Fast Fisher discriminant analysis with randomized algorithms

•We propose to use random projection to accelerate Fisher discriminant analysis and provide a theoretical analysis. Empirical study shows our method is effective and efficient.•We propose to use random feature map to accelerate kernel discriminant analysis. And we provide theoretical and empirical a...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 72; pp. 82 - 92
Main Authors: Ye, Haishan, Li, Yujun, Chen, Cheng, Zhang, Zhihua
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2017
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose to use random projection to accelerate Fisher discriminant analysis and provide a theoretical analysis. Empirical study shows our method is effective and efficient.•We propose to use random feature map to accelerate kernel discriminant analysis. And we provide theoretical and empirical analysis to show the effectiveness and efficiency of our methods. Fisher discriminant analysis is a classical method for classification and dimension reduction jointly. Regularized FDA (RFDA) and kernel FAD (KFDA) are two important variants. However, RFDA will get stuck in computational burden due to either the high dimension of data or the big number of data and KFDA has similar computational burden due to kernel operations. We propose fast FDA algorithms based on random projection and random feature map to accelerate FDA and kernel FDA. We give theoretical guarantee that the fast FDA algorithms using random projection have good generalization ability in comparison with the conventional regularized FDA. We also give a theoretical guarantee that the pseudoinverse FDA based on random feature map can share similar generalization ability with the conventional kernel FDA. Experimental results further validate that our methods are powerful.
AbstractList •We propose to use random projection to accelerate Fisher discriminant analysis and provide a theoretical analysis. Empirical study shows our method is effective and efficient.•We propose to use random feature map to accelerate kernel discriminant analysis. And we provide theoretical and empirical analysis to show the effectiveness and efficiency of our methods. Fisher discriminant analysis is a classical method for classification and dimension reduction jointly. Regularized FDA (RFDA) and kernel FAD (KFDA) are two important variants. However, RFDA will get stuck in computational burden due to either the high dimension of data or the big number of data and KFDA has similar computational burden due to kernel operations. We propose fast FDA algorithms based on random projection and random feature map to accelerate FDA and kernel FDA. We give theoretical guarantee that the fast FDA algorithms using random projection have good generalization ability in comparison with the conventional regularized FDA. We also give a theoretical guarantee that the pseudoinverse FDA based on random feature map can share similar generalization ability with the conventional kernel FDA. Experimental results further validate that our methods are powerful.
Author Li, Yujun
Ye, Haishan
Zhang, Zhihua
Chen, Cheng
Author_xml – sequence: 1
  givenname: Haishan
  surname: Ye
  fullname: Ye, Haishan
  email: yhs12354123@163.com
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
– sequence: 2
  givenname: Yujun
  surname: Li
  fullname: Li, Yujun
  email: liyujun145@gmail.com
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  email: jackchen1990@gmail.com
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
– sequence: 4
  givenname: Zhihua
  surname: Zhang
  fullname: Zhang, Zhihua
  email: zhzhang@math.pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing 100871, China
BookMark eNqFkM9KAzEQh4NUsK2-gYd9gV0zm23WFRGkWBUKXvQcZvOnTdkmJQlKfXpT2pMHPQ3MzPdj5puQkfNOE3INtAIK_GZT7TBJv6pqCm1FeUXr7oyM4bZl5QyaekTGlDIoWU3ZBZnEuKF5MQ_G5H6BMRULG9c6FMpGGezWOnSpQIfDPtpYfNm0LgI65bf2W6sCh5UPubeNl-Tc4BD11alOycfi6X3-Ui7fnl_nj8tSMspTqXtmZN32s65RDTVGdS2TplFcGUA5Mwhcsw57kNoYzoxSClTbS9DQoeqBTUlzzJXBxxi0Ebt8Joa9ACoOBsRGHA2IgwFBucgGMnb3C5M2YbLepYB2-A9-OMI6P_ZpdRBRWu2kVjZomYTy9u-AH5RHftI
CitedBy_id crossref_primary_10_1109_TPAMI_2022_3192726
crossref_primary_10_1007_s11694_024_02935_7
crossref_primary_10_1016_j_isatra_2020_10_033
crossref_primary_10_1016_j_patcog_2020_107660
crossref_primary_10_1016_j_patcog_2022_108642
crossref_primary_10_1137_23M155493X
crossref_primary_10_1007_s00521_024_09768_x
crossref_primary_10_1016_j_patcog_2021_107981
crossref_primary_10_3103_S0146411619060099
crossref_primary_10_1109_ACCESS_2019_2958689
crossref_primary_10_1016_j_icarus_2022_115008
crossref_primary_10_1109_ACCESS_2020_3029514
crossref_primary_10_1007_s10994_020_05937_w
crossref_primary_10_3390_s22218093
crossref_primary_10_1007_s12145_024_01494_1
crossref_primary_10_1007_s13748_023_00309_6
crossref_primary_10_1007_s11042_019_07861_1
crossref_primary_10_1016_j_petrol_2019_106616
crossref_primary_10_1007_s10462_022_10296_0
crossref_primary_10_1002_cjce_25312
Cites_doi 10.1109/34.908974
10.1109/TGRS.2014.2326655
10.1117/12.605553
10.1137/090771806
10.1137/S0895479804442334
10.1109/34.598228
10.1561/0400000060
10.1162/089976600300014980
10.1007/s00778-003-0098-9
10.1198/016214502753479248
10.1142/S1793536911000787
10.1109/TPAMI.2005.110
10.1007/s00211-010-0331-6
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2017.06.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 92
ExternalDocumentID 10_1016_j_patcog_2017_06_029
S0031320317302509
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-eb3fc27b594d40ffd973cf4d6df1ac5fa16e39ab1ceff63fddd1d7bc1e19adb13
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411545400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:29:38 EST 2025
Sat Nov 29 03:52:21 EST 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Random feature map
Random projection
Fisher discriminant analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-eb3fc27b594d40ffd973cf4d6df1ac5fa16e39ab1ceff63fddd1d7bc1e19adb13
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_patcog_2017_06_029
crossref_citationtrail_10_1016_j_patcog_2017_06_029
elsevier_sciencedirect_doi_10_1016_j_patcog_2017_06_029
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Halko, Martinsson, Tropp (bib0014) 2011; 53
Lopez-Paz, Sra, Smola, Ghahramani, Schölkopf (bib0022) 2014; 32
Baudat, Anouar (bib0009) 2000; 12
Bingham, Mannila (bib0017) 2001
Tu, Zhang, Wang, Qian (bib0008) 2014
Drineas, Mahoney, Muthukrishnan, Sarlós (bib0015) 2011; 117
Hamid, Xiao, Gittens, DeCoste (bib0030) 2014
Le, Sarlós, Smola (bib0024) 2013
Tropp (bib0028) 2011; 3
Belhumeur, Hespanha, Kriegman (bib0001) 1997; 19
Martínez, Kak (bib0002) 2001; 23
Drineas, Magdon-Ismail, Mahoney, Woodruff (bib0025) 2012; 13
Chakrabarti, Roy, Soundalgekar (bib0003) 2003; 12
Dudoit, Fridlyand, Speed (bib0005) 2002; 97
Huang, Deng, Hasegawa-Johnson, He (bib0023) 2013
Ye, Li (bib0007) 2005; 27
Rahimi, Recht (bib0021) 2007
Park, Park (bib0011) 2005; 27
Dasgupta, Drineas, Harb, Josifovski, Mahoney (bib0004) 2007
Goal, Bebis, Nefian (bib0018) 2005; 5779
Tropp (bib0032) 2015; 8
Roth, Steinhage (bib0012) 1999; 12
Cohen, Nelson, Woodruff (bib0029) 2016
Nelson, Nguyên (bib0026) 2013
Mahoney (bib0031) 2011; 3
Clarkson, Woodruff (bib0020) 2013
Woodruff (bib0027) 2014; 10
Zhang, Dai, Xu, Jordan (bib0013) 2010; 11
Golub, Van Loan (bib0006) 2012; 3
Yuan, Zhu, Wang (bib0016) 2015; 53
Mika, Rätsch, Weston, Schölkopf, Smola, Müller (bib0010) 1999
Paul, Boutsidis, Magdon-Ismail, Drineas (bib0019) 2014; 8
Cohen (10.1016/j.patcog.2017.06.029_bib0029) 2016
Hamid (10.1016/j.patcog.2017.06.029_bib0030) 2014
Belhumeur (10.1016/j.patcog.2017.06.029_bib0001) 1997; 19
Lopez-Paz (10.1016/j.patcog.2017.06.029_bib0022) 2014; 32
Huang (10.1016/j.patcog.2017.06.029_bib0023) 2013
Ye (10.1016/j.patcog.2017.06.029_bib0007) 2005; 27
Park (10.1016/j.patcog.2017.06.029_bib0011) 2005; 27
Woodruff (10.1016/j.patcog.2017.06.029_bib0027) 2014; 10
Baudat (10.1016/j.patcog.2017.06.029_bib0009) 2000; 12
Goal (10.1016/j.patcog.2017.06.029_bib0018) 2005; 5779
Golub (10.1016/j.patcog.2017.06.029_bib0006) 2012; 3
Drineas (10.1016/j.patcog.2017.06.029_bib0015) 2011; 117
Mika (10.1016/j.patcog.2017.06.029_bib0010) 1999
Rahimi (10.1016/j.patcog.2017.06.029_bib0021) 2007
Clarkson (10.1016/j.patcog.2017.06.029_bib0020) 2013
Martínez (10.1016/j.patcog.2017.06.029_bib0002) 2001; 23
Le (10.1016/j.patcog.2017.06.029_bib0024) 2013
Nelson (10.1016/j.patcog.2017.06.029_bib0026) 2013
Dasgupta (10.1016/j.patcog.2017.06.029_bib0004) 2007
Paul (10.1016/j.patcog.2017.06.029_bib0019) 2014; 8
Mahoney (10.1016/j.patcog.2017.06.029_bib0031) 2011; 3
Chakrabarti (10.1016/j.patcog.2017.06.029_bib0003) 2003; 12
Bingham (10.1016/j.patcog.2017.06.029_bib0017) 2001
Roth (10.1016/j.patcog.2017.06.029_bib0012) 1999; 12
Yuan (10.1016/j.patcog.2017.06.029_bib0016) 2015; 53
Halko (10.1016/j.patcog.2017.06.029_bib0014) 2011; 53
Drineas (10.1016/j.patcog.2017.06.029_bib0025) 2012; 13
Dudoit (10.1016/j.patcog.2017.06.029_bib0005) 2002; 97
Tu (10.1016/j.patcog.2017.06.029_bib0008) 2014
Tropp (10.1016/j.patcog.2017.06.029_bib0028) 2011; 3
Tropp (10.1016/j.patcog.2017.06.029_bib0032) 2015; 8
Zhang (10.1016/j.patcog.2017.06.029_bib0013) 2010; 11
References_xml – start-page: 964
  year: 2014
  end-page: 972
  ident: bib0008
  article-title: Making Fisher discriminant analysis scalable
  publication-title: Proceedings of the Thirty-First International Conference on Machine Learning (ICML-14)
– start-page: 1177
  year: 2007
  end-page: 1184
  ident: bib0021
  article-title: Random features for large-scale kernel machines
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 27
  start-page: 929
  year: 2005
  end-page: 941
  ident: bib0007
  article-title: A two-stage linear discriminant analysis via QR-decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 115
  year: 2011
  end-page: 126
  ident: bib0028
  article-title: Improved analysis of the subsampled randomized hadamard transform
  publication-title: Adv. Adapt. Data Anal.
– volume: 23
  start-page: 228
  year: 2001
  end-page: 233
  ident: bib0002
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 2199
  year: 2010
  end-page: 2228
  ident: bib0013
  article-title: Regularized discriminant analysis, ridge regression and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 3475
  year: 2012
  end-page: 3506
  ident: bib0025
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 1
  year: 2014
  end-page: 157
  ident: bib0027
  article-title: Sketching as a tool for numerical linear algebra
  publication-title: Found. Trends® Theor. Comput. Sci.
– volume: 12
  start-page: 2385
  year: 2000
  end-page: 2404
  ident: bib0009
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
– volume: 5779
  start-page: 426
  year: 2005
  end-page: 437
  ident: bib0018
  article-title: Face recognition experiments with random projection
  publication-title: Proceedings of SPIE
– volume: 8
  start-page: 22
  year: 2014
  ident: bib0019
  article-title: Random projections for linear support vector machines
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– volume: 12
  start-page: 170
  year: 2003
  end-page: 185
  ident: bib0003
  article-title: Fast and accurate text classification via multiple linear discriminant projections
  publication-title: VLDB J.
– start-page: 81
  year: 2013
  end-page: 90
  ident: bib0020
  article-title: Low rank approximation and regression in input sparsity time
  publication-title: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing
– volume: 3
  start-page: 123
  year: 2011
  end-page: 224
  ident: bib0031
  article-title: Randomized algorithms for matrices and data
  publication-title: Found. Trends® Mach. Learn.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 230
  ident: bib0032
  article-title: An introduction to matrix concentration inequalities
  publication-title: Found. Trends® Mach. Learn.
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  ident: bib0014
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
– volume: 12
  start-page: 568
  year: 1999
  end-page: 574
  ident: bib0012
  article-title: Nonlinear discriminant analysis using kernel functions
  publication-title: Proceedings of the International Conference on Neural Information Processing Systems
– volume: 3
  year: 2012
  ident: bib0006
  article-title: Matrix Computations
– volume: 117
  start-page: 219
  year: 2011
  end-page: 249
  ident: bib0015
  article-title: Faster least squares approximation
  publication-title: Numer. Math.
– start-page: 230
  year: 2007
  end-page: 239
  ident: bib0004
  article-title: Feature selection methods for text classification
  publication-title: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 27
  start-page: 87
  year: 2005
  end-page: 102
  ident: bib0011
  article-title: Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 53
  start-page: 631
  year: 2015
  end-page: 644
  ident: bib0016
  article-title: Hyperspectral band selection by multitask sparsity pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 32
  start-page: II
  year: 2014
  end-page: 1359–II–1367
  ident: bib0022
  article-title: Randomized nonlinear component analysis
  publication-title: Proceedings of the Thirty-First International Conference on International Conference on Machine Learning
– volume: 97
  start-page: 77
  year: 2002
  end-page: 87
  ident: bib0005
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: J. Am. Stat. Assoc.
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bib0001
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 245
  year: 2001
  end-page: 250
  ident: bib0017
  article-title: Random projection in dimensionality reduction: applications to image and text data
  publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 11:1
  year: 2016
  end-page: 11:14
  ident: bib0029
  article-title: Optimal approximate matrix product in terms of stable rank
  publication-title: Proceedings of the Forty-Third International Colloquium on Automata, Languages, and Programming, ICALP 2016, Rome, Italy
– start-page: 117
  year: 2013
  end-page: 126
  ident: bib0026
  article-title: OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
  publication-title: Proceedings of the IEEE Fifty-Fourth Annual Symposium on Foundations of Computer Science (FOCS)
– start-page: 526
  year: 1999
  end-page: 532
  ident: bib0010
  article-title: Invariant feature extraction and classification in kernel spaces.
  publication-title: Proceedings of the International Conference on Neural Information Processing Systems
– start-page: 244
  year: 2013
  end-page: 252
  ident: bib0024
  article-title: Fastfood-computing hilbert space expansions in loglinear time
  publication-title: Proceedings of the Thirtieth International Conference on Machine Learning (ICML-13)
– start-page: 3143
  year: 2013
  end-page: 3147
  ident: bib0023
  article-title: Random features for kernel deep convex network
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 19
  year: 2014
  end-page: 27
  ident: bib0030
  article-title: Compact random feature maps.
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 23
  start-page: 228
  issue: 2
  year: 2001
  ident: 10.1016/j.patcog.2017.06.029_bib0002
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– volume: 32
  start-page: II
  year: 2014
  ident: 10.1016/j.patcog.2017.06.029_bib0022
  article-title: Randomized nonlinear component analysis
– volume: 11
  start-page: 2199
  year: 2010
  ident: 10.1016/j.patcog.2017.06.029_bib0013
  article-title: Regularized discriminant analysis, ridge regression and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 631
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2017.06.029_bib0016
  article-title: Hyperspectral band selection by multitask sparsity pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2326655
– start-page: 11:1
  year: 2016
  ident: 10.1016/j.patcog.2017.06.029_bib0029
  article-title: Optimal approximate matrix product in terms of stable rank
– start-page: 244
  year: 2013
  ident: 10.1016/j.patcog.2017.06.029_bib0024
  article-title: Fastfood-computing hilbert space expansions in loglinear time
– volume: 13
  start-page: 3475
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2017.06.029_bib0025
  article-title: Fast approximation of matrix coherence and statistical leverage
  publication-title: J. Mach. Learn. Res.
– volume: 5779
  start-page: 426
  year: 2005
  ident: 10.1016/j.patcog.2017.06.029_bib0018
  article-title: Face recognition experiments with random projection
  doi: 10.1117/12.605553
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2017.06.029_bib0014
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– start-page: 3143
  year: 2013
  ident: 10.1016/j.patcog.2017.06.029_bib0023
  article-title: Random features for kernel deep convex network
– volume: 27
  start-page: 87
  issue: 1
  year: 2005
  ident: 10.1016/j.patcog.2017.06.029_bib0011
  article-title: Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479804442334
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.patcog.2017.06.029_bib0001
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– start-page: 117
  year: 2013
  ident: 10.1016/j.patcog.2017.06.029_bib0026
  article-title: OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
– start-page: 19
  year: 2014
  ident: 10.1016/j.patcog.2017.06.029_bib0030
  article-title: Compact random feature maps.
– start-page: 1177
  year: 2007
  ident: 10.1016/j.patcog.2017.06.029_bib0021
  article-title: Random features for large-scale kernel machines
– volume: 3
  start-page: 123
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2017.06.029_bib0031
  article-title: Randomized algorithms for matrices and data
  publication-title: Found. Trends® Mach. Learn.
– volume: 10
  start-page: 1
  issue: 1–2
  year: 2014
  ident: 10.1016/j.patcog.2017.06.029_bib0027
  article-title: Sketching as a tool for numerical linear algebra
  publication-title: Found. Trends® Theor. Comput. Sci.
  doi: 10.1561/0400000060
– start-page: 964
  year: 2014
  ident: 10.1016/j.patcog.2017.06.029_bib0008
  article-title: Making Fisher discriminant analysis scalable
– start-page: 526
  year: 1999
  ident: 10.1016/j.patcog.2017.06.029_bib0010
  article-title: Invariant feature extraction and classification in kernel spaces.
– volume: 12
  start-page: 2385
  issue: 10
  year: 2000
  ident: 10.1016/j.patcog.2017.06.029_bib0009
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014980
– volume: 12
  start-page: 170
  issue: 2
  year: 2003
  ident: 10.1016/j.patcog.2017.06.029_bib0003
  article-title: Fast and accurate text classification via multiple linear discriminant projections
  publication-title: VLDB J.
  doi: 10.1007/s00778-003-0098-9
– volume: 8
  start-page: 1
  issue: 1–2
  year: 2015
  ident: 10.1016/j.patcog.2017.06.029_bib0032
  article-title: An introduction to matrix concentration inequalities
  publication-title: Found. Trends® Mach. Learn.
– start-page: 81
  year: 2013
  ident: 10.1016/j.patcog.2017.06.029_bib0020
  article-title: Low rank approximation and regression in input sparsity time
– volume: 97
  start-page: 77
  issue: 457
  year: 2002
  ident: 10.1016/j.patcog.2017.06.029_bib0005
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214502753479248
– volume: 8
  start-page: 22
  issue: 4
  year: 2014
  ident: 10.1016/j.patcog.2017.06.029_bib0019
  article-title: Random projections for linear support vector machines
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– volume: 12
  start-page: 568
  year: 1999
  ident: 10.1016/j.patcog.2017.06.029_bib0012
  article-title: Nonlinear discriminant analysis using kernel functions
– volume: 3
  year: 2012
  ident: 10.1016/j.patcog.2017.06.029_bib0006
– volume: 3
  start-page: 115
  issue: 01n02
  year: 2011
  ident: 10.1016/j.patcog.2017.06.029_bib0028
  article-title: Improved analysis of the subsampled randomized hadamard transform
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536911000787
– start-page: 230
  year: 2007
  ident: 10.1016/j.patcog.2017.06.029_bib0004
  article-title: Feature selection methods for text classification
– volume: 27
  start-page: 929
  issue: 6
  year: 2005
  ident: 10.1016/j.patcog.2017.06.029_bib0007
  article-title: A two-stage linear discriminant analysis via QR-decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.110
– volume: 117
  start-page: 219
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2017.06.029_bib0015
  article-title: Faster least squares approximation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0331-6
– start-page: 245
  year: 2001
  ident: 10.1016/j.patcog.2017.06.029_bib0017
  article-title: Random projection in dimensionality reduction: applications to image and text data
SSID ssj0017142
Score 2.3866227
Snippet •We propose to use random projection to accelerate Fisher discriminant analysis and provide a theoretical analysis. Empirical study shows our method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms Fisher discriminant analysis
Random feature map
Random projection
Title Fast Fisher discriminant analysis with randomized algorithms
URI https://dx.doi.org/10.1016/j.patcog.2017.06.029
Volume 72
WOSCitedRecordID wos000411545400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELYg5cCFN6K85AM3ZBSvd9e2xKWqWhWEqh6KlHJZecd2mqjdRHmgqr--fu1uIKjQA5dNZGWdZGc0Mx5__j6EPgB4TpJSEFbnBcldSiLKgCRDI0rBDCu0CTyz3_jxsRiN5EmiJ1gGOQHeNOLqSs7_q6ndmDO2Pzp7B3N3k7oB994Z3V2d2d31nwx_qJarj1HR3G-_QNTtCkjyxD8Seq8uR-nZ5eTaFZzqYjxbuLFEXJ5K1ZPAvOlPuySIUb9hfxa6oEdBubmH9ARcwNl6uu6G9tPRD_863mpR_zifnK_VZtvBpbIewpFCKaOEZUO2GUqjCk-KhVFUKGXVKHi3Fa9j62D6ae7yzmzskXY80KmmLsgv9Ni_pa0OTNji1KZVnKXys1QerpfJ-2gn44UUA7Sz9-Vg9LXbYOI0j0Ty6V-0pyoD9G_71_y5atmoRE6foEdpCYH3oumfonumeYYet_IcOEXr5-iz9wQcPQFvegJuPQF7T8C9J-DeE16g74cHp_tHJIllEHCrvhUxNbOQ8bqQuc6H1mrJGdhcl9pSBYVVtDRMqpqCsbZkVmtNNa-BGiqVril7iQbNrDGvEGZCUG5yWoNbbGbKCBhmCgxoISwFmu0i1j6MChKTvBc0uahuM8UuIt1d88ik8pfP8_Y5V6kajFVe5Zzn1jtf3_Gb3qCHvYe_RYPVYm3eoQfwczVZLt4nz7kBkN2FrQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Fisher+discriminant+analysis+with+randomized+algorithms&rft.jtitle=Pattern+recognition&rft.au=Ye%2C+Haishan&rft.au=Li%2C+Yujun&rft.au=Chen%2C+Cheng&rft.au=Zhang%2C+Zhihua&rft.date=2017-12-01&rft.issn=0031-3203&rft.volume=72&rft.spage=82&rft.epage=92&rft_id=info:doi/10.1016%2Fj.patcog.2017.06.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2017_06_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon