Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices
As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment...
Saved in:
| Published in: | Renewable energy Vol. 232; p. 121087 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 0960-1481 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA–II–CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases. |
|---|---|
| AbstractList | As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible AC Transmission Systems (FACTS) in the grid is becoming more and more common, and it is necessary to consider how to choose suitable equipment in the appropriate locations. In this paper, a multi-objective optimal power flow (MOOPF) model with wind farms and FACTS devices is established. The Weibull probability density function is used to establish the wind speed model, and the cost problem brought by wind power is considered. The locations and ratings of thyristor-controlled series compensators, thyristor-controlled phase shifters, and static VAR compensators are added to the system as control variables. In addition, the constraints on the prohibited operating areas of thermal power generators and the valve point effect are also considered. Coevolutionary constrained multi-objective optimization algorithm (CCMO) is an advanced technology, and this paper improves it and names it two-stage coevolutionary constrained multi-objective optimization algorithm (TSCCMO). The proposed algorithm uses the constraint violation value as an additional objective function in the sub-population environmental selection process, and integrates a neighborhood selection strategy into the mating selection process. The population evolution process is divided into two stages, in the first stage the two populations cooperate weakly, and in the second stage the two populations will have strong cooperation. TSCCMO is used to solve this complex constrained MOOPF problem, and its results are compared and analyzed with CCMO, NSGA–II–CDP, C3M, and PPS. The comprehensive performance of TSCCMO is the best among the 6 cases. |
| ArticleNumber | 121087 |
| Author | Zhu, Jun-Hua Zhang, Xing-Yue Zheng, Yue Wang, Jie-Sheng Zhang, Song-Bo Wang, Xiao-Tian Liu, Xun |
| Author_xml | – sequence: 1 givenname: Jun-Hua surname: Zhu fullname: Zhu, Jun-Hua – sequence: 2 givenname: Jie-Sheng orcidid: 0000-0002-8853-1927 surname: Wang fullname: Wang, Jie-Sheng email: wjs@ustl.edu.cn – sequence: 3 givenname: Yue surname: Zheng fullname: Zheng, Yue – sequence: 4 givenname: Xing-Yue surname: Zhang fullname: Zhang, Xing-Yue – sequence: 5 givenname: Xun surname: Liu fullname: Liu, Xun – sequence: 6 givenname: Xiao-Tian surname: Wang fullname: Wang, Xiao-Tian – sequence: 7 givenname: Song-Bo surname: Zhang fullname: Zhang, Song-Bo |
| BookMark | eNqFkM1uGyEUhVmkUv76BlnwAuNexjMwyaJSZNVNpEhZ1F0jhrk4WBgswGO579H3Dc541UWqK3FBnHOk812TCx88EnLHYMaA8W-bWURfZlZD3cxYzaATF-QK7jlUrOnYJblOaQPA2k40V-Tv6hCqlNUaqQ44BrfPNngVj-XpU47Kehzodu-yrUK_QZ3tiDTsst3aP-qkpcqtQ7T5bUtNiDQFN1q_niTK0V04YKTGhQPdxdA73CZ6KOpy-OH8q8pt-bhY_aIDjlZjuiVfjHIJv573Dfm9_LFaPFUvrz-fF48vlZ4DzxV2bQumQzMIrltAcd9yVTPDoBGm5r1gtRkMzEEBABe1MD30vNatMUUn-PyGPEy5OoaUIhqpbf5odWruJAN5gio3coIqT1DlBLWYm3_Mu1gqx-P_bN8nG5Zio8Uok7boNQ42FrxyCPbzgHeMyJvm |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128799 crossref_primary_10_1016_j_eswa_2025_128810 crossref_primary_10_1016_j_egyr_2025_03_050 crossref_primary_10_1088_2631_8695_ade368 crossref_primary_10_1016_j_jprocont_2024_103313 crossref_primary_10_1093_jcde_qwaf004 crossref_primary_10_1007_s40998_025_00805_6 |
| Cites_doi | 10.1016/j.apenergy.2021.117766 10.1016/j.epsr.2022.109017 10.1016/j.enconman.2010.08.017 10.1016/j.energy.2021.120781 10.1016/j.energy.2015.09.083 10.1109/TEVC.2003.810761 10.1016/j.swevo.2017.12.008 10.1109/TEVC.2019.2894743 10.1109/PROC.1972.8558 10.1016/j.ijepes.2013.07.018 10.1109/MCI.2017.2742868 10.1038/s41467-021-26355-z 10.1007/s00521-016-2476-4 10.1142/S0218001417590066 10.1109/TEVC.2022.3224600 10.1007/978-3-540-88908-3_14 10.1109/4235.996017 10.1016/j.swevo.2018.08.017 10.1007/s12667-012-0057-x 10.2298/FUEE2104569B 10.1109/59.260862 10.1016/j.enconman.2017.06.071 10.1109/TEVC.2021.3089155 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281535 10.1016/j.asoc.2019.04.012 10.1109/JSYST.2014.2325967 10.1109/TEVC.2020.3004012 10.1109/T-PAS.1977.32397 10.1016/j.future.2018.12.046 10.1007/s00521-020-05453-x 10.1109/TEVC.2022.3155533 10.1016/j.ins.2016.01.081 10.1016/j.engappai.2017.10.019 10.1016/j.asoc.2018.04.006 10.1016/j.enconman.2012.01.017 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.renene.2024.121087 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_renene_2024_121087 S0960148124011558 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEGFY AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AATTM AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-e8550f8efd76c50e7956a21f1047f26b712fdf030a0006727fb0b62c5ff6a2763 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Sat Nov 29 05:23:11 EST 2025 Tue Nov 18 21:51:35 EST 2025 Sat Jan 18 16:09:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective constrained optimization Wind energy Optimal power flow Coevolution FACTS |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e8550f8efd76c50e7956a21f1047f26b712fdf030a0006727fb0b62c5ff6a2763 |
| ORCID | 0000-0002-8853-1927 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_renene_2024_121087 crossref_primary_10_1016_j_renene_2024_121087 elsevier_sciencedirect_doi_10_1016_j_renene_2024_121087 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Biswas, Arora, Mallipeddi (bib16) 2021; 33 Liang, Ban, Yu (bib17) 2022; 27 Vargas, Quintana, Vannelli (bib6) 1993; 8 Basu (bib32) 2011; 52 Panda, Tripathy (bib30) 2015; 93 Liu, Wang (bib25) 2019; 23 Zitzler, Knowles, Thiele (bib42) 2008 Tian, Zhang, Xiao (bib26) 2020; 25 De Araujo, Torres, Pissolato Filho (bib4) 2023; 216 Happ (bib7) 1977; 96 Qiao, Liang, Yu (bib22) 2023 Zhang, Li (bib20) 2007; 11 Reddy, Bijwe, Abhyankar (bib31) 2014; 9 Yuan, Liu, Ong (bib38) 2021; 26 Panda, Tripathy (bib11) 2014; 54 Deb, Pratap, Agarwal (bib18) 2002; 6 Shilaja, Arunprasath (bib10) 2019; 98 Tong, Farnham, Duan (bib2) 2021; 12 Zitzler, Künzli (bib21) 2004; 4 Biswas, Suganthan, Amaratunga (bib28) 2017; 148 Wang, Zou, Liu (bib1) 2021; 304 Sun, Zou, Liu (bib27) 2022; 27 Avvari, Dm (bib13) 2023; 11 Chen, Yi, Zhang (bib36) 2018; 68 Nikoobakht, Aghaei, Mokarram (bib3) 2021; 230 Raj, Bhattacharyya (bib33) 2018; 40 Fan, Li, Cai (bib24) 2019; 44 Niknam, Narimani, Azizipanah-Abarghooee (bib35) 2012; 58 Qu, Liang, Zhu (bib29) 2016; 351 Yuan, Liu, Peng (bib37) 2017; 31 Benyekhlef, Abdelkader, Houari (bib15) 2021; 34 Jha, Inaolaji, Biswas (bib5) 2022; 38 . Bosman, Thierens (bib41) 2003; 7 Frank, Steponavice, Rebennack (bib9) 2012; 3 Zitzler, Laumanns, Thiele (bib19) 2001 Teeparthi, Vinod Kumar (bib12) 2018; 29 Biswas, Suganthan, Mallipeddi (bib34) 2018; 68 Naderi, Pourakbari-Kasmaei, Abdi (bib14) 2019; 80 Deb, Jain (bib23) 2013; 18 Tian, Cheng, Zhang (bib39) 2017; 12 Peschon, Bree, Hajdu (bib8) 1972; 60 Zimmerman RD, Murillo-Sa'nchez CE, Thomas RJ Matpower. Zitzler (10.1016/j.renene.2024.121087_bib19) 2001 Happ (10.1016/j.renene.2024.121087_bib7) 1977; 96 De Araujo (10.1016/j.renene.2024.121087_bib4) 2023; 216 Deb (10.1016/j.renene.2024.121087_bib18) 2002; 6 Chen (10.1016/j.renene.2024.121087_bib36) 2018; 68 Peschon (10.1016/j.renene.2024.121087_bib8) 1972; 60 Zhang (10.1016/j.renene.2024.121087_bib20) 2007; 11 Yuan (10.1016/j.renene.2024.121087_bib38) 2021; 26 Avvari (10.1016/j.renene.2024.121087_bib13) 2023; 11 Biswas (10.1016/j.renene.2024.121087_bib16) 2021; 33 Basu (10.1016/j.renene.2024.121087_bib32) 2011; 52 Qu (10.1016/j.renene.2024.121087_bib29) 2016; 351 Frank (10.1016/j.renene.2024.121087_bib9) 2012; 3 Tong (10.1016/j.renene.2024.121087_bib2) 2021; 12 Panda (10.1016/j.renene.2024.121087_bib11) 2014; 54 Wang (10.1016/j.renene.2024.121087_bib1) 2021; 304 Panda (10.1016/j.renene.2024.121087_bib30) 2015; 93 Fan (10.1016/j.renene.2024.121087_bib24) 2019; 44 Vargas (10.1016/j.renene.2024.121087_bib6) 1993; 8 Niknam (10.1016/j.renene.2024.121087_bib35) 2012; 58 Liu (10.1016/j.renene.2024.121087_bib25) 2019; 23 Liang (10.1016/j.renene.2024.121087_bib17) 2022; 27 Shilaja (10.1016/j.renene.2024.121087_bib10) 2019; 98 Benyekhlef (10.1016/j.renene.2024.121087_bib15) 2021; 34 Qiao (10.1016/j.renene.2024.121087_bib22) 2023 Tian (10.1016/j.renene.2024.121087_bib39) 2017; 12 Reddy (10.1016/j.renene.2024.121087_bib31) 2014; 9 Nikoobakht (10.1016/j.renene.2024.121087_bib3) 2021; 230 Teeparthi (10.1016/j.renene.2024.121087_bib12) 2018; 29 Tian (10.1016/j.renene.2024.121087_bib26) 2020; 25 Naderi (10.1016/j.renene.2024.121087_bib14) 2019; 80 Yuan (10.1016/j.renene.2024.121087_bib37) 2017; 31 Biswas (10.1016/j.renene.2024.121087_bib34) 2018; 68 Zitzler (10.1016/j.renene.2024.121087_bib21) 2004; 4 Deb (10.1016/j.renene.2024.121087_bib23) 2013; 18 10.1016/j.renene.2024.121087_bib40 Sun (10.1016/j.renene.2024.121087_bib27) 2022; 27 Bosman (10.1016/j.renene.2024.121087_bib41) 2003; 7 Zitzler (10.1016/j.renene.2024.121087_bib42) 2008 Jha (10.1016/j.renene.2024.121087_bib5) 2022; 38 Biswas (10.1016/j.renene.2024.121087_bib28) 2017; 148 Raj (10.1016/j.renene.2024.121087_bib33) 2018; 40 |
| References_xml | – volume: 34 start-page: 569 year: 2021 end-page: 588 ident: bib15 article-title: Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect publication-title: Facta Univ. – Ser. Electron. Energetics – volume: 80 start-page: 243 year: 2019 end-page: 262 ident: bib14 article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices publication-title: Appl. Soft Comput. – volume: 31 year: 2017 ident: bib37 article-title: Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems publication-title: Int. J. Pattern Recogn. Artif. Intell. – year: 2023 ident: bib22 article-title: etal. Evolutionary constrained multiobjective optimization: scalable high-dimensional constraint benchmarks and algorithm publication-title: IEEE Trans. Evol. Comput. – start-page: 103 year: 2001 ident: bib19 article-title: SPEA2: Improving the Strength Pareto Evolutionary algorithm[J] – volume: 27 start-page: 1207 year: 2022 end-page: 1219 ident: bib27 article-title: A multi-stage algorithm for solving multi-objective optimization problems with multi-constraints publication-title: IEEE Trans. Evol. Comput. – volume: 351 start-page: 48 year: 2016 end-page: 66 ident: bib29 article-title: Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm publication-title: Inf. Sci. – volume: 3 start-page: 259 year: 2012 end-page: 289 ident: bib9 article-title: Optimal power flow: a bibliographic survey II publication-title: Energy systems – volume: 29 start-page: 855 year: 2018 end-page: 871 ident: bib12 article-title: Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm publication-title: Neural Comput. Appl. – volume: 304 year: 2021 ident: bib1 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl. Energy – volume: 26 start-page: 379 year: 2021 end-page: 391 ident: bib38 article-title: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 870 year: 2019 end-page: 884 ident: bib25 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – volume: 93 start-page: 816 year: 2015 end-page: 827 ident: bib30 article-title: Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm publication-title: Energy – volume: 52 start-page: 903 year: 2011 end-page: 910 ident: bib32 article-title: Multi-objective optimal power flow with FACTS devices publication-title: Energy Convers. Manag. – volume: 12 start-page: 6146 year: 2021 ident: bib2 article-title: Geophysical constraints on the reliability of solar and wind power worldwide publication-title: Nat. Commun. – volume: 33 start-page: 6753 year: 2021 end-page: 6774 ident: bib16 article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network publication-title: Neural Comput. Appl. – volume: 11 start-page: 130 year: 2023 end-page: 143 ident: bib13 article-title: A novel hybrid multi-objective evolutionary algorithm for optimal Power flow in wind, PV, and PEV systems publication-title: Journal of Operation and Automation in Power Engineering – volume: 148 start-page: 1194 year: 2017 end-page: 1207 ident: bib28 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energy Convers. Manag. – volume: 230 year: 2021 ident: bib3 article-title: Adaptive robust co-optimization of wind energy generation, electric vehicle batteries and flexible AC transmission system devices publication-title: Energy – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib18 article-title: A fast and elitist multiobjective genetic algorithm: nsga-II publication-title: IEEE Trans. Evol. Comput. – volume: 54 start-page: 306 year: 2014 end-page: 314 ident: bib11 article-title: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 216 year: 2023 ident: bib4 article-title: Unified AC transmission expansion planning formulation incorporating VSC-mtdc, FACTS devices, and reactive power compensation publication-title: Elec. Power Syst. Res. – volume: 98 start-page: 708 year: 2019 end-page: 715 ident: bib10 article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power publication-title: Future Generat. Comput. Syst. – volume: 8 start-page: 1315 year: 1993 end-page: 1324 ident: bib6 article-title: A tutorial description of an interior point method and its applications to security-constrained economic dispatch publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 1440 year: 2014 end-page: 1451 ident: bib31 article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period publication-title: IEEE Syst. J. – volume: 68 start-page: 322 year: 2018 end-page: 342 ident: bib36 article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems publication-title: Appl. Soft Comput. – volume: 4 start-page: 832 year: 2004 end-page: 842 ident: bib21 article-title: Indicator-based selection in multiobjective search[C]//PPSN – volume: 68 start-page: 81 year: 2018 end-page: 100 ident: bib34 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. – start-page: 373 year: 2008 end-page: 404 ident: bib42 article-title: Quality assessment of pareto set approximations publication-title: Multiobjective optimization: Interactive and evolutionary approaches – volume: 25 start-page: 102 year: 2020 end-page: 116 ident: bib26 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 201 year: 2022 end-page: 221 ident: bib17 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: bib24 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. – volume: 40 start-page: 131 year: 2018 end-page: 143 ident: bib33 article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm publication-title: Swarm Evol. Comput. – reference: Zimmerman RD, Murillo-Sa'nchez CE, Thomas RJ Matpower. – reference: . – volume: 38 start-page: 3654 year: 2022 end-page: 3668 ident: bib5 article-title: Distribution grid optimal power flow (d-opf): modeling, analysis, and benchmarking publication-title: IEEE Trans. Power Syst. – volume: 96 start-page: 841 year: 1977 end-page: 854 ident: bib7 article-title: Optimal power dispatchߞA comprehensive survey publication-title: IEEE Trans. Power Apparatus Syst. – volume: 7 start-page: 174 year: 2003 end-page: 188 ident: bib41 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 60 start-page: 64 year: 1972 end-page: 70 ident: bib8 article-title: Optimal power-flow solutions for power system planning publication-title: Proc. IEEE – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib20 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: bib39 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. – volume: 58 start-page: 197 year: 2012 end-page: 206 ident: bib35 article-title: A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect publication-title: Energy Convers. Manag. – volume: 18 start-page: 577 year: 2013 end-page: 601 ident: bib23 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 304 year: 2021 ident: 10.1016/j.renene.2024.121087_bib1 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117766 – volume: 216 year: 2023 ident: 10.1016/j.renene.2024.121087_bib4 article-title: Unified AC transmission expansion planning formulation incorporating VSC-mtdc, FACTS devices, and reactive power compensation publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2022.109017 – volume: 52 start-page: 903 issue: 2 year: 2011 ident: 10.1016/j.renene.2024.121087_bib32 article-title: Multi-objective optimal power flow with FACTS devices publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.08.017 – volume: 230 year: 2021 ident: 10.1016/j.renene.2024.121087_bib3 article-title: Adaptive robust co-optimization of wind energy generation, electric vehicle batteries and flexible AC transmission system devices publication-title: Energy doi: 10.1016/j.energy.2021.120781 – volume: 93 start-page: 816 year: 2015 ident: 10.1016/j.renene.2024.121087_bib30 article-title: Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm publication-title: Energy doi: 10.1016/j.energy.2015.09.083 – volume: 38 start-page: 3654 issue: 4 year: 2022 ident: 10.1016/j.renene.2024.121087_bib5 article-title: Distribution grid optimal power flow (d-opf): modeling, analysis, and benchmarking publication-title: IEEE Trans. Power Syst. – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 10.1016/j.renene.2024.121087_bib41 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – volume: 40 start-page: 131 year: 2018 ident: 10.1016/j.renene.2024.121087_bib33 article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.12.008 – volume: 23 start-page: 870 issue: 5 year: 2019 ident: 10.1016/j.renene.2024.121087_bib25 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2894743 – volume: 60 start-page: 64 issue: 1 year: 1972 ident: 10.1016/j.renene.2024.121087_bib8 article-title: Optimal power-flow solutions for power system planning publication-title: Proc. IEEE doi: 10.1109/PROC.1972.8558 – volume: 54 start-page: 306 year: 2014 ident: 10.1016/j.renene.2024.121087_bib11 article-title: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.07.018 – start-page: 103 year: 2001 ident: 10.1016/j.renene.2024.121087_bib19 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.renene.2024.121087_bib39 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 12 start-page: 6146 issue: 1 year: 2021 ident: 10.1016/j.renene.2024.121087_bib2 article-title: Geophysical constraints on the reliability of solar and wind power worldwide publication-title: Nat. Commun. doi: 10.1038/s41467-021-26355-z – volume: 29 start-page: 855 year: 2018 ident: 10.1016/j.renene.2024.121087_bib12 article-title: Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2476-4 – volume: 31 issue: 4 year: 2017 ident: 10.1016/j.renene.2024.121087_bib37 article-title: Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems publication-title: Int. J. Pattern Recogn. Artif. Intell. doi: 10.1142/S0218001417590066 – volume: 27 start-page: 1207 issue: 5 year: 2022 ident: 10.1016/j.renene.2024.121087_bib27 article-title: A multi-stage algorithm for solving multi-objective optimization problems with multi-constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3224600 – start-page: 373 year: 2008 ident: 10.1016/j.renene.2024.121087_bib42 article-title: Quality assessment of pareto set approximations publication-title: Multiobjective optimization: Interactive and evolutionary approaches doi: 10.1007/978-3-540-88908-3_14 – ident: 10.1016/j.renene.2024.121087_bib40 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.renene.2024.121087_bib18 article-title: A fast and elitist multiobjective genetic algorithm: nsga-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.renene.2024.121087_bib24 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 3 start-page: 259 issue: 3 year: 2012 ident: 10.1016/j.renene.2024.121087_bib9 article-title: Optimal power flow: a bibliographic survey II publication-title: Energy systems doi: 10.1007/s12667-012-0057-x – volume: 34 start-page: 569 issue: 4 year: 2021 ident: 10.1016/j.renene.2024.121087_bib15 article-title: Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect publication-title: Facta Univ. – Ser. Electron. Energetics doi: 10.2298/FUEE2104569B – year: 2023 ident: 10.1016/j.renene.2024.121087_bib22 article-title: etal. Evolutionary constrained multiobjective optimization: scalable high-dimensional constraint benchmarks and algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 1315 issue: 3 year: 1993 ident: 10.1016/j.renene.2024.121087_bib6 article-title: A tutorial description of an interior point method and its applications to security-constrained economic dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.260862 – volume: 148 start-page: 1194 year: 2017 ident: 10.1016/j.renene.2024.121087_bib28 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.06.071 – volume: 26 start-page: 379 issue: 2 year: 2021 ident: 10.1016/j.renene.2024.121087_bib38 article-title: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3089155 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.renene.2024.121087_bib20 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 18 start-page: 577 issue: 4 year: 2013 ident: 10.1016/j.renene.2024.121087_bib23 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 80 start-page: 243 year: 2019 ident: 10.1016/j.renene.2024.121087_bib14 article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.012 – volume: 9 start-page: 1440 issue: 4 year: 2014 ident: 10.1016/j.renene.2024.121087_bib31 article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2014.2325967 – volume: 25 start-page: 102 issue: 1 year: 2020 ident: 10.1016/j.renene.2024.121087_bib26 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004012 – volume: 96 start-page: 841 issue: 3 year: 1977 ident: 10.1016/j.renene.2024.121087_bib7 article-title: Optimal power dispatchߞA comprehensive survey publication-title: IEEE Trans. Power Apparatus Syst. doi: 10.1109/T-PAS.1977.32397 – volume: 98 start-page: 708 year: 2019 ident: 10.1016/j.renene.2024.121087_bib10 article-title: Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2018.12.046 – volume: 33 start-page: 6753 year: 2021 ident: 10.1016/j.renene.2024.121087_bib16 article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05453-x – volume: 27 start-page: 201 issue: 2 year: 2022 ident: 10.1016/j.renene.2024.121087_bib17 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3155533 – volume: 351 start-page: 48 year: 2016 ident: 10.1016/j.renene.2024.121087_bib29 article-title: Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.081 – volume: 11 start-page: 130 issue: 2 year: 2023 ident: 10.1016/j.renene.2024.121087_bib13 article-title: A novel hybrid multi-objective evolutionary algorithm for optimal Power flow in wind, PV, and PEV systems publication-title: Journal of Operation and Automation in Power Engineering – volume: 4 start-page: 832 year: 2004 ident: 10.1016/j.renene.2024.121087_bib21 article-title: Indicator-based selection in multiobjective search[C]//PPSN – volume: 68 start-page: 81 year: 2018 ident: 10.1016/j.renene.2024.121087_bib34 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.019 – volume: 68 start-page: 322 year: 2018 ident: 10.1016/j.renene.2024.121087_bib36 article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.006 – volume: 58 start-page: 197 year: 2012 ident: 10.1016/j.renene.2024.121087_bib35 article-title: A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.01.017 |
| SSID | ssj0015874 |
| Score | 2.4882853 |
| Snippet | As a large amount of wind energy is integrated into the grid, the randomness it brings poses a challenge to modern power systems. The application of Flexible... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121087 |
| SubjectTerms | Coevolution FACTS Multi-objective constrained optimization Optimal power flow Wind energy |
| Title | Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices |
| URI | https://dx.doi.org/10.1016/j.renene.2024.121087 |
| Volume | 232 |
| WOSCitedRecordID | wos001288140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0015874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4f2UHRFkqYFD70ZDCRapqSjESRIgiIoGrdwT4JEkYkNRwpcL_mRfEb_sTMktWRB0hx6EQRyRBGaZ85wPPNIyBdPRhqsqmYqFxkLcj9naQp3UosgV2AQhcny_fk1PDmJxuP4W6fzp6qFWc3CooiuruLL_6pqaANlY-nsE9RdDwoNcA9KhyuoHa7_pvh1ycDlO8M0dLVyr8LcOImuIJ4IAT6mySNkZTa1612vhJXjwpVk9tLZWTmfLM4vTA4izNYEHYwI1m3huWo9PSvXPXcajauQW0-Qc8D0YjT-YLg3OsWiLFyK2j7wd1he16ZiS5nCwyZ2vbR1IgU7XDbWwgW0jyeKnZ4rZ2iNuLI9v5aqaXPSY5gxqzpcUIMHdXpcHZ0UHoOdmt9eqLmLhNqlFpnPrK2-YwVsQGK6i6SgBXKh8mC3Eb9Jun3LGNYpilX22zSxoyQ4SmJHeUY2eDiIoy7ZGB7tj4_rv60GkaX9rmZf1WqahMK7s7nfF2r5N6PX5JXbmNChBdQb0lHFW_KyRVf5jlzX0KI3oUVb0KK3oEXb0KI1tChAizpoUQctasBDEVq0ghZFaFGElusFaFEDLeqg9Z78ONgf7R0yd6wHk7A_XTCFHHo6UjoPhRx4KoQtesp9jaQhmoss9LnONRif1LOJAjrzMsHlQGuQA3v4gXSLslCbhOapiPKY-0HWl0Ec-Flf5_1YplmcekrwYIv0qw-cSMd5j19jljyk3i3C6qcuLefLI_JhpbvE-a3WH00AkA8-uf3EN30kL5pfyw7pLuZL9Yk8l6vF5Pf8s0PjX7nPw60 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+coevolutionary+constrained+multi-objective+optimization+algorithm+for+solving+optimal+power+flow+problems+with+wind+power+and+FACTS+devices&rft.jtitle=Renewable+energy&rft.au=Zhu%2C+Jun-Hua&rft.au=Wang%2C+Jie-Sheng&rft.au=Zheng%2C+Yue&rft.au=Zhang%2C+Xing-Yue&rft.date=2024-10-01&rft.issn=0960-1481&rft.volume=232&rft.spage=121087&rft_id=info:doi/10.1016%2Fj.renene.2024.121087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2024_121087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |