Prediction of user outage under typhoon disaster based on multi-algorithm Stacking integration

•Variable data extraction and prediction were carried out with 1 km × 1 km grid as unit.•Using Stacking to integrate multiple algorithms to achieve outage prediction.•ArcGIS visualizes the results and displays the grid distribution conveniently. Prediction of user outage under typhoon disaster is of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems Jg. 131; S. 107123
Hauptverfasser: Hou, Hui, Chen, Xi, Li, Min, Zhu, Ling, Huang, Yong, Yu, Jufang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2021
Schlagworte:
ISSN:0142-0615, 1879-3517
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Variable data extraction and prediction were carried out with 1 km × 1 km grid as unit.•Using Stacking to integrate multiple algorithms to achieve outage prediction.•ArcGIS visualizes the results and displays the grid distribution conveniently. Prediction of user outage under typhoon disaster is of great significance for power grid disaster prevention and mitigation. Based on the idea of Stacking integration in machine learning, this paper constructs a forecasting model of user outage under typhoon disaster. It includes base learner layer and meta learner layer. In the base learner layer, random forest, adaptive boosting, extremely tree, gradient boosting decision tree, support vector machine and logistic regression are selected. Then the XGBoost algorithm is selected in the meta learner layer. Taking one of the most frequently struck area Xuwen County of Guangdong, China as the research object, the model is verified by typhoon “Rammasun(2014)”,“Kalmaegi(2014)” and “Mujigae(2015)”. The results show that the accuracy and recall of the prediction model based on multi-algorithm Stacking integration can reach 0.7678 and 0.9059 respectively. It can well realize the prediction of user outage under typhoon disaster.
AbstractList •Variable data extraction and prediction were carried out with 1 km × 1 km grid as unit.•Using Stacking to integrate multiple algorithms to achieve outage prediction.•ArcGIS visualizes the results and displays the grid distribution conveniently. Prediction of user outage under typhoon disaster is of great significance for power grid disaster prevention and mitigation. Based on the idea of Stacking integration in machine learning, this paper constructs a forecasting model of user outage under typhoon disaster. It includes base learner layer and meta learner layer. In the base learner layer, random forest, adaptive boosting, extremely tree, gradient boosting decision tree, support vector machine and logistic regression are selected. Then the XGBoost algorithm is selected in the meta learner layer. Taking one of the most frequently struck area Xuwen County of Guangdong, China as the research object, the model is verified by typhoon “Rammasun(2014)”,“Kalmaegi(2014)” and “Mujigae(2015)”. The results show that the accuracy and recall of the prediction model based on multi-algorithm Stacking integration can reach 0.7678 and 0.9059 respectively. It can well realize the prediction of user outage under typhoon disaster.
ArticleNumber 107123
Author Hou, Hui
Chen, Xi
Li, Min
Huang, Yong
Yu, Jufang
Zhu, Ling
Author_xml – sequence: 1
  givenname: Hui
  surname: Hou
  fullname: Hou, Hui
  email: houhui@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: School of Automation, Wuhan University of Technology, Wuhan 430070, China
– sequence: 3
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: Guangdong Power Grid Co., Ltd., Guangzhou 510080, China
– sequence: 4
  givenname: Ling
  surname: Zhu
  fullname: Zhu, Ling
  organization: Guangdong Power Grid Co., Ltd., Guangzhou 510080, China
– sequence: 5
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
  organization: Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China
– sequence: 6
  givenname: Jufang
  surname: Yu
  fullname: Yu, Jufang
  organization: School of Automation, Wuhan University of Technology, Wuhan 430070, China
BookMark eNqFkMtKAzEUhoNUsK2-gYt5galJ5pLGhSDFGwgK6taQy5lpxnZSkozQtzd1XLnQ1SF_-H7O-WZo0rseEDoneEEwqS-6he1gB2FBMSUpYoQWR2hKloznRUXYBE0xKWmOa1KdoFkIHcaY8ZJO0fuzB2N1tK7PXJMNAXzmhihbyIbepEfc79YufRobZIgpUDKAyVKyHTbR5nLTOm_jepu9RKk_bN9mto_QennoPEXHjdwEOPuZc_R2e_O6us8fn-4eVtePuS5wHXOQhlBcF6ooWanUUhppFG9UU3FOOYWyUKqR2Miq4ZopDVKpumIN41RrAriYo8uxV3sXgodGaBu_N4he2o0gWBxMiU6MpsTBlBhNJbj8Be-83Uq__w-7GjFIh31a8CJoC71OPj3oKIyzfxd8AXXZioQ
CitedBy_id crossref_primary_10_1016_j_jnoncrysol_2025_123681
crossref_primary_10_1016_j_epsr_2022_108098
crossref_primary_10_1016_j_gloei_2024_07_002
crossref_primary_10_1515_ijeeps_2025_0106
crossref_primary_10_3390_en18185034
crossref_primary_10_1016_j_energy_2022_126064
crossref_primary_10_1007_s12145_024_01544_8
crossref_primary_10_1109_ACCESS_2022_3161506
crossref_primary_10_1109_ACCESS_2022_3149485
crossref_primary_10_1016_j_apenergy_2024_124389
crossref_primary_10_3389_fpls_2025_1553110
crossref_primary_10_1016_j_engappai_2024_108056
crossref_primary_10_1007_s13748_024_00346_9
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1016_j_ress_2023_109398
crossref_primary_10_1016_j_energy_2022_123848
crossref_primary_10_3390_f14091742
crossref_primary_10_1109_TIA_2022_3225516
crossref_primary_10_3390_s24041113
crossref_primary_10_1016_j_ijepes_2022_108296
Cites_doi 10.1109/TPWRD.2002.804006
10.1016/j.procs.2020.06.071
10.1109/AEEES48850.2020.9121536
10.1109/ACCESS.2019.2916382
10.1007/s11069-010-9672-9
10.1109/ACCESS.2018.2877078
10.1111/j.1539-6924.2009.01280.x
10.1016/j.neucom.2016.07.036
10.1109/TPWRS.2015.2429656
10.1016/j.ress.2011.10.012
10.1016/j.gecco.2019.e00856
10.1016/j.jclepro.2018.08.207
10.1016/j.ijepes.2019.105711
10.1016/j.ress.2007.03.038
10.1061/(ASCE)1076-0342(2005)11:4(258)
10.1023/A:1010933404324
10.1109/ACCESS.2014.2365716
10.1007/s11069-015-1908-2
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2021.107123
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2021_107123
S0142061521003628
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c306t-ead12063b3474bb8adadb9fbf599292e43bbfa0da5f9c7bceabb657f792cc1e03
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663437100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Tue Nov 18 21:02:52 EST 2025
Sat Nov 29 07:23:32 EST 2025
Fri Feb 23 02:45:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Typhoon
Outage prediction
User outage
Stacking integration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ead12063b3474bb8adadb9fbf599292e43bbfa0da5f9c7bceabb657f792cc1e03
ParticipantIDs crossref_citationtrail_10_1016_j_ijepes_2021_107123
crossref_primary_10_1016_j_ijepes_2021_107123
elsevier_sciencedirect_doi_10_1016_j_ijepes_2021_107123
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm[C] // Proceedings of the 13th Conference on Machine Learning,1996, San Francisco, USA: 148–56.
Tang, Xu, Chen, Yi (b0030) 2019; 7
Guikema, Nateghi, Quiring, Staid, Reilly, Gao (b0040) 2014; 2
Xu (b0140) 2018
Wang, Yin, Li (b0020) 2018; 30
Wanik, Anagnostou, Hartman, Frediani, Astitha (b0075) 2015; 79
Breiman (b0105) 2001; 45
Li, Han, Zhang (b0055) 2013; 37
Hou, Geng, Xiao (b0085) 2019; 43
Yuan, Quiring, Zhu, Huang, Wang (b0090) 2020; 117
Zhou (b0135) 2016
Yan, Feng, Zhao, Feng, Wu, Zhu (b0100) 2020; 21
Yang, Zhao, Yu, Chen (b0120) 2020; 174
Zhang, Chen, Xu (b0060) 2011; 39
Zhou, Zhang, Zhou (b0125) 2020; 164
Geng, Huang, Yu, Yu, Hou, Mao (b0010) 2018; 130
Guikema, Quiring (b0045) 2012; 99
Liu, Davidson, Rosowsky, Stedinger (b0080) 2005; 11
Ahmad, Reynolds, Rezgui (b0115) 2018; 203
Wang, Chen, Wang, Baldick (b0005) 2016; 31
Liu, Davidson, Apanasovich (b0070) 2008; 93
Shashaani, Guikema, Zhai, Pino, Quiring (b0130) 2018; 6
Yu J, Hou H, Xiao X et al. Risk Assessment of Trip Caused by Air Gap Discharge between Transmission Line and Tower under Typhoon[C]. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, p. 38–42, 2020.
Chen, Wang, Chen (b0025) 2018; 42
Quiring, Zhu, Guikema (b0035) 2011; 58
Radmer, Kuntz, Christie, Venkata, Fletcher (b0050) 2002; 17
Zhou (b0095) 2020
Zhou, Deng, Xia, Fu (b0145) 2016; 216
Guikema, Quiring, Han (b0065) 2009; 29
Hou (10.1016/j.ijepes.2021.107123_b0085) 2019; 43
Liu (10.1016/j.ijepes.2021.107123_b0080) 2005; 11
Zhou (10.1016/j.ijepes.2021.107123_b0095) 2020
Zhang (10.1016/j.ijepes.2021.107123_b0060) 2011; 39
Ahmad (10.1016/j.ijepes.2021.107123_b0115) 2018; 203
Zhou (10.1016/j.ijepes.2021.107123_b0125) 2020; 164
Guikema (10.1016/j.ijepes.2021.107123_b0040) 2014; 2
Wang (10.1016/j.ijepes.2021.107123_b0005) 2016; 31
Radmer (10.1016/j.ijepes.2021.107123_b0050) 2002; 17
Geng (10.1016/j.ijepes.2021.107123_b0010) 2018; 130
Yang (10.1016/j.ijepes.2021.107123_b0120) 2020; 174
Wang (10.1016/j.ijepes.2021.107123_b0020) 2018; 30
Wanik (10.1016/j.ijepes.2021.107123_b0075) 2015; 79
Guikema (10.1016/j.ijepes.2021.107123_b0045) 2012; 99
Quiring (10.1016/j.ijepes.2021.107123_b0035) 2011; 58
10.1016/j.ijepes.2021.107123_b0110
Liu (10.1016/j.ijepes.2021.107123_b0070) 2008; 93
10.1016/j.ijepes.2021.107123_b0015
Shashaani (10.1016/j.ijepes.2021.107123_b0130) 2018; 6
Yuan (10.1016/j.ijepes.2021.107123_b0090) 2020; 117
Breiman (10.1016/j.ijepes.2021.107123_b0105) 2001; 45
Zhou (10.1016/j.ijepes.2021.107123_b0135) 2016
Zhou (10.1016/j.ijepes.2021.107123_b0145) 2016; 216
Tang (10.1016/j.ijepes.2021.107123_b0030) 2019; 7
Xu (10.1016/j.ijepes.2021.107123_b0140) 2018
Yan (10.1016/j.ijepes.2021.107123_b0100) 2020; 21
Chen (10.1016/j.ijepes.2021.107123_b0025) 2018; 42
Li (10.1016/j.ijepes.2021.107123_b0055) 2013; 37
Guikema (10.1016/j.ijepes.2021.107123_b0065) 2009; 29
References_xml – volume: 43
  start-page: 1948
  year: 2019
  end-page: 1954
  ident: b0085
  article-title: Research on prediction and evaluation of user power outage area under typhoon disaster
  publication-title: Power Syst Technol
– volume: 21
  start-page: e00856
  year: 2020
  ident: b0100
  article-title: Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt
  publication-title: Global Ecol Conserv
– volume: 174
  start-page: 161
  year: 2020
  end-page: 171
  ident: b0120
  article-title: Use GBDT to predict the Stock Market
  publication-title: Procedia Comput Sci
– volume: 30
  start-page: 60
  year: 2018
  end-page: 65
  ident: b0020
  article-title: Risk assessment method for distribution network considering operation state in the scene of typhoon disaster
  publication-title: Proceedings of the CSU-EPSA
– volume: 117
  start-page: 105711
  year: 2020
  ident: b0090
  article-title: Development of a typhoon power outage model in Guangdong, China
  publication-title: Electr Power Energy Syst
– volume: 99
  start-page: 178
  year: 2012
  end-page: 182
  ident: b0045
  article-title: Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data
  publication-title: Reliab Eng Syst Saf
– year: 2016
  ident: b0135
  article-title: Machine learning
– year: 2018
  ident: b0140
  article-title: The study and improvement of Stacking
– year: 2020
  ident: b0095
  article-title: Ensemble Methods: Foundation and Algorithms
– volume: 11
  start-page: 258
  year: 2005
  end-page: 267
  ident: b0080
  article-title: Negative binomial regression of electric power outages in hurricanes
  publication-title: J Infrastruct Syst
– reference: Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm[C] // Proceedings of the 13th Conference on Machine Learning,1996, San Francisco, USA: 148–56.
– reference: Yu J, Hou H, Xiao X et al. Risk Assessment of Trip Caused by Air Gap Discharge between Transmission Line and Tower under Typhoon[C]. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, p. 38–42, 2020.
– volume: 7
  start-page: 63983
  year: 2019
  end-page: 63991
  ident: b0030
  article-title: Early Warning Method of Transmission Tower Considering Plastic Fatigue Damage Under Typhoon Weather
  publication-title: IEEE Access
– volume: 58
  start-page: 365
  year: 2011
  end-page: 390
  ident: b0035
  article-title: Importance of soil and elevation characteristics for modeling hurricane-induced power outages
  publication-title: Natural Hazard
– volume: 2
  start-page: 1364
  year: 2014
  end-page: 1373
  ident: b0040
  article-title: Predicting hurricane power outages to support storm response planning
  publication-title: IEEE Access
– volume: 79
  start-page: 1359
  year: 2015
  end-page: 1384
  ident: b0075
  article-title: Storm outage modeling for an electric distribution network in Northeastern USA
  publication-title: Nat Hazards
– volume: 39
  start-page: 1
  year: 2011
  end-page: 5
  ident: b0060
  article-title: Prediction of original reliability parameters of power system based on fuzzy clustering and similarity
  publication-title: Power Syst Protect Control
– volume: 37
  start-page: 1683
  year: 2013
  end-page: 1687
  ident: b0055
  article-title: Research on impact model of meteorological factors on the power accidents
  publication-title: Power Syst Technol
– volume: 164
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0125
  article-title: A feature selection algorithm of decision tree based on feature weight
  publication-title: Expert Syst Appl
– volume: 17
  start-page: 1170
  year: 2002
  end-page: 1175
  ident: b0050
  article-title: Predicting vegetation-related failure rates for overhead distribution feeders
  publication-title: IEEE Trans Power Delivery
– volume: 42
  start-page: 60
  year: 2018
  end-page: 65
  ident: b0025
  article-title: Evaluation of the failure probability of power transimmision corridors during typhoons using digital elevation information
  publication-title: Power System Technology
– volume: 29
  start-page: 1443
  year: 2009
  end-page: 1453
  ident: b0065
  article-title: Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models
  publication-title: Risk Anal
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  ident: b0115
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J Cleaner Prod
– volume: 130
  start-page: 1170
  year: 2018
  end-page: 1175
  ident: b0010
  article-title: Research on Early Warning Method of Overhead Transmission Line Damage Caused by Typhoon Disaster
  publication-title: The 4th International Workshop on Wireless Technology Innovations in Smart Grid
– volume: 31
  start-page: 1604
  year: 2016
  end-page: 1613
  ident: b0005
  article-title: Research on resilience of power systems under natural disasters—a review
  publication-title: IEEE Trans. Power Syst
– volume: 6
  start-page: 62432
  year: 2018
  end-page: 62449
  ident: b0130
  article-title: Multi-stage prediction for zero-inflated hurricane induced power outages
  publication-title: IEEE Access
– volume: 93
  start-page: 897
  year: 2008
  end-page: 912
  ident: b0070
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Reliab Eng Syst Saf
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0105
  article-title: Random forests
  publication-title: Machine learning
– volume: 216
  start-page: 208
  year: 2016
  end-page: 215
  ident: b0145
  article-title: A new sampling method in particle filter based on Pearson correlation coefficient
  publication-title: Neurocomputing
– year: 2016
  ident: 10.1016/j.ijepes.2021.107123_b0135
– volume: 130
  start-page: 1170
  year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0010
  article-title: Research on Early Warning Method of Overhead Transmission Line Damage Caused by Typhoon Disaster
  publication-title: The 4th International Workshop on Wireless Technology Innovations in Smart Grid
– volume: 17
  start-page: 1170
  issue: 4
  year: 2002
  ident: 10.1016/j.ijepes.2021.107123_b0050
  article-title: Predicting vegetation-related failure rates for overhead distribution feeders
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2002.804006
– volume: 174
  start-page: 161
  year: 2020
  ident: 10.1016/j.ijepes.2021.107123_b0120
  article-title: Use GBDT to predict the Stock Market
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.06.071
– ident: 10.1016/j.ijepes.2021.107123_b0015
  doi: 10.1109/AEEES48850.2020.9121536
– volume: 7
  start-page: 63983
  year: 2019
  ident: 10.1016/j.ijepes.2021.107123_b0030
  article-title: Early Warning Method of Transmission Tower Considering Plastic Fatigue Damage Under Typhoon Weather
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916382
– volume: 58
  start-page: 365
  issue: 1
  year: 2011
  ident: 10.1016/j.ijepes.2021.107123_b0035
  article-title: Importance of soil and elevation characteristics for modeling hurricane-induced power outages
  publication-title: Natural Hazard
  doi: 10.1007/s11069-010-9672-9
– volume: 6
  start-page: 62432
  year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0130
  article-title: Multi-stage prediction for zero-inflated hurricane induced power outages
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877078
– volume: 29
  start-page: 1443
  issue: 10
  year: 2009
  ident: 10.1016/j.ijepes.2021.107123_b0065
  article-title: Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models
  publication-title: Risk Anal
  doi: 10.1111/j.1539-6924.2009.01280.x
– volume: 43
  start-page: 1948
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2021.107123_b0085
  article-title: Research on prediction and evaluation of user power outage area under typhoon disaster
  publication-title: Power Syst Technol
– volume: 216
  start-page: 208
  year: 2016
  ident: 10.1016/j.ijepes.2021.107123_b0145
  article-title: A new sampling method in particle filter based on Pearson correlation coefficient
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.036
– volume: 37
  start-page: 1683
  issue: 6
  year: 2013
  ident: 10.1016/j.ijepes.2021.107123_b0055
  article-title: Research on impact model of meteorological factors on the power accidents
  publication-title: Power Syst Technol
– year: 2020
  ident: 10.1016/j.ijepes.2021.107123_b0095
– volume: 31
  start-page: 1604
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2021.107123_b0005
  article-title: Research on resilience of power systems under natural disasters—a review
  publication-title: IEEE Trans. Power Syst
  doi: 10.1109/TPWRS.2015.2429656
– year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0140
– volume: 99
  start-page: 178
  year: 2012
  ident: 10.1016/j.ijepes.2021.107123_b0045
  article-title: Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.10.012
– volume: 39
  start-page: 1
  issue: 8
  year: 2011
  ident: 10.1016/j.ijepes.2021.107123_b0060
  article-title: Prediction of original reliability parameters of power system based on fuzzy clustering and similarity
  publication-title: Power Syst Protect Control
– volume: 21
  start-page: e00856
  year: 2020
  ident: 10.1016/j.ijepes.2021.107123_b0100
  article-title: Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt
  publication-title: Global Ecol Conserv
  doi: 10.1016/j.gecco.2019.e00856
– volume: 203
  start-page: 810
  year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0115
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.08.207
– ident: 10.1016/j.ijepes.2021.107123_b0110
– volume: 42
  start-page: 60
  issue: 7
  year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0025
  article-title: Evaluation of the failure probability of power transimmision corridors during typhoons using digital elevation information
  publication-title: Power System Technology
– volume: 117
  start-page: 105711
  year: 2020
  ident: 10.1016/j.ijepes.2021.107123_b0090
  article-title: Development of a typhoon power outage model in Guangdong, China
  publication-title: Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105711
– volume: 164
  start-page: 1
  issue: 2020
  year: 2020
  ident: 10.1016/j.ijepes.2021.107123_b0125
  article-title: A feature selection algorithm of decision tree based on feature weight
  publication-title: Expert Syst Appl
– volume: 93
  start-page: 897
  issue: 6
  year: 2008
  ident: 10.1016/j.ijepes.2021.107123_b0070
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.03.038
– volume: 11
  start-page: 258
  issue: 4
  year: 2005
  ident: 10.1016/j.ijepes.2021.107123_b0080
  article-title: Negative binomial regression of electric power outages in hurricanes
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)1076-0342(2005)11:4(258)
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ijepes.2021.107123_b0105
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 60
  issue: 12
  year: 2018
  ident: 10.1016/j.ijepes.2021.107123_b0020
  article-title: Risk assessment method for distribution network considering operation state in the scene of typhoon disaster
  publication-title: Proceedings of the CSU-EPSA
– volume: 2
  start-page: 1364
  year: 2014
  ident: 10.1016/j.ijepes.2021.107123_b0040
  article-title: Predicting hurricane power outages to support storm response planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2365716
– volume: 79
  start-page: 1359
  issue: 2
  year: 2015
  ident: 10.1016/j.ijepes.2021.107123_b0075
  article-title: Storm outage modeling for an electric distribution network in Northeastern USA
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1908-2
SSID ssj0007942
Score 2.4516172
Snippet •Variable data extraction and prediction were carried out with 1 km × 1 km grid as unit.•Using Stacking to integrate multiple algorithms to achieve outage...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107123
SubjectTerms Outage prediction
Stacking integration
Typhoon
User outage
Title Prediction of user outage under typhoon disaster based on multi-algorithm Stacking integration
URI https://dx.doi.org/10.1016/j.ijepes.2021.107123
Volume 131
WOSCitedRecordID wos000663437100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOaHyJwYZ84DZlahwHx8cJbQI0TTsMqeJAZDvOmq4kVZpM-yv4m3m24yTb0GAHLlHlJk7U9-v7yu-9h9AHwjIWg9sRcIgVAqpCGSSaGjIV0TTnkobCNnE9YaenyXzOzyaTX74W5mrFyjK5vubr_ypqWANhm9LZB4i73xQW4DMIHY4gdjj-k-DPavPuxTuCJgmxX7WNoeaYerHaJF0XFXyZFRthuiTsG0OWmZcGllwYiNVFVRfN4qdxRNWlq3lxPSW8DJcD_X3IJo56ULjZOlb8azOFzeJLuyrDzahFuqXtttb6tcVANHCacN6vnBSO4N_j-Pui7fIJF-OsBQl7_tuQyCRmqkR8QxN3BsHpUghMQ1eLfEfNu4zD8qBY6rU2TddJeDCcfrOr9i1r13MQPb1tmbpdUrNL6nZ5hLYIQDiZoq3DL0fzr71tB-1FHCnWPb0vxrSMwbtP82dnZ-TAnG-jZ13kgQ8dYp6jiS5foKejfpQv0Y8BO7jKscEOdtjBFju4ww722MEWOxhWbmEHe-zgEXZeoW_HR-efPgfdAI5AQSTZBKBlQgI-rIwoo1ImIhOZ5LnMYw5eNfyZIylzMctEnHPFpNJCyo8xyxknSoV6Fr1G07Iq9RuERZxIsKszrTileZxAXDETPJLgkQpBSbaDIv9LparrTm-GpKzS--S0g4L-qrXrzvKX85kXQtp5mM5zTAFZ91759oF3eoeeDLDfRdOmbvUeeqyummJTv-9g9RuP36Il
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+user+outage+under+typhoon+disaster+based+on+multi-algorithm+Stacking+integration&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Hou%2C+Hui&rft.au=Chen%2C+Xi&rft.au=Li%2C+Min&rft.au=Zhu%2C+Ling&rft.date=2021-10-01&rft.issn=0142-0615&rft.volume=131&rft.spage=107123&rft_id=info:doi/10.1016%2Fj.ijepes.2021.107123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2021_107123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon