δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting

Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due to the inherent randomness and large variations of traffic flow. Recently, the stack...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 247; s. 31 - 38
Hlavní autoři: Zhou, Teng, Han, Guoqiang, Xu, Xuemiao, Lin, Zhizhe, Han, Chu, Huang, Yuchang, Qin, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.07.2017
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due to the inherent randomness and large variations of traffic flow. Recently, the stacked autoencoder has been proven promising for traffic flow forecasting but still exists some drawbacks in certain conditions. In this paper, a training samples replication strategy is introduced to train a series of stacked autoencoders and an adaptive boosting scheme is proposed to ensemble the trained stacked autoencoders to improve the accuracy of traffic flow forecasting. Furthermore, sufficient experiments have been conducted to demonstrate the superior performance of the proposal.
AbstractList Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due to the inherent randomness and large variations of traffic flow. Recently, the stacked autoencoder has been proven promising for traffic flow forecasting but still exists some drawbacks in certain conditions. In this paper, a training samples replication strategy is introduced to train a series of stacked autoencoders and an adaptive boosting scheme is proposed to ensemble the trained stacked autoencoders to improve the accuracy of traffic flow forecasting. Furthermore, sufficient experiments have been conducted to demonstrate the superior performance of the proposal.
Author Han, Guoqiang
Xu, Xuemiao
Han, Chu
Lin, Zhizhe
Zhou, Teng
Huang, Yuchang
Qin, Jing
Author_xml – sequence: 1
  givenname: Teng
  surname: Zhou
  fullname: Zhou, Teng
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
– sequence: 2
  givenname: Guoqiang
  surname: Han
  fullname: Han, Guoqiang
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
– sequence: 3
  givenname: Xuemiao
  surname: Xu
  fullname: Xu, Xuemiao
  email: xuemx@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
– sequence: 4
  givenname: Zhizhe
  surname: Lin
  fullname: Lin, Zhizhe
  organization: Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, 515000, China
– sequence: 5
  givenname: Chu
  surname: Han
  fullname: Han, Chu
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
– sequence: 6
  givenname: Yuchang
  surname: Huang
  fullname: Huang, Yuchang
  organization: College of Mathematics and Information, South China Agricultural University, Guangzhou, Guangdong, 510642, China
– sequence: 7
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
  organization: Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
BookMark eNqFkD1OAzEQRi0UJJLADSj2ArvY3vVmTYEUIv6kIBqoLWc8Dg7JGtkOiHtxDs6Eo1BRQDXFzPv0zRuRQe97JOSU0YpR1p6tqh634DcVp2xS0bqijTwgQ9ZNeNnxrh2QIZVclLxm_IiMYlzRfMi4HJL7r89SLwNiMTX60vuYipg0vKAp9DZ57MEbDIX1oYjPPqQyYdgUKWhrHRR27d93OwQdk-uXx-TQ6nXEk585Jk_XV4-z23L-cHM3m85LqGmbSpQUW1MLIXMtkLBgFpmgggJt24UEqw3aibFigcK0TQfGWpCi4QaE7KSpx-R8nwvBxxjQKnBJJ-f73MytFaNqJ0at1F6M2olRtFZZTIabX_BrcBsdPv7DLvYY5sfeHAYVwWU_aFz-Pynj3d8B3ys4hHg
CitedBy_id crossref_primary_10_3390_math10224279
crossref_primary_10_1016_j_neucom_2024_129193
crossref_primary_10_3390_electronics9091474
crossref_primary_10_1007_s00500_020_04855_2
crossref_primary_10_1080_21642583_2023_2191632
crossref_primary_10_1155_2024_9981657
crossref_primary_10_1016_j_cie_2021_107227
crossref_primary_10_1007_s12351_019_00537_6
crossref_primary_10_3390_su14074164
crossref_primary_10_1016_j_energy_2018_05_052
crossref_primary_10_1016_j_jcp_2020_109278
crossref_primary_10_1088_1755_1315_783_1_012153
crossref_primary_10_1016_j_neucom_2020_11_026
crossref_primary_10_1080_23311916_2021_2010510
crossref_primary_10_1080_15472450_2019_1617141
crossref_primary_10_1016_j_physa_2021_126485
crossref_primary_10_1049_iet_its_2018_5315
crossref_primary_10_3390_math11163574
crossref_primary_10_1016_j_ins_2020_08_053
crossref_primary_10_1016_j_neucom_2023_01_009
crossref_primary_10_1109_ACCESS_2020_3034763
crossref_primary_10_1007_s13177_024_00398_0
crossref_primary_10_1016_j_engappai_2023_106411
crossref_primary_10_1049_itr2_12448
crossref_primary_10_1049_itr2_12127
crossref_primary_10_1109_ACCESS_2023_3307184
crossref_primary_10_1177_1460458220901889
crossref_primary_10_1016_j_oceaneng_2025_122748
crossref_primary_10_1007_s11771_022_5000_2
crossref_primary_10_1016_j_apenergy_2019_114001
crossref_primary_10_3390_math10152772
crossref_primary_10_1049_iet_its_2018_5385
crossref_primary_10_1109_TITS_2020_3009725
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1109_ACCESS_2018_2805299
crossref_primary_10_1016_j_asoc_2019_105963
crossref_primary_10_1111_coin_12488
crossref_primary_10_1155_2019_6461450
crossref_primary_10_3390_app122412670
crossref_primary_10_1007_s11063_018_9804_x
crossref_primary_10_1016_j_physa_2019_122601
crossref_primary_10_1016_j_knosys_2018_10_025
crossref_primary_10_1177_03611981221116624
crossref_primary_10_1155_2020_8874521
crossref_primary_10_1007_s12652_020_02182_w
crossref_primary_10_1155_2022_5257353
crossref_primary_10_1016_j_knosys_2019_104930
crossref_primary_10_1680_jtran_23_00081
crossref_primary_10_1109_ACCESS_2020_2970250
crossref_primary_10_1109_TITS_2020_2984813
crossref_primary_10_1016_j_knosys_2024_112029
crossref_primary_10_1016_j_asoc_2022_108544
crossref_primary_10_1109_ACCESS_2021_3051079
crossref_primary_10_1109_ACCESS_2019_2963784
crossref_primary_10_1155_2019_4145353
crossref_primary_10_3390_s24175502
crossref_primary_10_1007_s00521_020_04843_5
crossref_primary_10_3390_math13071158
crossref_primary_10_1007_s00500_023_09173_x
crossref_primary_10_1049_iet_rpg_2018_6257
crossref_primary_10_1155_2020_8899478
crossref_primary_10_1016_j_engappai_2024_109721
crossref_primary_10_1016_j_neucom_2019_04_061
crossref_primary_10_1155_2022_6831167
crossref_primary_10_3390_math10122087
crossref_primary_10_1155_2021_5582974
crossref_primary_10_1109_ACCESS_2019_2900371
crossref_primary_10_1109_ACCESS_2019_2943028
Cites_doi 10.3141/2024-03
10.1016/j.trc.2013.11.011
10.1016/j.trc.2014.06.011
10.3141/1857-09
10.1109/34.58871
10.1016/j.apm.2010.09.005
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1109/TITS.2011.2174051
10.1038/nature04503
10.1109/TITS.2011.2174634
10.1016/S0893-6080(05)80010-3
10.3141/1968-12
10.1016/j.trc.2014.02.006
10.1016/j.neucom.2016.12.038
10.1016/j.trc.2010.10.002
10.1109/TITS.2009.2021448
10.1061/(ASCE)TE.1943-5436.0000656
10.1007/s00521-012-1291-9
10.1007/s00382-003-0350-4
10.1016/j.ins.2014.03.128
10.1111/j.1467-8667.2007.00489.x
10.1016/j.trb.2015.02.008
10.1109/TITS.2014.2311123
10.1109/TITS.2013.2278192
10.1109/TITS.2013.2247040
10.1111/j.1467-8667.2010.00668.x
10.1080/15472450802262281
10.1061/(ASCE)0733-947X(1991)117:2(178)
10.1049/iet-its.2013.0053
10.1080/23249935.2014.932469
10.1016/0893-9659(91)90080-F
10.1007/BF01589116
10.1109/TPAMI.2013.50
10.1098/rsta.2012.0388
10.1109/TITS.2013.2260540
10.1038/nature14539
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.03.049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 38
ExternalDocumentID 10_1016_j_neucom_2017_03_049
S0925231217305647
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-e90e6d3559092c9cb1fe15050c066b9cfadef7df5be5d648cdffc9542dc5989d3
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401392200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:56:52 EST 2025
Sat Nov 29 03:02:48 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacked autoencoder
AdaBoost
Dynamic system
Time-series model
Short-term traffic flow forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e90e6d3559092c9cb1fe15050c066b9cfadef7df5be5d648cdffc9542dc5989d3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2017_03_049
crossref_primary_10_1016_j_neucom_2017_03_049
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_03_049
PublicationCentury 2000
PublicationDate 2017-07-19
PublicationDateYYYYMMDD 2017-07-19
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Comert, Bezuglov (bib0011) 2013; 14
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0035) 2016; 234
Siegelmann, Sontag (bib0023) 1991; 4
Kkdeniz (bib0057) 2016
Arqub, Al-Smadi, Momani, Hayat (bib0029) 2016
Liu, Nocedal (bib0054) 1989; 45
Srivastava (bib0053) 2013
Cortes, Mohri, Syed (bib0043) 2014
Barimani, Kian, Moshiri (bib0006) 2014; 8
LeCun, Bengio, Hinton (bib0032) 2015; 521
Davis, Nihan (bib0024) 1991; 117
Chandler (bib0046) 2013; 371
Chan, Dillon, Singh, Chang (bib0009) 2012; 13
Tchrakian, Basu, O’Mahony (bib0019) 2012; 13
He, Zhang, Ren, Sun (bib0040) 2016
Thomson, Doblas-Reyes, Mason, Hagedorn, Connor, Phindela, Morse, Palmer (bib0045) 2006; 439
Durbin, Koopman (bib0020) 2012
Guo, Williams, Smith (bib0014) 2008; 2024
Mori, Mendiburu, Álvarez, Lozano (bib0002) 2015; 11
Messer (bib0008) 1993
Lippi, Bertini, Frasconi (bib0031) 2013; 14
Shi, Guo, Huang, Williams (bib0015) 2014; 140
Zhang, Ye (bib0027) 2008; 12
Davarynejad, Wang, Vrancken, van den Berg (bib0025) 2011
Kamarianakis, Prastacos (bib0016) 2003; 1857
Murthy, Singh, Chen, Manmatha, Comaniciu (bib0041) 2016
Guo, Huang, Williams (bib0005) 2014; 43
Stephanedes, Michalopoulos, Plum (bib0003) 1981
Min, Wynter (bib0017) 2011; 19
Zhou (bib0049) 2012
Huang, Zhang, Hu, Hong, Song, Xie (bib0044) 2014
Ross (bib0007) 1982; 869
Williams, Hoel (bib0013) 2003; 129
Hu, Yan, Liu, Wang (bib0055) 2015; 43
Hong, Dong, Zheng, Lai (bib0026) 2011; 35
Doblas-Reyes, Pavan, Stephenson (bib0047) 2003; 21
Boto-Giralda, Díaz-Pernas, González-Ortega, Díez-Higuera, Antón-Rodríguez, Martínez-Zarzuela, Torre-Díez (bib0052) 2010; 25
Ma, Zhou, Abdulhai (bib0018) 2015; 76
Wang, van Schuppen, Vrancken (bib0051) 2014; 15
Hong, Pai, Yang, Theng (bib0030) 2006
Liu, van Zuylen, van Lint, Salomons (bib0022) 2006; 1968
Blum, Rivest (bib0050) 1992; 5
Lv, Duan, Kang, Li, Wang (bib0034) 2015; 16
Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio (bib0037) 2014
Choromanska, Henaff, Mathieu, Arous, LeCun (bib0038) 2015
Iandola, Moskewicz, Ashraf, Keutzer (bib0042) 2016
Ghosh, Basu, O’Mahony (bib0021) 2009; 10
Huang, Song, Hong, Xie (bib0033) 2014; 15
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0039) 2015
Bengio, Courville, Vincent (bib0036) 2013; 35
Hansen, Salamon (bib0048) 1990; 12
Xie, Zhang, Ye (bib0004) 2007; 22
Zhang, Zhang, Haghani (bib0001) 2014; 43
Zhu, Cao, Zhu (bib0056) 2014; 47
Zare Moayedi, Masnadi-Shirazi (bib0010) 2008; 4
Peng, Lei, Li, Peng (bib0012) 2014; 24
Arqub, Abo-Hammour (bib0028) 2014; 279
He (10.1016/j.neucom.2017.03.049_bib0040) 2016
Lippi (10.1016/j.neucom.2017.03.049_bib0031) 2013; 14
Lv (10.1016/j.neucom.2017.03.049_bib0034) 2015; 16
Ross (10.1016/j.neucom.2017.03.049_bib0007) 1982; 869
Messer (10.1016/j.neucom.2017.03.049_bib0008) 1993
Ma (10.1016/j.neucom.2017.03.049_bib0018) 2015; 76
Zare Moayedi (10.1016/j.neucom.2017.03.049_bib0010) 2008; 4
Cortes (10.1016/j.neucom.2017.03.049_bib0043) 2014
Liu (10.1016/j.neucom.2017.03.049_bib0022) 2006; 1968
Hong (10.1016/j.neucom.2017.03.049_bib0030) 2006
Liu (10.1016/j.neucom.2017.03.049_bib0054) 1989; 45
Chandler (10.1016/j.neucom.2017.03.049_bib0046) 2013; 371
Iandola (10.1016/j.neucom.2017.03.049_bib0042) 2016
Kkdeniz (10.1016/j.neucom.2017.03.049_bib0057) 2016
Wang (10.1016/j.neucom.2017.03.049_bib0051) 2014; 15
Comert (10.1016/j.neucom.2017.03.049_bib0011) 2013; 14
Xie (10.1016/j.neucom.2017.03.049_bib0004) 2007; 22
Boto-Giralda (10.1016/j.neucom.2017.03.049_bib0052) 2010; 25
Zhang (10.1016/j.neucom.2017.03.049_bib0001) 2014; 43
Peng (10.1016/j.neucom.2017.03.049_bib0012) 2014; 24
Mori (10.1016/j.neucom.2017.03.049_bib0002) 2015; 11
Szegedy (10.1016/j.neucom.2017.03.049_bib0039) 2015
Davis (10.1016/j.neucom.2017.03.049_bib0024) 1991; 117
Chan (10.1016/j.neucom.2017.03.049_bib0009) 2012; 13
Arqub (10.1016/j.neucom.2017.03.049_bib0029) 2016
Siegelmann (10.1016/j.neucom.2017.03.049_bib0023) 1991; 4
Tchrakian (10.1016/j.neucom.2017.03.049_bib0019) 2012; 13
Barimani (10.1016/j.neucom.2017.03.049_bib0006) 2014; 8
Bengio (10.1016/j.neucom.2017.03.049_bib0036) 2013; 35
Srivastava (10.1016/j.neucom.2017.03.049_bib0053) 2013
Ghosh (10.1016/j.neucom.2017.03.049_bib0021) 2009; 10
Blum (10.1016/j.neucom.2017.03.049_bib0050) 1992; 5
Hansen (10.1016/j.neucom.2017.03.049_bib0048) 1990; 12
Dauphin (10.1016/j.neucom.2017.03.049_bib0037) 2014
Huang (10.1016/j.neucom.2017.03.049_bib0044) 2014
Hu (10.1016/j.neucom.2017.03.049_bib0055) 2015; 43
Thomson (10.1016/j.neucom.2017.03.049_bib0045) 2006; 439
Stephanedes (10.1016/j.neucom.2017.03.049_bib0003) 1981
Guo (10.1016/j.neucom.2017.03.049_bib0005) 2014; 43
LeCun (10.1016/j.neucom.2017.03.049_bib0032) 2015; 521
Min (10.1016/j.neucom.2017.03.049_bib0017) 2011; 19
Murthy (10.1016/j.neucom.2017.03.049_bib0041) 2016
Hong (10.1016/j.neucom.2017.03.049_bib0026) 2011; 35
Arqub (10.1016/j.neucom.2017.03.049_bib0028) 2014; 279
Zhu (10.1016/j.neucom.2017.03.049_bib0056) 2014; 47
Kamarianakis (10.1016/j.neucom.2017.03.049_bib0016) 2003; 1857
Zhang (10.1016/j.neucom.2017.03.049_bib0027) 2008; 12
Huang (10.1016/j.neucom.2017.03.049_bib0033) 2014; 15
Guo (10.1016/j.neucom.2017.03.049_bib0014) 2008; 2024
Shi (10.1016/j.neucom.2017.03.049_bib0015) 2014; 140
Zhou (10.1016/j.neucom.2017.03.049_bib0049) 2012
Doblas-Reyes (10.1016/j.neucom.2017.03.049_bib0047) 2003; 21
Liu (10.1016/j.neucom.2017.03.049_bib0035) 2016; 234
Davarynejad (10.1016/j.neucom.2017.03.049_bib0025) 2011
Durbin (10.1016/j.neucom.2017.03.049_sbref0019) 2012
Williams (10.1016/j.neucom.2017.03.049_bib0013) 2003; 129
Choromanska (10.1016/j.neucom.2017.03.049_bib0038) 2015
References_xml – volume: 43
  start-page: 50
  year: 2014
  end-page: 64
  ident: bib0005
  article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. Part C: Emerg. Technol.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0039
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 869
  start-page: 43
  year: 1982
  end-page: 49
  ident: bib0007
  article-title: Exponential filtering of traffic data
  publication-title: Transp. Res. Rec.
– year: 1993
  ident: bib0008
  article-title: Advanced Freeway System Ramp Metering Strategies for Texas
  publication-title: Technical Report
– volume: 117
  start-page: 178
  year: 1991
  end-page: 188
  ident: bib0024
  article-title: Nonparametric regression and short-term freeway traffic forecasting
  publication-title: J. Transp. Eng.
– year: 2012
  ident: bib0049
  article-title: Ensemble Methods: Foundations and Algorithms
– volume: 43
  start-page: 65
  year: 2014
  end-page: 78
  ident: bib0001
  article-title: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 2024
  start-page: 18
  year: 2008
  end-page: 26
  ident: bib0014
  article-title: Data collection time intervals for stochastic short-term traffic flow forecasting
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 11
  start-page: 119
  year: 2015
  end-page: 157
  ident: bib0002
  article-title: A review of travel time estimation and forecasting for advanced traveller information systems
  publication-title: Transportmetrica A: Transp. Sci.
– year: 2016
  ident: bib0040
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 21
  start-page: 501
  year: 2003
  end-page: 514
  ident: bib0047
  article-title: The skill of multi-model seasonal forecasts of the wintertime north atlantic oscillation
  publication-title: Clim. Dyn.
– volume: 140
  year: 2014
  ident: bib0015
  article-title: Modeling seasonal heteroscedasticity in vehicular traffic condition series using a seasonal adjustment approach
  publication-title: J. Transp. Eng.
– year: 2016
  ident: bib0041
  article-title: Deep decision network for multi-class image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 10
  start-page: 246
  year: 2009
  end-page: 254
  ident: bib0021
  article-title: Multivariate short-term traffic flow forecasting using time-series analysis
  publication-title: IEE Trans. Intell. Transp. Syst.
– volume: 15
  start-page: 214
  year: 2014
  end-page: 227
  ident: bib0051
  article-title: Prediction of traffic flow at the boundary of a motorway network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 1968
  start-page: 99
  year: 2006
  end-page: 108
  ident: bib0022
  article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 43
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0055
  article-title: A short-term traffic flow forecasting method based on the hybrid PSO-SVR
  publication-title: Neural Process. Lett.
– start-page: 473
  year: 2014
  end-page: 480
  ident: bib0044
  article-title: Dynamic boosting in deep learning using reconstruction error
  publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN)
– volume: 22
  start-page: 326
  year: 2007
  end-page: 334
  ident: bib0004
  article-title: Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 12
  start-page: 102
  year: 2008
  end-page: 112
  ident: bib0027
  article-title: Short-term traffic flow forecasting using fuzzy logic system methods
  publication-title: J. Intell. Transp. Syst.
– start-page: 1617
  year: 2006
  end-page: 1621
  ident: bib0030
  article-title: Highway traffic forecasting by support vector regression model with tabu search algorithms
  publication-title: Proceedings of the International Joint Conference on Neural Networks
– start-page: 1179
  year: 2014
  end-page: 1187
  ident: bib0043
  article-title: Deep boosting
  publication-title: Proceedings of the 31st International Conference on Machine Learning (ICML-14)
– volume: 8
  start-page: 308
  year: 2014
  end-page: 321
  ident: bib0006
  article-title: Real time adaptive non-linear estimator/predictor design for traffic systems with inadequate detectors
  publication-title: Intell. Transp. Syst. IET
– start-page: 1
  year: 2016
  end-page: 16
  ident: bib0029
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Comput.
– volume: 371
  start-page: 20120388
  year: 2013
  ident: bib0046
  article-title: Exploiting strength, discounting weakness: combining information from multiple climate simulators
  publication-title: Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0036
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 1360
  year: 2013
  end-page: 1369
  ident: bib0011
  article-title: An online change-point-based model for traffic parameter prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 234
  start-page: 11
  year: 2016
  end-page: 26
  ident: bib0035
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 19
  start-page: 606
  year: 2011
  end-page: 616
  ident: bib0017
  article-title: Real-time road traffic prediction with spatio-temporal correlations
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 5
  start-page: 117
  year: 1992
  end-page: 127
  ident: bib0050
  article-title: Training a 3-node neural network is np-complete
  publication-title: Neural Netw.
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: bib0034
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2013
  ident: bib0053
  publication-title: Improving neural networks with dropout
– volume: 35
  start-page: 1282
  year: 2011
  end-page: 1291
  ident: bib0026
  article-title: Forecasting urban traffic flow by SVR with continuous ACO
  publication-title: Appl. Math. Model.
– year: 2015
  ident: bib0038
  article-title: The loss surfaces of multilayer networks.
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Statistics
– volume: 439
  start-page: 576
  year: 2006
  end-page: 579
  ident: bib0045
  article-title: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles
  publication-title: Nature
– year: 2016
  ident: bib0042
  article-title: Firecaffe: near-linear acceleration of deep neural network training on compute clusters
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 15
  start-page: 2191
  year: 2014
  end-page: 2201
  ident: bib0033
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEE Trans. Intell. Transp. Syst.
– volume: 13
  start-page: 644
  year: 2012
  end-page: 654
  ident: bib0009
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 4
  start-page: 77
  year: 1991
  end-page: 80
  ident: bib0023
  article-title: Turing computability with neural nets
  publication-title: Appl. Math. Lett.
– volume: 1857
  start-page: 74
  year: 2003
  end-page: 84
  ident: bib0016
  article-title: Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 14
  start-page: 871
  year: 2013
  end-page: 882
  ident: bib0031
  article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning
  publication-title: IEE Trans. Intell. Transp. Syst.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0032
  article-title: Deep learning
  publication-title: Nature
– volume: 24
  start-page: 883
  year: 2014
  end-page: 890
  ident: bib0012
  article-title: A novel hybridization of echo state networks and multiplicative seasonal Arima model for mobile communication traffic series forecasting
  publication-title: Neural Comput. Appl.
– volume: 129
  start-page: 664
  year: 2003
  end-page: 672
  ident: bib0013
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results
  publication-title: J. Transp. Eng.
– year: 2012
  ident: bib0020
  article-title: Time Series Analysis by State Space Methods
– volume: 47
  start-page: 139
  year: 2014
  end-page: 154
  ident: bib0056
  article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 4
  start-page: 1
  year: 2008
  end-page: 6
  ident: bib0010
  article-title: Arima model for network traffic prediction and anomaly detection
  publication-title: Proceedings of the International Symposium on Information Technology
– year: 2016
  ident: bib0057
  article-title: Least squares boosting algorithm on short term load forecasting
  publication-title: Proceedings of the 8th Ege Energy Symposium And Exhibition
– volume: 76
  start-page: 27
  year: 2015
  end-page: 47
  ident: bib0018
  article-title: Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction
  publication-title: Transp. Res. Part B: Methodol.
– volume: 13
  start-page: 519
  year: 2012
  end-page: 526
  ident: bib0019
  article-title: Real-time traffic flow forecasting using spectral analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 279
  start-page: 396
  year: 2014
  end-page: 415
  ident: bib0028
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inf. Sci.
– start-page: 2033
  year: 2011
  end-page: 2038
  ident: bib0025
  article-title: Multi-phase time series models for motorway flow forecasting
  publication-title: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)
– start-page: 2933
  year: 2014
  end-page: 2941
  ident: bib0037
  article-title: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: bib0048
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 28
  year: 1981
  end-page: 39
  ident: bib0003
  article-title: Improved estimation of traffic flow for real-time control (discussion and closure)
  publication-title: Transp. Res. Rec.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib0054
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 25
  start-page: 530
  year: 2010
  end-page: 545
  ident: bib0052
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– year: 1993
  ident: 10.1016/j.neucom.2017.03.049_bib0008
  article-title: Advanced Freeway System Ramp Metering Strategies for Texas
– volume: 2024
  start-page: 18
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2017.03.049_bib0014
  article-title: Data collection time intervals for stochastic short-term traffic flow forecasting
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2024-03
– volume: 43
  start-page: 65
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0001
  article-title: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2013.11.011
– volume: 47
  start-page: 139
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0056
  article-title: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.06.011
– volume: 1857
  start-page: 74
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2017.03.049_bib0016
  article-title: Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/1857-09
– volume: 12
  start-page: 993
  year: 1990
  ident: 10.1016/j.neucom.2017.03.049_bib0048
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 35
  start-page: 1282
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2017.03.049_bib0026
  article-title: Forecasting urban traffic flow by SVR with continuous ACO
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.09.005
– year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0041
  article-title: Deep decision network for multi-class image classification
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 10.1016/j.neucom.2017.03.049_bib0013
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 13
  start-page: 644
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2017.03.049_bib0009
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2174051
– volume: 439
  start-page: 576
  issue: 7076
  year: 2006
  ident: 10.1016/j.neucom.2017.03.049_bib0045
  article-title: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles
  publication-title: Nature
  doi: 10.1038/nature04503
– volume: 13
  start-page: 519
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2017.03.049_bib0019
  article-title: Real-time traffic flow forecasting using spectral analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2174634
– volume: 4
  start-page: 1
  year: 2008
  ident: 10.1016/j.neucom.2017.03.049_bib0010
  article-title: Arima model for network traffic prediction and anomaly detection
– year: 2013
  ident: 10.1016/j.neucom.2017.03.049_bib0053
– volume: 5
  start-page: 117
  issue: 1
  year: 1992
  ident: 10.1016/j.neucom.2017.03.049_bib0050
  article-title: Training a 3-node neural network is np-complete
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80010-3
– start-page: 28
  issue: 795
  year: 1981
  ident: 10.1016/j.neucom.2017.03.049_bib0003
  article-title: Improved estimation of traffic flow for real-time control (discussion and closure)
  publication-title: Transp. Res. Rec.
– volume: 1968
  start-page: 99
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2017.03.049_bib0022
  article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/1968-12
– volume: 43
  start-page: 50
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0005
  article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2014.02.006
– year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0057
  article-title: Least squares boosting algorithm on short term load forecasting
– volume: 234
  start-page: 11
  year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0035
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 19
  start-page: 606
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2017.03.049_bib0017
  article-title: Real-time road traffic prediction with spatio-temporal correlations
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2010.10.002
– year: 2012
  ident: 10.1016/j.neucom.2017.03.049_sbref0019
– year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0040
  article-title: Deep residual learning for image recognition
– volume: 10
  start-page: 246
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2017.03.049_bib0021
  article-title: Multivariate short-term traffic flow forecasting using time-series analysis
  publication-title: IEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2009.2021448
– volume: 140
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0015
  article-title: Modeling seasonal heteroscedasticity in vehicular traffic condition series using a seasonal adjustment approach
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000656
– volume: 43
  start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0055
  article-title: A short-term traffic flow forecasting method based on the hybrid PSO-SVR
  publication-title: Neural Process. Lett.
– volume: 24
  start-page: 883
  issue: 3–4
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0012
  article-title: A novel hybridization of echo state networks and multiplicative seasonal Arima model for mobile communication traffic series forecasting
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1291-9
– start-page: 2033
  year: 2011
  ident: 10.1016/j.neucom.2017.03.049_bib0025
  article-title: Multi-phase time series models for motorway flow forecasting
– volume: 21
  start-page: 501
  issue: 5–6
  year: 2003
  ident: 10.1016/j.neucom.2017.03.049_bib0047
  article-title: The skill of multi-model seasonal forecasts of the wintertime north atlantic oscillation
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-003-0350-4
– volume: 279
  start-page: 396
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0028
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.03.128
– volume: 22
  start-page: 326
  issue: 5
  year: 2007
  ident: 10.1016/j.neucom.2017.03.049_bib0004
  article-title: Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2007.00489.x
– volume: 76
  start-page: 27
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0018
  article-title: Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2015.02.008
– start-page: 2933
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0037
  article-title: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
– start-page: 473
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0044
  article-title: Dynamic boosting in deep learning using reconstruction error
– volume: 15
  start-page: 2191
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0033
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2311123
– volume: 15
  start-page: 214
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0051
  article-title: Prediction of traffic flow at the boundary of a motorway network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2278192
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0039
  article-title: Going deeper with convolutions
– year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0042
  article-title: Firecaffe: near-linear acceleration of deep neural network training on compute clusters
– volume: 14
  start-page: 871
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2017.03.049_bib0031
  article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning
  publication-title: IEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2247040
– volume: 25
  start-page: 530
  issue: 7
  year: 2010
  ident: 10.1016/j.neucom.2017.03.049_bib0052
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2010.00668.x
– volume: 12
  start-page: 102
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2017.03.049_bib0027
  article-title: Short-term traffic flow forecasting using fuzzy logic system methods
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450802262281
– volume: 117
  start-page: 178
  year: 1991
  ident: 10.1016/j.neucom.2017.03.049_bib0024
  article-title: Nonparametric regression and short-term freeway traffic forecasting
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(1991)117:2(178)
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0034
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 8
  start-page: 308
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0006
  article-title: Real time adaptive non-linear estimator/predictor design for traffic systems with inadequate detectors
  publication-title: Intell. Transp. Syst. IET
  doi: 10.1049/iet-its.2013.0053
– volume: 11
  start-page: 119
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0002
  article-title: A review of travel time estimation and forecasting for advanced traveller information systems
  publication-title: Transportmetrica A: Transp. Sci.
  doi: 10.1080/23249935.2014.932469
– volume: 4
  start-page: 77
  issue: 6
  year: 1991
  ident: 10.1016/j.neucom.2017.03.049_bib0023
  article-title: Turing computability with neural nets
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(91)90080-F
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.neucom.2017.03.049_bib0054
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– start-page: 1179
  year: 2014
  ident: 10.1016/j.neucom.2017.03.049_bib0043
  article-title: Deep boosting
– year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0038
  article-title: The loss surfaces of multilayer networks.
– year: 2012
  ident: 10.1016/j.neucom.2017.03.049_bib0049
– start-page: 1617
  year: 2006
  ident: 10.1016/j.neucom.2017.03.049_bib0030
  article-title: Highway traffic forecasting by support vector regression model with tabu search algorithms
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2017.03.049_bib0036
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 371
  start-page: 20120388
  issue: 1991
  year: 2013
  ident: 10.1016/j.neucom.2017.03.049_bib0046
  article-title: Exploiting strength, discounting weakness: combining information from multiple climate simulators
  publication-title: Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2012.0388
– start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2017.03.049_bib0029
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Comput.
– volume: 14
  start-page: 1360
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2017.03.049_bib0011
  article-title: An online change-point-based model for traffic parameter prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2260540
– volume: 869
  start-page: 43
  year: 1982
  ident: 10.1016/j.neucom.2017.03.049_bib0007
  article-title: Exponential filtering of traffic data
  publication-title: Transp. Res. Rec.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2017.03.049_bib0032
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0017129
Score 2.4835868
Snippet Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms AdaBoost
Dynamic system
Short-term traffic flow forecasting
Stacked autoencoder
Time-series model
Title δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting
URI https://dx.doi.org/10.1016/j.neucom.2017.03.049
Volume 247
WOSCitedRecordID wos000401392200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJkxQ8NCeDhayN5tEJnC4ojB5SQMhFoLjANhwpjaU0yHflO_pNGYqk4jRF2hx6EQRapCTO08xwPHyD0HutlVKFCMgwZYzEOuKE05gTHaiExzKKC83bYhN0Oh1lGfvW6136vTDnS1qWo4sLdvpfRQ1tIGyzdfYB4u4GhQY4B6HDEcQOx38S_N7BZG8_HhAOK2lTcJnvV9WqNjED-GDlgDd1ZcgrDYeESTFczcABJ0ZBm3IRhlBioJfVT_ObEnxVe9O28DRPDZi8thSECzKMTwzXgjTA6oIKx7OqaZGgXO9Wx7UK7mNT_QBIds1Ze2HWqJM5r3zjV8tscDybX87UemBi2EY8nfpzEcYwIeA-3lK2oeXXdOrSGQBreC3Lyx2VbqMLiw-lakx-j7lTS0trmU5vM2j_Ztm6fEOfyrbI7Si5GSUPohxGeYQ2QpqwUR9tjD9Psi_df1B0GFqmRvcafuNlmx1492n-7NisOStHz9FTt8rAY4uOF6inypfoma_ggZ1Cf4Wmv66wBQr2QMEOKHgNKBjAgG-Agh1QsAEKXgPKa_T9cHJ08Im4ChtEwFKxJooFKpXgcjJ4S8FEMdQKVghJIMATLZjQXCpNpU4Klcg0HgmptWBJHEoBM8Zk9Ab1y6pUmwhzKmhsdi6nSsdCSabBcqW6oEXEkkQEWyjy05MLRz9vqqAs8_uEs4VI1-vU0q_85XrqZz53LqR1DXOA07093z7wTtvoyQ3od1C_PmvULnoszuv56uydw9I1NuyXqQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B4+-agree+AdaBoost+stacked+autoencoder+for+short-term+traffic+flow+forecasting&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhou%2C+Teng&rft.au=Han%2C+Guoqiang&rft.au=Xu%2C+Xuemiao&rft.au=Lin%2C+Zhizhe&rft.date=2017-07-19&rft.issn=0925-2312&rft.volume=247&rft.spage=31&rft.epage=38&rft_id=info:doi/10.1016%2Fj.neucom.2017.03.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_03_049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon