Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices

As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 232; s. 121087
Hlavní autoři: Zhu, Jun-Hua, Wang, Jie-Sheng, Zheng, Yue, Zhang, Xing-Yue, Liu, Xun, Wang, Xiao-Tian, Zhang, Song-Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:0960-1481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA–II–CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases.
AbstractList As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA–II–CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases.
ArticleNumber 121087
Author Zhu, Jun-Hua
Zhang, Xing-Yue
Zheng, Yue
Wang, Jie-Sheng
Zhang, Song-Bo
Wang, Xiao-Tian
Liu, Xun
Author_xml – sequence: 1
  givenname: Jun-Hua
  surname: Zhu
  fullname: Zhu, Jun-Hua
– sequence: 2
  givenname: Jie-Sheng
  orcidid: 0000-0002-8853-1927
  surname: Wang
  fullname: Wang, Jie-Sheng
  email: wjs@ustl.edu.cn
– sequence: 3
  givenname: Yue
  surname: Zheng
  fullname: Zheng, Yue
– sequence: 4
  givenname: Xing-Yue
  surname: Zhang
  fullname: Zhang, Xing-Yue
– sequence: 5
  givenname: Xun
  surname: Liu
  fullname: Liu, Xun
– sequence: 6
  givenname: Xiao-Tian
  surname: Wang
  fullname: Wang, Xiao-Tian
– sequence: 7
  givenname: Song-Bo
  surname: Zhang
  fullname: Zhang, Song-Bo
BookMark eNqFkM1uGyEUhVmkUv76BlnwAuNexjMwyaJSZNVNpEhZ1F0jhrk4WBgswGO579H3Dc541UWqK3FBnHOk812TCx88EnLHYMaA8W-bWURfZlZD3cxYzaATF-QK7jlUrOnYJblOaQPA2k40V-Tv6hCqlNUaqQ44BrfPNngVj-XpU47Kehzodu-yrUK_QZ3tiDTsst3aP-qkpcqtQ7T5bUtNiDQFN1q_niTK0V04YKTGhQPdxdA73CZ6KOpy-OH8q8pt-bhY_aIDjlZjuiVfjHIJv573Dfm9_LFaPFUvrz-fF48vlZ4DzxV2bQumQzMIrltAcd9yVTPDoBGm5r1gtRkMzEEBABe1MD30vNatMUUn-PyGPEy5OoaUIhqpbf5odWruJAN5gio3coIqT1DlBLWYm3_Mu1gqx-P_bN8nG5Zio8Uok7boNQ42FrxyCPbzgHeMyJvm
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128799
crossref_primary_10_1016_j_eswa_2025_128810
crossref_primary_10_1016_j_egyr_2025_03_050
crossref_primary_10_1088_2631_8695_ade368
crossref_primary_10_1016_j_jprocont_2024_103313
crossref_primary_10_1093_jcde_qwaf004
crossref_primary_10_1007_s40998_025_00805_6
Cites_doi 10.1016/j.apenergy.2021.117766
10.1016/j.epsr.2022.109017
10.1016/j.enconman.2010.08.017
10.1016/j.energy.2021.120781
10.1016/j.energy.2015.09.083
10.1109/TEVC.2003.810761
10.1016/j.swevo.2017.12.008
10.1109/TEVC.2019.2894743
10.1109/PROC.1972.8558
10.1016/j.ijepes.2013.07.018
10.1109/MCI.2017.2742868
10.1038/s41467-021-26355-z
10.1007/s00521-016-2476-4
10.1142/S0218001417590066
10.1109/TEVC.2022.3224600
10.1007/978-3-540-88908-3_14
10.1109/4235.996017
10.1016/j.swevo.2018.08.017
10.1007/s12667-012-0057-x
10.2298/FUEE2104569B
10.1109/59.260862
10.1016/j.enconman.2017.06.071
10.1109/TEVC.2021.3089155
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281535
10.1016/j.asoc.2019.04.012
10.1109/JSYST.2014.2325967
10.1109/TEVC.2020.3004012
10.1109/T-PAS.1977.32397
10.1016/j.future.2018.12.046
10.1007/s00521-020-05453-x
10.1109/TEVC.2022.3155533
10.1016/j.ins.2016.01.081
10.1016/j.engappai.2017.10.019
10.1016/j.asoc.2018.04.006
10.1016/j.enconman.2012.01.017
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.renene.2024.121087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2024_121087
S0960148124011558
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-e8550f8efd76c50e7956a21f1047f26b712fdf030a0006727fb0b62c5ff6a2763
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Sat Nov 29 05:23:11 EST 2025
Tue Nov 18 21:51:35 EST 2025
Sat Jan 18 16:09:45 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective constrained optimization
Wind energy
Optimal power flow
Coevolution
FACTS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e8550f8efd76c50e7956a21f1047f26b712fdf030a0006727fb0b62c5ff6a2763
ORCID 0000-0002-8853-1927
ParticipantIDs crossref_citationtrail_10_1016_j_renene_2024_121087
crossref_primary_10_1016_j_renene_2024_121087
elsevier_sciencedirect_doi_10_1016_j_renene_2024_121087
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Biswas, Arora, Mallipeddi (bib16) 2021; 33
Liang, Ban, Yu (bib17) 2022; 27
Vargas, Quintana, Vannelli (bib6) 1993; 8
Basu (bib32) 2011; 52
Panda, Tripathy (bib30) 2015; 93
Liu, Wang (bib25) 2019; 23
Zitzler, Knowles, Thiele (bib42) 2008
Tian, Zhang, Xiao (bib26) 2020; 25
De Araujo, Torres, Pissolato Filho (bib4) 2023; 216
Happ (bib7) 1977; 96
Qiao, Liang, Yu (bib22) 2023
Zhang, Li (bib20) 2007; 11
Reddy, Bijwe, Abhyankar (bib31) 2014; 9
Yuan, Liu, Ong (bib38) 2021; 26
Panda, Tripathy (bib11) 2014; 54
Deb, Pratap, Agarwal (bib18) 2002; 6
Shilaja, Arunprasath (bib10) 2019; 98
Tong, Farnham, Duan (bib2) 2021; 12
Zitzler, Künzli (bib21) 2004; 4
Biswas, Suganthan, Amaratunga (bib28) 2017; 148
Wang, Zou, Liu (bib1) 2021; 304
Sun, Zou, Liu (bib27) 2022; 27
Avvari, Dm (bib13) 2023; 11
Chen, Yi, Zhang (bib36) 2018; 68
Nikoobakht, Aghaei, Mokarram (bib3) 2021; 230
Raj, Bhattacharyya (bib33) 2018; 40
Fan, Li, Cai (bib24) 2019; 44
Niknam, Narimani, Azizipanah-Abarghooee (bib35) 2012; 58
Qu, Liang, Zhu (bib29) 2016; 351
Yuan, Liu, Peng (bib37) 2017; 31
Benyekhlef, Abdelkader, Houari (bib15) 2021; 34
Jha, Inaolaji, Biswas (bib5) 2022; 38
.
Bosman, Thierens (bib41) 2003; 7
Frank, Steponavice, Rebennack (bib9) 2012; 3
Zitzler, Laumanns, Thiele (bib19) 2001
Teeparthi, Vinod Kumar (bib12) 2018; 29
Biswas, Suganthan, Mallipeddi (bib34) 2018; 68
Naderi, Pourakbari-Kasmaei, Abdi (bib14) 2019; 80
Deb, Jain (bib23) 2013; 18
Tian, Cheng, Zhang (bib39) 2017; 12
Peschon, Bree, Hajdu (bib8) 1972; 60
Zimmerman RD, Murillo-Sa'nchez CE, Thomas RJ Matpower.
Zitzler (10.1016/j.renene.2024.121087_bib19) 2001
Happ (10.1016/j.renene.2024.121087_bib7) 1977; 96
De Araujo (10.1016/j.renene.2024.121087_bib4) 2023; 216
Deb (10.1016/j.renene.2024.121087_bib18) 2002; 6
Chen (10.1016/j.renene.2024.121087_bib36) 2018; 68
Peschon (10.1016/j.renene.2024.121087_bib8) 1972; 60
Zhang (10.1016/j.renene.2024.121087_bib20) 2007; 11
Yuan (10.1016/j.renene.2024.121087_bib38) 2021; 26
Avvari (10.1016/j.renene.2024.121087_bib13) 2023; 11
Biswas (10.1016/j.renene.2024.121087_bib16) 2021; 33
Basu (10.1016/j.renene.2024.121087_bib32) 2011; 52
Qu (10.1016/j.renene.2024.121087_bib29) 2016; 351
Frank (10.1016/j.renene.2024.121087_bib9) 2012; 3
Tong (10.1016/j.renene.2024.121087_bib2) 2021; 12
Panda (10.1016/j.renene.2024.121087_bib11) 2014; 54
Wang (10.1016/j.renene.2024.121087_bib1) 2021; 304
Panda (10.1016/j.renene.2024.121087_bib30) 2015; 93
Fan (10.1016/j.renene.2024.121087_bib24) 2019; 44
Vargas (10.1016/j.renene.2024.121087_bib6) 1993; 8
Niknam (10.1016/j.renene.2024.121087_bib35) 2012; 58
Liu (10.1016/j.renene.2024.121087_bib25) 2019; 23
Liang (10.1016/j.renene.2024.121087_bib17) 2022; 27
Shilaja (10.1016/j.renene.2024.121087_bib10) 2019; 98
Benyekhlef (10.1016/j.renene.2024.121087_bib15) 2021; 34
Qiao (10.1016/j.renene.2024.121087_bib22) 2023
Tian (10.1016/j.renene.2024.121087_bib39) 2017; 12
Reddy (10.1016/j.renene.2024.121087_bib31) 2014; 9
Nikoobakht (10.1016/j.renene.2024.121087_bib3) 2021; 230
Teeparthi (10.1016/j.renene.2024.121087_bib12) 2018; 29
Tian (10.1016/j.renene.2024.121087_bib26) 2020; 25
Naderi (10.1016/j.renene.2024.121087_bib14) 2019; 80
Yuan (10.1016/j.renene.2024.121087_bib37) 2017; 31
Biswas (10.1016/j.renene.2024.121087_bib34) 2018; 68
Zitzler (10.1016/j.renene.2024.121087_bib21) 2004; 4
Deb (10.1016/j.renene.2024.121087_bib23) 2013; 18
10.1016/j.renene.2024.121087_bib40
Sun (10.1016/j.renene.2024.121087_bib27) 2022; 27
Bosman (10.1016/j.renene.2024.121087_bib41) 2003; 7
Zitzler (10.1016/j.renene.2024.121087_bib42) 2008
Jha (10.1016/j.renene.2024.121087_bib5) 2022; 38
Biswas (10.1016/j.renene.2024.121087_bib28) 2017; 148
Raj (10.1016/j.renene.2024.121087_bib33) 2018; 40
References_xml – volume: 34
  start-page: 569
  year: 2021
  end-page: 588
  ident: bib15
  article-title: Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect
  publication-title: Facta Univ. – Ser. Electron. Energetics
– volume: 80
  start-page: 243
  year: 2019
  end-page: 262
  ident: bib14
  article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices
  publication-title: Appl. Soft Comput.
– volume: 31
  year: 2017
  ident: bib37
  article-title: Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– year: 2023
  ident: bib22
  article-title: etal. Evolutionary constrained multiobjective optimization: scalable high-dimensional constraint benchmarks and algorithm
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 103
  year: 2001
  ident: bib19
  article-title: SPEA2: Improving the Strength Pareto Evolutionary algorithm[J]
– volume: 27
  start-page: 1207
  year: 2022
  end-page: 1219
  ident: bib27
  article-title: A multi-stage algorithm for solving multi-objective optimization problems with multi-constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 351
  start-page: 48
  year: 2016
  end-page: 66
  ident: bib29
  article-title: Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm
  publication-title: Inf. Sci.
– volume: 3
  start-page: 259
  year: 2012
  end-page: 289
  ident: bib9
  article-title: Optimal power flow: a bibliographic survey II
  publication-title: Energy systems
– volume: 29
  start-page: 855
  year: 2018
  end-page: 871
  ident: bib12
  article-title: Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm
  publication-title: Neural Comput. Appl.
– volume: 304
  year: 2021
  ident: bib1
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl. Energy
– volume: 26
  start-page: 379
  year: 2021
  end-page: 391
  ident: bib38
  article-title: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 870
  year: 2019
  end-page: 884
  ident: bib25
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 93
  start-page: 816
  year: 2015
  end-page: 827
  ident: bib30
  article-title: Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm
  publication-title: Energy
– volume: 52
  start-page: 903
  year: 2011
  end-page: 910
  ident: bib32
  article-title: Multi-objective optimal power flow with FACTS devices
  publication-title: Energy Convers. Manag.
– volume: 12
  start-page: 6146
  year: 2021
  ident: bib2
  article-title: Geophysical constraints on the reliability of solar and wind power worldwide
  publication-title: Nat. Commun.
– volume: 33
  start-page: 6753
  year: 2021
  end-page: 6774
  ident: bib16
  article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network
  publication-title: Neural Comput. Appl.
– volume: 11
  start-page: 130
  year: 2023
  end-page: 143
  ident: bib13
  article-title: A novel hybrid multi-objective evolutionary algorithm for optimal Power flow in wind, PV, and PEV systems
  publication-title: Journal of Operation and Automation in Power Engineering
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  ident: bib28
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manag.
– volume: 230
  year: 2021
  ident: bib3
  article-title: Adaptive robust co-optimization of wind energy generation, electric vehicle batteries and flexible AC transmission system devices
  publication-title: Energy
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib18
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 54
  start-page: 306
  year: 2014
  end-page: 314
  ident: bib11
  article-title: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 216
  year: 2023
  ident: bib4
  article-title: Unified AC transmission expansion planning formulation incorporating VSC-mtdc, FACTS devices, and reactive power compensation
  publication-title: Elec. Power Syst. Res.
– volume: 98
  start-page: 708
  year: 2019
  end-page: 715
  ident: bib10
  article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power
  publication-title: Future Generat. Comput. Syst.
– volume: 8
  start-page: 1315
  year: 1993
  end-page: 1324
  ident: bib6
  article-title: A tutorial description of an interior point method and its applications to security-constrained economic dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 1440
  year: 2014
  end-page: 1451
  ident: bib31
  article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period
  publication-title: IEEE Syst. J.
– volume: 68
  start-page: 322
  year: 2018
  end-page: 342
  ident: bib36
  article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 832
  year: 2004
  end-page: 842
  ident: bib21
  article-title: Indicator-based selection in multiobjective search[C]//PPSN
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: bib34
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 373
  year: 2008
  end-page: 404
  ident: bib42
  article-title: Quality assessment of pareto set approximations
  publication-title: Multiobjective optimization: Interactive and evolutionary approaches
– volume: 25
  start-page: 102
  year: 2020
  end-page: 116
  ident: bib26
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 201
  year: 2022
  end-page: 221
  ident: bib17
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib24
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 40
  start-page: 131
  year: 2018
  end-page: 143
  ident: bib33
  article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm
  publication-title: Swarm Evol. Comput.
– reference: Zimmerman RD, Murillo-Sa'nchez CE, Thomas RJ Matpower.
– reference: .
– volume: 38
  start-page: 3654
  year: 2022
  end-page: 3668
  ident: bib5
  article-title: Distribution grid optimal power flow (d-opf): modeling, analysis, and benchmarking
  publication-title: IEEE Trans. Power Syst.
– volume: 96
  start-page: 841
  year: 1977
  end-page: 854
  ident: bib7
  article-title: Optimal power dispatchߞA comprehensive survey
  publication-title: IEEE Trans. Power Apparatus Syst.
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib41
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 60
  start-page: 64
  year: 1972
  end-page: 70
  ident: bib8
  article-title: Optimal power-flow solutions for power system planning
  publication-title: Proc. IEEE
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib20
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib39
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 58
  start-page: 197
  year: 2012
  end-page: 206
  ident: bib35
  article-title: A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect
  publication-title: Energy Convers. Manag.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: bib23
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 304
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib1
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117766
– volume: 216
  year: 2023
  ident: 10.1016/j.renene.2024.121087_bib4
  article-title: Unified AC transmission expansion planning formulation incorporating VSC-mtdc, FACTS devices, and reactive power compensation
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.109017
– volume: 52
  start-page: 903
  issue: 2
  year: 2011
  ident: 10.1016/j.renene.2024.121087_bib32
  article-title: Multi-objective optimal power flow with FACTS devices
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.08.017
– volume: 230
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib3
  article-title: Adaptive robust co-optimization of wind energy generation, electric vehicle batteries and flexible AC transmission system devices
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120781
– volume: 93
  start-page: 816
  year: 2015
  ident: 10.1016/j.renene.2024.121087_bib30
  article-title: Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.09.083
– volume: 38
  start-page: 3654
  issue: 4
  year: 2022
  ident: 10.1016/j.renene.2024.121087_bib5
  article-title: Distribution grid optimal power flow (d-opf): modeling, analysis, and benchmarking
  publication-title: IEEE Trans. Power Syst.
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.renene.2024.121087_bib41
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 40
  start-page: 131
  year: 2018
  ident: 10.1016/j.renene.2024.121087_bib33
  article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.12.008
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  ident: 10.1016/j.renene.2024.121087_bib25
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2894743
– volume: 60
  start-page: 64
  issue: 1
  year: 1972
  ident: 10.1016/j.renene.2024.121087_bib8
  article-title: Optimal power-flow solutions for power system planning
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1972.8558
– volume: 54
  start-page: 306
  year: 2014
  ident: 10.1016/j.renene.2024.121087_bib11
  article-title: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.07.018
– start-page: 103
  year: 2001
  ident: 10.1016/j.renene.2024.121087_bib19
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.renene.2024.121087_bib39
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 12
  start-page: 6146
  issue: 1
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib2
  article-title: Geophysical constraints on the reliability of solar and wind power worldwide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26355-z
– volume: 29
  start-page: 855
  year: 2018
  ident: 10.1016/j.renene.2024.121087_bib12
  article-title: Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2476-4
– volume: 31
  issue: 4
  year: 2017
  ident: 10.1016/j.renene.2024.121087_bib37
  article-title: Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001417590066
– volume: 27
  start-page: 1207
  issue: 5
  year: 2022
  ident: 10.1016/j.renene.2024.121087_bib27
  article-title: A multi-stage algorithm for solving multi-objective optimization problems with multi-constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3224600
– start-page: 373
  year: 2008
  ident: 10.1016/j.renene.2024.121087_bib42
  article-title: Quality assessment of pareto set approximations
  publication-title: Multiobjective optimization: Interactive and evolutionary approaches
  doi: 10.1007/978-3-540-88908-3_14
– ident: 10.1016/j.renene.2024.121087_bib40
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.renene.2024.121087_bib18
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.renene.2024.121087_bib24
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 3
  start-page: 259
  issue: 3
  year: 2012
  ident: 10.1016/j.renene.2024.121087_bib9
  article-title: Optimal power flow: a bibliographic survey II
  publication-title: Energy systems
  doi: 10.1007/s12667-012-0057-x
– volume: 34
  start-page: 569
  issue: 4
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib15
  article-title: Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect
  publication-title: Facta Univ. – Ser. Electron. Energetics
  doi: 10.2298/FUEE2104569B
– year: 2023
  ident: 10.1016/j.renene.2024.121087_bib22
  article-title: etal. Evolutionary constrained multiobjective optimization: scalable high-dimensional constraint benchmarks and algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 1315
  issue: 3
  year: 1993
  ident: 10.1016/j.renene.2024.121087_bib6
  article-title: A tutorial description of an interior point method and its applications to security-constrained economic dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.260862
– volume: 148
  start-page: 1194
  year: 2017
  ident: 10.1016/j.renene.2024.121087_bib28
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.06.071
– volume: 26
  start-page: 379
  issue: 2
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib38
  article-title: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3089155
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.renene.2024.121087_bib20
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.renene.2024.121087_bib23
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 80
  start-page: 243
  year: 2019
  ident: 10.1016/j.renene.2024.121087_bib14
  article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.012
– volume: 9
  start-page: 1440
  issue: 4
  year: 2014
  ident: 10.1016/j.renene.2024.121087_bib31
  article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2014.2325967
– volume: 25
  start-page: 102
  issue: 1
  year: 2020
  ident: 10.1016/j.renene.2024.121087_bib26
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004012
– volume: 96
  start-page: 841
  issue: 3
  year: 1977
  ident: 10.1016/j.renene.2024.121087_bib7
  article-title: Optimal power dispatchߞA comprehensive survey
  publication-title: IEEE Trans. Power Apparatus Syst.
  doi: 10.1109/T-PAS.1977.32397
– volume: 98
  start-page: 708
  year: 2019
  ident: 10.1016/j.renene.2024.121087_bib10
  article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2018.12.046
– volume: 33
  start-page: 6753
  year: 2021
  ident: 10.1016/j.renene.2024.121087_bib16
  article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05453-x
– volume: 27
  start-page: 201
  issue: 2
  year: 2022
  ident: 10.1016/j.renene.2024.121087_bib17
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3155533
– volume: 351
  start-page: 48
  year: 2016
  ident: 10.1016/j.renene.2024.121087_bib29
  article-title: Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.081
– volume: 11
  start-page: 130
  issue: 2
  year: 2023
  ident: 10.1016/j.renene.2024.121087_bib13
  article-title: A novel hybrid multi-objective evolutionary algorithm for optimal Power flow in wind, PV, and PEV systems
  publication-title: Journal of Operation and Automation in Power Engineering
– volume: 4
  start-page: 832
  year: 2004
  ident: 10.1016/j.renene.2024.121087_bib21
  article-title: Indicator-based selection in multiobjective search[C]//PPSN
– volume: 68
  start-page: 81
  year: 2018
  ident: 10.1016/j.renene.2024.121087_bib34
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.019
– volume: 68
  start-page: 322
  year: 2018
  ident: 10.1016/j.renene.2024.121087_bib36
  article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.006
– volume: 58
  start-page: 197
  year: 2012
  ident: 10.1016/j.renene.2024.121087_bib35
  article-title: A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.01.017
SSID ssj0015874
Score 2.4882107
Snippet As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121087
SubjectTerms Coevolution
FACTS
Multi-objective constrained optimization
Optimal power flow
Wind energy
Title Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices
URI https://dx.doi.org/10.1016/j.renene.2024.121087
Volume 232
WOSCitedRecordID wos001288140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4f2UPok6Ys99Ga2SGtJKx1NSEhDCaV2wT0JSd5NbBwpuH7kX_TU_9uZ3dEjTekLehFmH9Ki-TTz7XhmlrE3oBP9IAx8ESnYmwR-PhRxkMB3VcTRLPFnYARtovB7dXYWT6fJh17va50Ls12qsoyvr5Or_ypqaANhY-rsX4i7uSk0wG8QOlxB7HD9M8HvKgGU7xzD0PWWHoWxcQVSQTwRAjimjSMUVb5w-m5Qgea4pJTMQbY8r1bz9cWljUGE1Vqngx2CeVt4rtrALKvdgE6joQy53RxrDthe9MYfjw4nY0zKQlXU5cAfQb3ubMaWtomHre964_JESnGyaa0FObRP51qMLzQZWjtcu57PG9220egprFjUHeTUkEETHkeetjrbpg1tsi7LyBOwffO72ls69-gtS-CcEou3WBi0xHqoMsBKGh6Z95s1tsd4a7wz8BugyGF8h-1JFSZxn-2N3h1NT5s_psLYFfaul1JnY9qQwdvP-jnb6TCYyUP2gLYefOQg84j1dPmY3e8UpHzCvjXg4TfBwzvg4T-Ah3fBwxvwcAAPJ_BwAg-38OAIHl6DhyN4OIKHegE83IKHE3iesk_HR5PDE0EHd4gCdqBrobFKnom1mamoCD2tYBOeSd9gWRAjo1z50swMmJfMc6EAJvfySBahMTAOLN4z1i-rUu8zngN9BgqsZtnQBHke5kYmSseejKQ2fjY8YMP6BacFVbXHt7FM6_DFRerEkqJYUieWAyaaWVeuqstvxqtadikxU8c4U4DbL2c-_-eZL9i99st4yfrr1Ua_YneL7Xr-ZfWacPkdbMy78Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+coevolutionary+constrained+multi-objective+optimization+algorithm+for+solving+optimal+power+flow+problems+with+wind+power+and+FACTS+devices&rft.jtitle=Renewable+energy&rft.au=Zhu%2C+Jun-Hua&rft.au=Wang%2C+Jie-Sheng&rft.au=Zheng%2C+Yue&rft.au=Zhang%2C+Xing-Yue&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.volume=232&rft_id=info:doi/10.1016%2Fj.renene.2024.121087&rft.externalDocID=S0960148124011558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon