Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder

•A three-column deep non-negativity constrained sparse autoencoder is proposed for BSIQA.•Both feature evolution and feature mapping are addressed in a unified framework for BSIQA.•A Bayesian inference-based quality combination framework is used to derive 3D quality score. This paper proposes a no-r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 76; s. 242 - 255
Hlavní autoři: Jiang, Qiuping, Shao, Feng, Lin, Weisi, Jiang, Gangyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2018
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A three-column deep non-negativity constrained sparse autoencoder is proposed for BSIQA.•Both feature evolution and feature mapping are addressed in a unified framework for BSIQA.•A Bayesian inference-based quality combination framework is used to derive 3D quality score. This paper proposes a no-reference (NR)/referenceless quality evaluation method for stereoscopic three-dimensional (S3D) images based on deep nonnegativity constrained sparse autoencoder (DNCSAE). To address the quality issue of stereopairs whose perceived quality is not only determined by the individual left and right image qualities but also their interactions, a three-column DNCSAE framework is customized with individual DNCSAE module coping with the left image, the right image, and the cyclopean image, respectively. In the proposed framework, each individual DNCSAE module shares the same network architecture consisting of multiple stacked NCSAE layers and one Softmax regression layer at the end. The contribution of our model is that hierarchical feature evolution and nonlinear feature mapping are jointly optimized in a unified and perceptual-aware deep network (DNCSAE), which well resembles several important visual properties, i.e., hierarchy, sparsity, and non-negativity. To be more specific, for each DNCSAE, by taking a set of handcrafted natural scene statistic (NSS) features as inputs in the visible layer, the features in hidden layers are successively evolved to deeper levels producing increasingly discriminative quality-aware features (QAFs). Then, QAFs in the last NCSAE layer are summarized to their corresponding quality score by Softmax regression. Finally, three individual yet complementary quality scores estimated by each DNCSAE model are combined based on a Bayesian framework to obtain an overall 3D quality score. Experiments on three benchmark databases demonstrate the superiority of our method in terms of both prediction accuracy and generalization capability.
AbstractList •A three-column deep non-negativity constrained sparse autoencoder is proposed for BSIQA.•Both feature evolution and feature mapping are addressed in a unified framework for BSIQA.•A Bayesian inference-based quality combination framework is used to derive 3D quality score. This paper proposes a no-reference (NR)/referenceless quality evaluation method for stereoscopic three-dimensional (S3D) images based on deep nonnegativity constrained sparse autoencoder (DNCSAE). To address the quality issue of stereopairs whose perceived quality is not only determined by the individual left and right image qualities but also their interactions, a three-column DNCSAE framework is customized with individual DNCSAE module coping with the left image, the right image, and the cyclopean image, respectively. In the proposed framework, each individual DNCSAE module shares the same network architecture consisting of multiple stacked NCSAE layers and one Softmax regression layer at the end. The contribution of our model is that hierarchical feature evolution and nonlinear feature mapping are jointly optimized in a unified and perceptual-aware deep network (DNCSAE), which well resembles several important visual properties, i.e., hierarchy, sparsity, and non-negativity. To be more specific, for each DNCSAE, by taking a set of handcrafted natural scene statistic (NSS) features as inputs in the visible layer, the features in hidden layers are successively evolved to deeper levels producing increasingly discriminative quality-aware features (QAFs). Then, QAFs in the last NCSAE layer are summarized to their corresponding quality score by Softmax regression. Finally, three individual yet complementary quality scores estimated by each DNCSAE model are combined based on a Bayesian framework to obtain an overall 3D quality score. Experiments on three benchmark databases demonstrate the superiority of our method in terms of both prediction accuracy and generalization capability.
Author Lin, Weisi
Jiang, Gangyi
Shao, Feng
Jiang, Qiuping
Author_xml – sequence: 1
  givenname: Qiuping
  surname: Jiang
  fullname: Jiang, Qiuping
  organization: Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
– sequence: 2
  givenname: Feng
  surname: Shao
  fullname: Shao, Feng
  email: shaofeng@nbu.edu.cn
  organization: Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
– sequence: 3
  givenname: Weisi
  surname: Lin
  fullname: Lin, Weisi
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
– sequence: 4
  givenname: Gangyi
  surname: Jiang
  fullname: Jiang, Gangyi
  organization: Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
BookMark eNqFkM1OwzAQhC0EEm3hDTj4BRLsuIkTDkio4k-qxAXOln82wVWxg-0W9e1xVE4c4LRa7c5o5pujU-cdIHRFSUkJba435SiT9kNZEcpLSktC6Ama0ZazoqbL6hTNCGG0YBVh52ge4yY_8HyYIbsGGZx1A5Y4QA8BnIYtxIhjyosfpQ34cye3Nh0wuME6wF82vWMDMOKcw8Egk91PZ-1dTEHmF4PjKEMELHfJZ0dvIFygs15uI1z-zAV6e7h_XT0V65fH59XdutCMNKkA3krVG86VIj3TCmrWVapjy75t2raiTIFulFHLuma8J23Luo4TUxkCyjBu2ALdHH118DHmTkLblCN6N2XbCkrEBE1sxBGamKAJSkVmksXLX-Ix2A8ZDv_Jbo8yyMX2FoKI2k4kjQ2gkzDe_m3wDUhwjoM
CitedBy_id crossref_primary_10_1007_s11554_021_01137_4
crossref_primary_10_1109_TIP_2018_2881828
crossref_primary_10_1109_ACCESS_2020_2992746
crossref_primary_10_1016_j_jvcir_2020_102848
crossref_primary_10_1109_TASE_2019_2935314
crossref_primary_10_1016_j_patcog_2019_107168
crossref_primary_10_1016_j_jvcir_2020_102868
crossref_primary_10_1016_j_compmedimag_2018_08_006
crossref_primary_10_1109_ACCESS_2018_2866081
crossref_primary_10_1109_TMM_2018_2867742
crossref_primary_10_1109_TIP_2020_3036766
crossref_primary_10_1109_LSP_2019_2940105
crossref_primary_10_1109_ACCESS_2019_2930707
crossref_primary_10_3390_app9183906
crossref_primary_10_1016_j_image_2019_06_014
crossref_primary_10_1016_j_image_2024_117138
crossref_primary_10_1109_TMM_2020_2965461
crossref_primary_10_1002_jsid_653
crossref_primary_10_1109_ACCESS_2020_2974006
crossref_primary_10_1109_ACCESS_2018_2885818
crossref_primary_10_1016_j_jvcir_2022_103643
crossref_primary_10_1016_j_image_2021_116175
crossref_primary_10_1016_j_jvcir_2022_103586
crossref_primary_10_1016_j_neucom_2020_04_049
crossref_primary_10_1109_TIM_2020_3005111
crossref_primary_10_1016_j_sigpro_2018_04_019
Cites_doi 10.1016/j.patcog.2016.01.034
10.1109/TNNLS.2015.2479223
10.3758/BF03202845
10.1109/TIP.2013.2267393
10.1016/j.neucom.2015.06.116
10.1137/0916069
10.1016/j.patcog.2010.09.005
10.1016/j.neucom.2014.05.090
10.1109/TIP.2013.2240003
10.1109/TMM.2016.2594142
10.1109/TIP.2017.2702383
10.1007/s11045-012-0178-3
10.1109/TIP.2015.2446942
10.1109/TIP.2016.2642791
10.1016/j.patcog.2006.11.022
10.1109/TIP.2015.2500021
10.1016/j.patcog.2011.06.023
10.1109/TMM.2016.2601028
10.1109/TIP.2012.2191563
10.1093/cercor/4.5.509
10.1016/S0031-3203(96)00051-9
10.1109/LSP.2016.2516521
10.1364/OE.24.011640
10.1073/pnas.0509629103
10.1016/0896-6273(94)90455-3
10.1109/TMM.2016.2542580
10.1038/44565
10.1016/j.jvcir.2015.09.009
10.1109/TIP.2003.819861
10.1109/TCSVT.2015.2430711
10.1007/BF00055146
10.1109/TNNLS.2014.2310059
10.1561/2200000006
10.1109/TMM.2011.2109701
10.1109/TIP.2014.2355716
10.1109/TMM.2015.2493781
10.1109/TIP.2015.2413298
10.1109/TIP.2014.2302686
10.1109/TIP.2015.2436332
10.1109/TIP.2015.2456414
10.1109/TIP.2016.2538462
10.1109/TIP.2012.2214050
10.1109/TIP.2011.2147325
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2017.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 255
ExternalDocumentID 10_1016_j_patcog_2017_11_001
S0031320317304582
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-e78abfd77bb0f3cbe5392b934f8688213bec6bdb45537f08839970d2d0ebd37d3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424853800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:22 EST 2025
Tue Nov 18 22:23:06 EST 2025
Fri Feb 23 02:25:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stereoscopic 3D image
Deep learning
Image quality assessment
No-reference/referenceless
Sparse autoencoder
Nonnegativity constrained
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e78abfd77bb0f3cbe5392b934f8688213bec6bdb45537f08839970d2d0ebd37d3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2017_11_001
crossref_primary_10_1016_j_patcog_2017_11_001
elsevier_sciencedirect_doi_10_1016_j_patcog_2017_11_001
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oh, Kim, Kim, Kim, Lee, Bovik (bib0005) 2017; 26
Moghaddam, Jamzad (bib0011) 2007; 40
Snyman (bib0047) 2005
Blake, Boothroyd (bib0052) 1985; 37
Mittal, Moorthy, Bovik (bib0015) 2012; 21
Zhao, Nandhakumar (bib0002) 1996; 29
Narwaria, Lin, Cetin (bib0008) 2012; 45
Ryu, Sohn (bib0030) 2014; 24
Li, Po, Cheung, Xu, Feng, Yuan, Cheung (bib0041) 2016; 26
Hinton, Zemel (bib0045) 1994
Agostinelli, Anderson, Lee (bib0044) 2013
Shao, Li, Lin, Jiang, Yu, Dai (bib0024) 2015; 24
Chen, Cormack, Bovik (bib0031) 2013; 22
Rumelhart, Hinton, Williams (bib0048) 1988
Ghadiyaram, Bovik (bib0058) 2016; 25
Wang, Bovik, Sheikh, Simoncelli (bib0007) 2004; 13
Saad, Bovik, Charrier (bib0016) 2012; 21
Xu, Liu, Quan, Callet (bib0010) 2015; 24
Li, Lin, Xu, Fang (bib0019) 2016; 18
Ranzato, Boureau, LeCun (bib0046) 2007
Zhang, Qu, Ma, Guan, Huang (bib0034) 2016
Benoit, Le Callet, Campisi, Cousseau (bib0020) January 2009; 2008
Zhou, Yu (bib0032) 2016; 18
Shao, Li, Lin, Jiang, Dai (bib0054) 2016; 18
Lin, Wu (bib0023) 2014; 23
Belhumeur (bib0053) 1996; 19
Smolic (bib0001) 2011; 44
Jiang, Shao, Lin, Jiang (bib0003) 2016; 23
Hosseini-Asl, Zurada, Nasraoui (bib0043) 2016; 27
Chen, Su, Kwon, Cormack, Bovik (bib0022) October 2013; 28
Moorthy, Bovik (bib0014) 2011; 20
Wang, Rehman, Zeng, Wang, Wang (bib0026) 2015; 24
Bengio (bib0037) 2009; 2
Levelt (bib0049) 1965
Shao, Lin, Gu, Jiang, Srikanthan (bib0055) 2013; 22
Shao, Jiang, Fu, Yu, Jiang (bib0006) May 2016; 24
Van Essen, Gallant (bib0038) 1994; 13
Lee, Seung (bib0040) 1999; 401
Liu, Hua, Zhao, Huang, Bovik (bib0013) 2016; 40
Wachsmuth, Oram, Perrett (bib0039) 1994; 4
Wang, Wang S, Ma, Wang (bib0004) 2017; 26
Jiang, Shao, Jiang, Yu, Peng (bib0012) November. 2015; 33
Moorthy, Su, Mittal, Bovik (bib0056) 2013; 28
Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II, Video Quality Experts Group (VQEG), Tech. Rep., 2003.
Appina, Khan, Channappayya (bib0033) 2016; 43
Bensalma, Larabi (bib0021) 2013; 24
Ma, Wang, Liu, Ngan (bib0028) November 2016; 215
Chorowski, Zurada (bib0042) 2015; 26
Ding, Sperling (bib0050) 2006; 103
Xue, Mou, Zhang, Bovik, Feng (bib0017) 2014; 23
Wang, Liu, Wang, Chen (bib0029) 2015; 151
Gu, Zhai, Yang, Zhang (bib0018) 2014; 17
Byrd, Lu, Nocedal, Zhu (bib0051) 1995; 16
Zhang, Chandler (bib0025) 2015; 24
Shao, Tian, Lin, Jiang, Dai (bib0035) 2016; 25
Lv, Yu, Jiang, Shao, Peng, Chen (bib0036) 2016; 47
Qi, Zhao, Gao (bib0027) 2015; 17
Ma, Li, Zhang, Ngan (bib0009) 2011; 13
Gu (10.1016/j.patcog.2017.11.001_bib0018) 2014; 17
Bensalma (10.1016/j.patcog.2017.11.001_bib0021) 2013; 24
Rumelhart (10.1016/j.patcog.2017.11.001_bib0048) 1988
Ghadiyaram (10.1016/j.patcog.2017.11.001_bib0058) 2016; 25
Xu (10.1016/j.patcog.2017.11.001_bib0010) 2015; 24
Zhao (10.1016/j.patcog.2017.11.001_bib0002) 1996; 29
Wang (10.1016/j.patcog.2017.11.001_bib0007) 2004; 13
Wang (10.1016/j.patcog.2017.11.001_bib0026) 2015; 24
Belhumeur (10.1016/j.patcog.2017.11.001_bib0053) 1996; 19
Li (10.1016/j.patcog.2017.11.001_bib0019) 2016; 18
Zhou (10.1016/j.patcog.2017.11.001_bib0032) 2016; 18
Liu (10.1016/j.patcog.2017.11.001_bib0013) 2016; 40
Shao (10.1016/j.patcog.2017.11.001_bib0024) 2015; 24
Van Essen (10.1016/j.patcog.2017.11.001_bib0038) 1994; 13
Saad (10.1016/j.patcog.2017.11.001_bib0016) 2012; 21
Moorthy (10.1016/j.patcog.2017.11.001_bib0056) 2013; 28
Blake (10.1016/j.patcog.2017.11.001_bib0052) 1985; 37
Hosseini-Asl (10.1016/j.patcog.2017.11.001_bib0043) 2016; 27
Shao (10.1016/j.patcog.2017.11.001_bib0055) 2013; 22
Lv (10.1016/j.patcog.2017.11.001_bib0036) 2016; 47
Mittal (10.1016/j.patcog.2017.11.001_bib0015) 2012; 21
Lin (10.1016/j.patcog.2017.11.001_bib0023) 2014; 23
Wang (10.1016/j.patcog.2017.11.001_bib0004) 2017; 26
Narwaria (10.1016/j.patcog.2017.11.001_bib0008) 2012; 45
Chen (10.1016/j.patcog.2017.11.001_bib0031) 2013; 22
Byrd (10.1016/j.patcog.2017.11.001_bib0051) 1995; 16
Ma (10.1016/j.patcog.2017.11.001_bib0009) 2011; 13
Benoit (10.1016/j.patcog.2017.11.001_bib0020) 2009; 2008
Moorthy (10.1016/j.patcog.2017.11.001_bib0014) 2011; 20
Shao (10.1016/j.patcog.2017.11.001_bib0054) 2016; 18
Jiang (10.1016/j.patcog.2017.11.001_bib0003) 2016; 23
Qi (10.1016/j.patcog.2017.11.001_bib0027) 2015; 17
Chen (10.1016/j.patcog.2017.11.001_bib0022) 2013; 28
Zhang (10.1016/j.patcog.2017.11.001_bib0025) 2015; 24
Ryu (10.1016/j.patcog.2017.11.001_bib0030) 2014; 24
Li (10.1016/j.patcog.2017.11.001_bib0041) 2016; 26
Ma (10.1016/j.patcog.2017.11.001_bib0028) 2016; 215
Levelt (10.1016/j.patcog.2017.11.001_bib0049) 1965
Zhang (10.1016/j.patcog.2017.11.001_bib0034) 2016
Jiang (10.1016/j.patcog.2017.11.001_bib0012) 2015; 33
Oh (10.1016/j.patcog.2017.11.001_bib0005) 2017; 26
Agostinelli (10.1016/j.patcog.2017.11.001_bib0044) 2013
10.1016/j.patcog.2017.11.001_bib0057
Moghaddam (10.1016/j.patcog.2017.11.001_bib0011) 2007; 40
Shao (10.1016/j.patcog.2017.11.001_bib0006) 2016; 24
Wachsmuth (10.1016/j.patcog.2017.11.001_bib0039) 1994; 4
Lee (10.1016/j.patcog.2017.11.001_bib0040) 1999; 401
Wang (10.1016/j.patcog.2017.11.001_bib0029) 2015; 151
Shao (10.1016/j.patcog.2017.11.001_bib0035) 2016; 25
Xue (10.1016/j.patcog.2017.11.001_bib0017) 2014; 23
Bengio (10.1016/j.patcog.2017.11.001_bib0037) 2009; 2
Snyman (10.1016/j.patcog.2017.11.001_bib0047) 2005
Smolic (10.1016/j.patcog.2017.11.001_bib0001) 2011; 44
Ding (10.1016/j.patcog.2017.11.001_bib0050) 2006; 103
Appina (10.1016/j.patcog.2017.11.001_bib0033) 2016; 43
Ranzato (10.1016/j.patcog.2017.11.001_bib0046) 2007
Chorowski (10.1016/j.patcog.2017.11.001_bib0042) 2015; 26
Hinton (10.1016/j.patcog.2017.11.001_bib0045) 1994
References_xml – year: 2016
  ident: bib0034
  article-title: Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 114
  year: 1985
  end-page: 124
  ident: bib0052
  article-title: The precedence of binocular fusion over binocular rivalry
  publication-title: Attent. Percept. Psychophys.
– volume: 13
  start-page: 1
  year: 1994
  end-page: 10
  ident: bib0038
  article-title: Neural mechanisms of form and motion processing in the primate visual system
  publication-title: Neuron
– volume: 47
  start-page: 346
  year: 2016
  end-page: 357
  ident: bib0036
  article-title: No-reference stereoscopic image quality assessment using binocular self-similarity and deep neural network
  publication-title: Signal Process.
– volume: 40
  start-page: 1946
  year: 2007
  end-page: 1957
  ident: bib0011
  article-title: Motion blur identification in noisy images using mathematical models and statistical measures
  publication-title: Pattern Recognit
– volume: 17
  start-page: 50
  year: 2014
  end-page: 63
  ident: bib0018
  article-title: Using free energy principle for blind image quality assessment
  publication-title: IEEE Trans. Multimedia
– year: 2005
  ident: bib0047
  article-title: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms
– volume: 22
  start-page: 3379
  year: 2013
  end-page: 3391
  ident: bib0031
  article-title: No-reference quality assessment of natural stereopairs
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0007
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 103
  start-page: 1141
  year: 2006
  end-page: 1146
  ident: bib0050
  article-title: A gain-control theory of binocular combination
  publication-title: Proc. Nation. Acad. Sci. USA
– volume: 24
  start-page: 11640
  year: May 2016
  end-page: 11653
  ident: bib0006
  article-title: Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals
  publication-title: Opt. Express
– year: 1965
  ident: bib0049
  article-title: On binocular rivalry
  publication-title: Van Gorcum Assen
– volume: 17
  start-page: 2338
  year: 2015
  end-page: 2344
  ident: bib0027
  article-title: Reduced reference stereoscopic image quality assessment based on binocular perceptual information
  publication-title: IEEE Trans. Multimedia
– volume: 26
  start-page: 1044
  year: 2016
  end-page: 1057
  ident: bib0041
  article-title: No-reference video quality assessment with 3D shearlet transform and convolutional neural networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 45
  start-page: 299
  year: 2012
  end-page: 313
  ident: bib0008
  article-title: Scalable image quality assessment with 2D mel-cepstrum and machine learning approach
  publication-title: Pattern Recognit.
– volume: 25
  start-page: 2059
  year: 2016
  end-page: 2074
  ident: bib0035
  article-title: Toward a blind deep quality evaluator for stereoscopic images based on monocular and binocular interactions
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib0013
  article-title: Blind image quality assessment by relative gradient statistics and adaboosting neural network
  publication-title: Signal Process.
– volume: 29
  start-page: 2115
  year: 1996
  end-page: 2126
  ident: bib0002
  article-title: Effects of camera alignment errors on stereoscopic depth estimates
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 1077
  year: 2016
  end-page: 1084
  ident: bib0032
  article-title: Binocular responses for no-reference 3D image quality assessment
  publication-title: IEEE Trans. Multimedia
– year: 1988
  ident: bib0048
  article-title: Learning Representations by Back-Propagating Errors
– volume: 151
  start-page: 683
  year: 2015
  end-page: 691
  ident: bib0029
  article-title: Natural image statistics based 3D reduced reference image quality assessment in contourlet domain
  publication-title: Neurocomputing
– volume: 24
  start-page: 3400
  year: 2015
  end-page: 3414
  ident: bib0026
  article-title: Quality prediction of asymmetrically distorted stereoscopic 3D images
  publication-title: IEEE Trans. Image Process.
– volume: 44
  start-page: 1958
  year: 2011
  end-page: 1968
  ident: bib0001
  article-title: 3D video and free viewpoint video—from capture to display
  publication-title: Pattern Recognit.
– volume: 2008
  year: January 2009
  ident: bib0020
  article-title: Quality assessment of stereoscopic images
  publication-title: EURASIP J. Image Video Process.
– volume: 4
  start-page: 509
  year: 1994
  end-page: 522
  ident: bib0039
  article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque
  publication-title: Cerebral Cortex
– start-page: 1185
  year: 2007
  end-page: 1192
  ident: bib0046
  article-title: Sparse feature learning for deep belief networks
  publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst.
– volume: 215
  start-page: 21
  year: November 2016
  end-page: 31
  ident: bib0028
  article-title: Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment
  publication-title: Neurocomputing
– volume: 18
  start-page: 2104
  year: 2016
  end-page: 2114
  ident: bib0054
  article-title: Learning blind quality evaluator for stereoscopic images using joint sparse representation
  publication-title: IEEE Trans. Multimedia
– volume: 23
  start-page: 4850
  year: 2014
  end-page: 4862
  ident: bib0017
  article-title: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 1940
  year: 2013
  end-page: 1953
  ident: bib0055
  article-title: Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 824
  year: 2011
  end-page: 829
  ident: bib0009
  article-title: Reduced-reference image quality assessment using reorganized DCT-based image representation
  publication-title: IEEE Trans. Multimedia
– volume: 28
  start-page: 1143
  year: October 2013
  end-page: 1155
  ident: bib0022
  article-title: Full-reference quality assessment of stereopairs accounting for rivalry
  publication-title: Signal Process.
– volume: 24
  start-page: 3810
  year: 2015
  end-page: 3825
  ident: bib0025
  article-title: 3D-MAD: a full reference stereoscopic image quality estimator based on binocular lightness and contrast perception
  publication-title: IEEE Trans. Image Process.
– reference: Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II, Video Quality Experts Group (VQEG), Tech. Rep., 2003.
– volume: 26
  start-page: 1202
  year: 2017
  end-page: 1215
  ident: bib0004
  article-title: Perceptual depth quality in distorted stereoscopic images
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 591
  year: 2014
  end-page: 602
  ident: bib0030
  article-title: No-reference quality assessment for stereoscopic images based on binocular quality perception
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 43
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib0033
  article-title: No-reference stereoscopic image quality assessment using natural scene statistics
  publication-title: Signal Process.
– start-page: 1493
  year: 2013
  end-page: 1501
  ident: bib0044
  article-title: Adaptive multi-column deep neural networks with application to robust image denoising
  publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst.
– volume: 27
  start-page: 2486
  year: 2016
  end-page: 2498
  ident: bib0043
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: bib0051
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 21
  start-page: 3339
  year: 2012
  end-page: 3352
  ident: bib0016
  article-title: Blind image quality assessment: a natural scene statistics approach in the DCT domain
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 62
  year: 2015
  end-page: 69
  ident: bib0042
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 21
  start-page: 4695
  year: 2012
  end-page: 4708
  ident: bib0015
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 3350
  year: 2011
  end-page: 3364
  ident: bib0014
  article-title: Blind image quality assessment: from natural scene statistics to perceptual quality
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 2971
  year: 2015
  end-page: 2983
  ident: bib0024
  article-title: Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0037
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 26
  start-page: 3789
  year: 2017
  end-page: 3801
  ident: bib0005
  article-title: Enhancement of visual comfort and sense of presence on stereoscopic 3D images
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 237
  year: 1996
  end-page: 260
  ident: bib0053
  article-title: A Bayesian approach to binocular stereopsis
  publication-title: Int. J. Comput. Vis.
– volume: 23
  start-page: 302
  year: 2016
  end-page: 306
  ident: bib0003
  article-title: On predicting visual comfort of stereoscopic images: a learning to rank based approach
  publication-title: IEEE Signal Process. Lett.
– volume: 24
  start-page: 2098
  year: 2015
  end-page: 2109
  ident: bib0010
  article-title: Fractal analysis for reduced reference image quality assessment
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 1527
  year: 2014
  end-page: 1542
  ident: bib0023
  article-title: Quality assessment of stereoscopic 3D image compression by binocular integration behaviors
  publication-title: IEEE Trans. Image Process.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0040
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
– volume: 25
  start-page: 372
  year: 2016
  end-page: 387
  ident: bib0058
  article-title: Massive online crowdsourced study of subjective and objective picture quality
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 2457
  year: 2016
  end-page: 2469
  ident: bib0019
  article-title: Blind image quality assessment using statistical structural and luminance features
  publication-title: IEEE Trans. Multimedia
– volume: 33
  start-page: 123
  year: November. 2015
  end-page: 133
  ident: bib0012
  article-title: Supervised dictionary learning for blind image quality assessment using quality-constraint sparse coding
  publication-title: J. Vis. Commun. Image Represent.
– year: 1994
  ident: bib0045
  article-title: Autoencoders, minimum description length, and Helmholtz free energy
  publication-title: Proc. Conf. Adv. Neural Inform. Process. Syst.
– volume: 24
  start-page: 281
  year: 2013
  end-page: 316
  ident: bib0021
  article-title: A perceptual metric for stereoscopic image quality assessment based on the binocular energy
  publication-title: Multidimens. Syst. Signal Process.
– volume: 28
  start-page: 870
  year: 2013
  end-page: 883
  ident: bib0056
  article-title: Subjective evaluation of stereoscopic image quality
  publication-title: Signal Process.
– year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0034
  article-title: Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.034
– volume: 27
  start-page: 2486
  issue: 12
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0043
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2479223
– volume: 17
  start-page: 50
  issue: January (1)
  year: 2014
  ident: 10.1016/j.patcog.2017.11.001_bib0018
  article-title: Using free energy principle for blind image quality assessment
  publication-title: IEEE Trans. Multimedia
– volume: 37
  start-page: 114
  issue: 2
  year: 1985
  ident: 10.1016/j.patcog.2017.11.001_bib0052
  article-title: The precedence of binocular fusion over binocular rivalry
  publication-title: Attent. Percept. Psychophys.
  doi: 10.3758/BF03202845
– volume: 22
  start-page: 3379
  issue: September (9)
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0031
  article-title: No-reference quality assessment of natural stereopairs
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2267393
– volume: 215
  start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0028
  article-title: Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.116
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.patcog.2017.11.001_bib0051
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 44
  start-page: 1958
  issue: 9
  year: 2011
  ident: 10.1016/j.patcog.2017.11.001_bib0001
  article-title: 3D video and free viewpoint video—from capture to display
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.005
– volume: 151
  start-page: 683
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0029
  article-title: Natural image statistics based 3D reduced reference image quality assessment in contourlet domain
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.090
– volume: 22
  start-page: 1940
  issue: May (5)
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0055
  article-title: Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2240003
– start-page: 1185
  year: 2007
  ident: 10.1016/j.patcog.2017.11.001_bib0046
  article-title: Sparse feature learning for deep belief networks
– volume: 18
  start-page: 2104
  issue: 10
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0054
  article-title: Learning blind quality evaluator for stereoscopic images using joint sparse representation
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2016.2594142
– volume: 26
  start-page: 3789
  issue: August (8)
  year: 2017
  ident: 10.1016/j.patcog.2017.11.001_bib0005
  article-title: Enhancement of visual comfort and sense of presence on stereoscopic 3D images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2702383
– volume: 24
  start-page: 281
  issue: June (2)
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0021
  article-title: A perceptual metric for stereoscopic image quality assessment based on the binocular energy
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-012-0178-3
– volume: 24
  start-page: 3400
  issue: November (11)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0026
  article-title: Quality prediction of asymmetrically distorted stereoscopic 3D images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2446942
– volume: 26
  start-page: 1202
  issue: March (3)
  year: 2017
  ident: 10.1016/j.patcog.2017.11.001_bib0004
  article-title: Perceptual depth quality in distorted stereoscopic images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2642791
– year: 1988
  ident: 10.1016/j.patcog.2017.11.001_bib0048
– volume: 40
  start-page: 1946
  issue: 7
  year: 2007
  ident: 10.1016/j.patcog.2017.11.001_bib0011
  article-title: Motion blur identification in noisy images using mathematical models and statistical measures
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.11.022
– volume: 25
  start-page: 372
  issue: January (1)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0058
  article-title: Massive online crowdsourced study of subjective and objective picture quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2500021
– ident: 10.1016/j.patcog.2017.11.001_bib0057
– start-page: 1493
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0044
  article-title: Adaptive multi-column deep neural networks with application to robust image denoising
– volume: 45
  start-page: 299
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2017.11.001_bib0008
  article-title: Scalable image quality assessment with 2D mel-cepstrum and machine learning approach
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.023
– volume: 28
  start-page: 1143
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0022
  article-title: Full-reference quality assessment of stereopairs accounting for rivalry
  publication-title: Signal Process.
– volume: 18
  start-page: 2457
  issue: December (12)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0019
  article-title: Blind image quality assessment using statistical structural and luminance features
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2016.2601028
– volume: 21
  start-page: 3339
  issue: August (8)
  year: 2012
  ident: 10.1016/j.patcog.2017.11.001_bib0016
  article-title: Blind image quality assessment: a natural scene statistics approach in the DCT domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2191563
– volume: 4
  start-page: 509
  issue: 5
  year: 1994
  ident: 10.1016/j.patcog.2017.11.001_bib0039
  article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/4.5.509
– volume: 29
  start-page: 2115
  issue: 12
  year: 1996
  ident: 10.1016/j.patcog.2017.11.001_bib0002
  article-title: Effects of camera alignment errors on stereoscopic depth estimates
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00051-9
– volume: 23
  start-page: 302
  issue: February (2)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0003
  article-title: On predicting visual comfort of stereoscopic images: a learning to rank based approach
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2516521
– volume: 24
  start-page: 11640
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0006
  article-title: Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals
  publication-title: Opt. Express
  doi: 10.1364/OE.24.011640
– year: 1994
  ident: 10.1016/j.patcog.2017.11.001_bib0045
  article-title: Autoencoders, minimum description length, and Helmholtz free energy
– volume: 103
  start-page: 1141
  issue: 4
  year: 2006
  ident: 10.1016/j.patcog.2017.11.001_bib0050
  article-title: A gain-control theory of binocular combination
  publication-title: Proc. Nation. Acad. Sci. USA
  doi: 10.1073/pnas.0509629103
– volume: 13
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.patcog.2017.11.001_bib0038
  article-title: Neural mechanisms of form and motion processing in the primate visual system
  publication-title: Neuron
  doi: 10.1016/0896-6273(94)90455-3
– volume: 18
  start-page: 1077
  issue: June (6)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0032
  article-title: Binocular responses for no-reference 3D image quality assessment
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2016.2542580
– volume: 401
  start-page: 788
  issue: October (6755)
  year: 1999
  ident: 10.1016/j.patcog.2017.11.001_bib0040
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 33
  start-page: 123
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0012
  article-title: Supervised dictionary learning for blind image quality assessment using quality-constraint sparse coding
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.09.009
– volume: 13
  start-page: 600
  issue: April (4)
  year: 2004
  ident: 10.1016/j.patcog.2017.11.001_bib0007
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 26
  start-page: 1044
  issue: June (6)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0041
  article-title: No-reference video quality assessment with 3D shearlet transform and convolutional neural networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2430711
– year: 1965
  ident: 10.1016/j.patcog.2017.11.001_bib0049
  article-title: On binocular rivalry
  publication-title: Van Gorcum Assen
– volume: 19
  start-page: 237
  issue: 3
  year: 1996
  ident: 10.1016/j.patcog.2017.11.001_bib0053
  article-title: A Bayesian approach to binocular stereopsis
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00055146
– volume: 26
  start-page: 62
  issue: January (1)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0042
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2014.2310059
– volume: 43
  start-page: 1
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0033
  article-title: No-reference stereoscopic image quality assessment using natural scene statistics
  publication-title: Signal Process.
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2017.11.001_bib0037
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– year: 2005
  ident: 10.1016/j.patcog.2017.11.001_bib0047
– volume: 13
  start-page: 824
  issue: August (4)
  year: 2011
  ident: 10.1016/j.patcog.2017.11.001_bib0009
  article-title: Reduced-reference image quality assessment using reorganized DCT-based image representation
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2011.2109701
– volume: 28
  start-page: 870
  issue: September (8)
  year: 2013
  ident: 10.1016/j.patcog.2017.11.001_bib0056
  article-title: Subjective evaluation of stereoscopic image quality
  publication-title: Signal Process.
– volume: 40
  start-page: 1
  issue: January (1)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0013
  article-title: Blind image quality assessment by relative gradient statistics and adaboosting neural network
  publication-title: Signal Process.
– volume: 23
  start-page: 4850
  issue: November (11)
  year: 2014
  ident: 10.1016/j.patcog.2017.11.001_bib0017
  article-title: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2355716
– volume: 17
  start-page: 2338
  issue: December (12)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0027
  article-title: Reduced reference stereoscopic image quality assessment based on binocular perceptual information
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2015.2493781
– volume: 24
  start-page: 2098
  issue: July (7)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0010
  article-title: Fractal analysis for reduced reference image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2413298
– volume: 23
  start-page: 1527
  issue: April (4)
  year: 2014
  ident: 10.1016/j.patcog.2017.11.001_bib0023
  article-title: Quality assessment of stereoscopic 3D image compression by binocular integration behaviors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2302686
– volume: 24
  start-page: 2971
  issue: October (10)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0024
  article-title: Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2436332
– volume: 2008
  year: 2009
  ident: 10.1016/j.patcog.2017.11.001_bib0020
  article-title: Quality assessment of stereoscopic images
  publication-title: EURASIP J. Image Video Process.
– volume: 24
  start-page: 3810
  issue: November (11)
  year: 2015
  ident: 10.1016/j.patcog.2017.11.001_bib0025
  article-title: 3D-MAD: a full reference stereoscopic image quality estimator based on binocular lightness and contrast perception
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2456414
– volume: 25
  start-page: 2059
  issue: May (5)
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0035
  article-title: Toward a blind deep quality evaluator for stereoscopic images based on monocular and binocular interactions
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2538462
– volume: 47
  start-page: 346
  year: 2016
  ident: 10.1016/j.patcog.2017.11.001_bib0036
  article-title: No-reference stereoscopic image quality assessment using binocular self-similarity and deep neural network
  publication-title: Signal Process.
– volume: 21
  start-page: 4695
  issue: December (12)
  year: 2012
  ident: 10.1016/j.patcog.2017.11.001_bib0015
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– volume: 24
  start-page: 591
  issue: April (4)
  year: 2014
  ident: 10.1016/j.patcog.2017.11.001_bib0030
  article-title: No-reference quality assessment for stereoscopic images based on binocular quality perception
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 20
  start-page: 3350
  issue: December (12)
  year: 2011
  ident: 10.1016/j.patcog.2017.11.001_bib0014
  article-title: Blind image quality assessment: from natural scene statistics to perceptual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2147325
SSID ssj0017142
Score 2.4006042
Snippet •A three-column deep non-negativity constrained sparse autoencoder is proposed for BSIQA.•Both feature evolution and feature mapping are addressed in a unified...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Deep learning
Image quality assessment
No-reference/referenceless
Nonnegativity constrained
Sparse autoencoder
Stereoscopic 3D image
Title Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder
URI https://dx.doi.org/10.1016/j.patcog.2017.11.001
Volume 76
WOSCitedRecordID wos000424853800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cNedh_rbuhhb0HFsewc-7GU7lJC6Vi35c1IllxcQmpyKe2_2E_u0c2xydgN9qIEJXKEzpdz09EnQt5BpDOZgGIVQM6SRHImy1yzrILK4DmNLdnztymcnmazWX42GPwIZ2Gu57BYZDc3efNfRY19KGxzdPYvxN0-FDvwPQodWxQ7tn8k-GlIdohRe4fI3OgzQ4mgMUaul_4o5e1IWzZCl4xVWjejhal7uQhXSpTGeTR3SKBXippnudIjsVlfGe5L5at6vV97Zmk6zdEYX4-03d0_qX1K-nO9aYKhtKSQwqZpcfHavqljNPiu61W9M_4Dvt7W3TTFOOtUt9jcWTg_sy1WsvqYjxmPI6fitFPBGXCGblxPR0NPyfrPnL2OHc3vjilwWYnLgwZN2tWFKeKDA8PX6ifVJ9n-4jgssQG7dYxGfS-GNM-GZO_w0_HspN2ZgnHiGOj9zMNxTFszuPtbP3d3Oi7M-SPywMce9NBh5jEZ6MUT8jDc60G9mn9K6gAhKmgPQnQLIeohRB2EqIEQNRCiPQjRDoSogxDtQOgZ-fr--PzoI_NXcrASY8s105AJWSkAKaOKl1Kn6F_LnCdVNsFYbcxRJUykkkmacqjQgqH_C5GKVaSl4qD4czLEaegXhIqJrlKR8jIXaEjiVGIsL3ik80mlzO73PuFh5YrS89Wb-c6LUJh4Wbj1Lsx6Yyhr6jP3CWtHNY6v5TffhyCUwvuczpcsEEe_HPnyn0e-Ive3_5DXZLhebvQbcq-8Xter5VsPuDtQcq2M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+referenceless+stereopair+quality+engine+with+deep+nonnegativity+constrained+sparse+autoencoder&rft.jtitle=Pattern+recognition&rft.au=Jiang%2C+Qiuping&rft.au=Shao%2C+Feng&rft.au=Lin%2C+Weisi&rft.au=Jiang%2C+Gangyi&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=76&rft.spage=242&rft.epage=255&rft_id=info:doi/10.1016%2Fj.patcog.2017.11.001&rft.externalDocID=S0031320317304582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon