.neucom.2019.05.109_bib0037
  article-title: Output-constrained control of nonaffine multiagent systems with partially unknown control directions
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2019.2892391
– start-page: 7
  year: 2018
  ident: 10.1016/j.neucom.2019.05.109_bib0021
– volume: 28
  start-page: 714
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.05.109_bib0008
  article-title: Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2561300
SSID ssj0017129
Score 2.4997256
Snippet Wastewater Treatment Plant (WWTP) is challenging to regulate for its complex chemical and biological characteristics, and its precise mathematical model is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Adaptive control
Benchmark simulation model no.1 (BSM1)
OS-ELM algorithm
Wastewater treatment plant
Title Online sequential extreme learning machine based adaptive control for wastewater treatment plant
URI https://dx.doi.org/10.1016/j.neucom.2019.05.109
Volume 408
WOSCitedRecordID wos000571573400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN2rLQz5wWxkljp1JjquqCBCqQBSxt2A7DtqqG1bd7ePnM34lixbxkrhEkbVOLM-X8fjbzzOEvChtZ6uuaFlWyJIJEJoproGB5AjpSgtufRLXd3B8XM1m9ftIZa98OQHo--r6ul7-V1NjGxrbHZ39C3MPD8UGvEej4xXNjtc_MnxIHjoJGum1I8TR_zoWMFWI-DpZeAWlnbglrJ2oVi29gCjJ1p3y8EqtHK3mUiiOWvTlmep_4PJ9ag_jC0NEymG6cJkXWgezgWI4VJ6P_WznV3Y-uJlIVH-Y94uY_TuSD7jTjEqJxIhtnYoJ1CKXDOPG4GVtcKwVcH9kfdPziqza8J15qNkSl-E8FFTZ8vCBbDh92dsLJ_fB-KV2qVfzrB5XtEFn-NENxY2Eoy_D9bq8SXY5yBrd3-70zdHs7fCHE-Q8pGWMQ0-nLL0UcPtdP49iNiKTk3vkTtxS0GmAwn1yw_YPyN1UroNG7_2QfAnIoCMyaEQGTcigERnUI4MmZNCIDIrIoCMy6IAM6pHxiHx6dXRy-JrFAhvM4E5xzawp8pJnZdcCrnIY-0rN8RaMxBZlca9eaCOqTGe6BI2eHkwpoOW5VibDj794THb6b73dI9R0uoYaXGbZUkhQtRVSCeg6sK0EXuyTIk1YY2L2eVcE5axJMsPTJkxz46a5yaTTRuwTNvRahuwrv_k9JFs0MYIMkWGD8Pllz4N_7vmE3B6_jKdkZ31-YZ-RW-ZyPV-dP484-w5G1JrK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential+extreme+learning+machine+based+adaptive+control+for+wastewater+treatment+plant&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Cao%2C+Weiwei&rft.au=Yang%2C+Qinmin&rft.date=2020-09-30&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=408&rft.spage=169&rft.epage=175&rft_id=info:doi/10.1016%2Fj.neucom.2019.05.109&rft.externalDocID=S0925231220303416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon