Dual attention-based deep learning network for multi-class object semantic segmentation of tunnel point clouds
Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet) is developed in this paper to act on point clouds for segmentation. In the developed model, data normalization and feature aggregation are f...
Saved in:
| Published in: | Automation in construction Vol. 156; p. 105131 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2023
|
| Subjects: | |
| ISSN: | 0926-5805, 1872-7891 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet) is developed in this paper to act on point clouds for segmentation. In the developed model, data normalization and feature aggregation are first processed to eliminate data discrepancies and enhance local features, after which the processed data are input into the built network layers based on the encoder-decoder architecture coupled with an improved 3D dual attention module to extract and learn features. Furthermore, a custom loss function called Facal Cross-Entropy (“FacalCE”) is designed to enhance the model's ability to extract and learn features while addressing imbalanced data distribution. To validate the effectiveness and feasibility of the developed model, a dataset of tunnel point clouds collected from a real engineering project in China is employed. The experimental results indicate that (1) the developed model has excellent performance with Mean Intersection over Union (MIoU) of 0.8597, (2) the improved 3D dual attention module and “FacalCE” contribute to the model performance, respectively, and (3) the developed model is superior to other state-of-the-art methods, such as PointNet and DGCNN. In summary, the DAPCNet model exhibits exceptional performance, offering effective and accurate results for segmenting multi-class objects within tunnel point clouds.
•A deep learning method named DAPCNet is developed for 3D point cloud segmentation.•An improved 3D dual attention module is introduced to enhance model performance.•A custom loss “FacalCE” is designed to strengthen feature learning with handling data imbalance.•Conducting comparisons to examine the model performance for segmentation.•The developed method demonstrates outstanding performance, achieving an MIoU score of 0.8597 when applied to tunnel point clouds. |
|---|---|
| AbstractList | Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet) is developed in this paper to act on point clouds for segmentation. In the developed model, data normalization and feature aggregation are first processed to eliminate data discrepancies and enhance local features, after which the processed data are input into the built network layers based on the encoder-decoder architecture coupled with an improved 3D dual attention module to extract and learn features. Furthermore, a custom loss function called Facal Cross-Entropy (“FacalCE”) is designed to enhance the model's ability to extract and learn features while addressing imbalanced data distribution. To validate the effectiveness and feasibility of the developed model, a dataset of tunnel point clouds collected from a real engineering project in China is employed. The experimental results indicate that (1) the developed model has excellent performance with Mean Intersection over Union (MIoU) of 0.8597, (2) the improved 3D dual attention module and “FacalCE” contribute to the model performance, respectively, and (3) the developed model is superior to other state-of-the-art methods, such as PointNet and DGCNN. In summary, the DAPCNet model exhibits exceptional performance, offering effective and accurate results for segmenting multi-class objects within tunnel point clouds.
•A deep learning method named DAPCNet is developed for 3D point cloud segmentation.•An improved 3D dual attention module is introduced to enhance model performance.•A custom loss “FacalCE” is designed to strengthen feature learning with handling data imbalance.•Conducting comparisons to examine the model performance for segmentation.•The developed method demonstrates outstanding performance, achieving an MIoU score of 0.8597 when applied to tunnel point clouds. |
| ArticleNumber | 105131 |
| Author | Zhang, Limao Xue, Xiaolong Fan, Hongqin Ji, Ankang Dou, Yudan |
| Author_xml | – sequence: 1 givenname: Ankang surname: Ji fullname: Ji, Ankang email: ankangji@stu.hit.edu.cn organization: Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong 999077, China – sequence: 2 givenname: Limao surname: Zhang fullname: Zhang, Limao organization: School of Civil and Hydraulic Engineering, National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 3 givenname: Hongqin surname: Fan fullname: Fan, Hongqin email: hongqin.fan@polyu.edu.hk organization: Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong 999077, China – sequence: 4 givenname: Xiaolong surname: Xue fullname: Xue, Xiaolong organization: School of Management, Guangzhou University, Guangzhou, Guangdong 510006, China – sequence: 5 givenname: Yudan surname: Dou fullname: Dou, Yudan organization: Department of Construction Management, Dalian University of Technology, Dalian, Liaoning 116024, China |
| BookMark | eNqFkE1LxDAQhoOs4O7qP_CQP9A16Xc9CLJ-woIXPYd0Ml1S22RJUsV_b5Z68qCnGYZ5XmaeFVkYa5CQS842nPHyqt_IKYA1m5SlWRwVPOMnZMnrKk2quuELsmRNWiZFzYozsvK-Z4xVrGyWxNxNcqAyBDRBW5O00qOiCvFAB5TOaLOnBsOnde-0s46O0xB0AoP0ntq2RwjU4ygjDLHZjzFGHoOo7WiYjMGBHqw2gcJgJ-XPyWknB48XP3VN3h7uX7dPye7l8Xl7u0sgY2VIMMcqqxh0bSMrkG3H4v1QSZWXkIGSXc4aSKuiSHMus7or6lYpDsjiegk5y9Ykn3PBWe8dduLg9Cjdl-BMHJ2JXszOxNGZmJ1F7PoXBnr-Jziph__gmxnG-NiHRic8aDSASrvoSSir_w74BtLCj7k |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106368 crossref_primary_10_1016_j_tust_2025_106878 crossref_primary_10_1016_j_tust_2025_106966 crossref_primary_10_1016_j_tust_2025_106605 crossref_primary_10_1109_TITS_2025_3542500 crossref_primary_10_1016_j_jobe_2024_110311 crossref_primary_10_1016_j_aei_2025_103383 crossref_primary_10_1016_j_aei_2024_102929 crossref_primary_10_1016_j_tust_2024_105832 crossref_primary_10_1049_sil2_6624103 crossref_primary_10_1016_j_measurement_2025_117434 crossref_primary_10_3390_rs17010133 crossref_primary_10_1016_j_tust_2025_106630 crossref_primary_10_1016_j_autcon_2025_106210 crossref_primary_10_1016_j_autcon_2025_106234 crossref_primary_10_1007_s43503_025_00054_w crossref_primary_10_1016_j_enbuild_2025_115955 crossref_primary_10_1016_j_asoc_2024_111622 crossref_primary_10_1111_mice_70067 crossref_primary_10_1016_j_scs_2025_106414 |
| Cites_doi | 10.1016/j.aei.2021.101501 10.1016/j.autcon.2022.104187 10.1016/j.aei.2022.101608 10.1016/j.patrec.2020.03.021 10.1016/j.autcon.2022.104412 10.1016/j.cor.2022.106116 10.1016/j.autcon.2021.103860 10.1016/j.ress.2019.106567 10.1016/j.autcon.2019.04.005 10.1016/j.autcon.2022.104613 10.3390/s19194188 10.1111/cgf.13804 10.3390/rs12061005 10.1016/j.autcon.2022.104293 10.1016/j.autcon.2021.103847 10.1016/j.autcon.2022.104345 10.1111/mice.12440 10.1016/j.autcon.2023.104915 10.1145/3326362 10.1111/mice.12731 10.1016/j.tust.2022.104509 10.1016/j.autcon.2021.103995 10.1061/(ASCE)CP.1943-5487.0000929 10.1109/TVCG.2020.3027069 10.1007/s11831-019-09320-4 10.1016/j.tust.2022.104472 10.1016/j.autcon.2018.11.028 10.1007/s41095-021-0229-5 10.1111/mice.12881 10.1016/j.neucom.2019.12.118 10.1016/j.aei.2020.101206 10.1016/j.autcon.2022.104667 10.1016/j.autcon.2019.102911 10.1016/j.patcog.2020.107446 10.1016/j.autcon.2021.103934 10.1109/TPAMI.2016.2644615 10.1016/j.autcon.2021.103675 10.1016/j.autcon.2022.104456 10.1109/TPAMI.2020.3005434 10.1016/j.autcon.2021.103610 10.1016/j.autcon.2022.104668 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.autcon.2023.105131 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1872-7891 |
| ExternalDocumentID | 10_1016_j_autcon_2023_105131 S0926580523003916 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-e4e7370cfb9a7cabf0092c7ad46c3cdaf409c2755241a38f58bdd1ce09a76c403 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001105973700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Sat Nov 29 07:13:22 EST 2025 Tue Nov 18 22:42:20 EST 2025 Fri Feb 23 02:35:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Tunnel point cloud 3D dual attention module Semantic segmentation Encoder-decoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e4e7370cfb9a7cabf0092c7ad46c3cdaf409c2755241a38f58bdd1ce09a76c403 |
| ParticipantIDs | crossref_primary_10_1016_j_autcon_2023_105131 crossref_citationtrail_10_1016_j_autcon_2023_105131 elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105131 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Automation in construction |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Huang, Hou, Zhang, Shan (bb0120) 2019 Zhou, Fang, Gao, Huang, Zhong, Shang (bb0130) 2020; 133 Horache, Deschaud, Goulette (bb0260) 2021 Xu, Tong, Stilla (bb0140) 2021; 126 Hassani, Haley (bb0195) 2019 Wang, Yu, Huang, Neumann (bb0090) 2018 Dung, Anh (bb0235) 2019; 99 Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph Cnn for learning on point clouds, ACM Trans. Graph. 38 (2019) 146, doi:10.1145/3326362. Zhang, Zuo, Xu, Wu, Zhu, Zhang, Wang, Tian (bb0295) 2022; 144 Komarichev, Zhong, Hua (bb0105) 2019 Liu, Ni, Li, Yang, Tian (bb0185) 2019 Chew, Ji, Zhang (bb0210) 2022; 133 Guo, Wang, Hu, Liu, Liu, Bennamoun (bb0065) 2021; 43 Ye, Sung (bb0220) 2019 Feng, Zhang, Lin, Gilani, Mian (bb0125) 2020; 107 Qi, Yi, Su, Guibas (bb0085) 2017 Pham, Nguyen, Hua, Roig, Yeung (bb0110) 2019 Zhou, Zhao, Adolfsson, Su, Gao, Duckett, Sun (bb0270) 2021 Hu, Li, Wang, Zhang, Wei, Yang (bb0005) 2023; 151 Mirzaei, Arashpour, Asadi, Masoumi, Bai, Behnood (bb0070) 2022; 51 Zhang, Lu, Qin, He (bb0255) 2021; 27 Zhang, Xie, Li, Zhou, Wang, Shahrour (bb0040) 2022; 139 Xue, Jia, Cai, Shadabfar, Huang (bb0050) 2022; 37 Zhao, Zhang, Xue, Zhou, Huang (bb0045) 2021; 132 Cheng, Qiu, Duan (bb0055) 2019; 106 Argyroudis, Mitoulis, Winter, Kaynia (bb0025) 2019; 191 Graham, Engelcke, Van Der Maaten (bb0165) 2018 Mirzaei, Arashpour, Asadi, Masoumi, Bai, Behnood (bb0145) 2022; 51 Zhang, Ji, Wang, Zhang (bib304) 2022; 142 Guo, Cai, Liu, Mu, Martin, Hu (bb0275) 2021; 7 Xu, Li, Xie, Wu, Wang (bb0030) 2021; 178 Li, Bu, Sun, Wu, Di, Chen (bb0100) 2018 Zhou, Ji, Zhang, Xue (bib303) 2023; 146 Ali, Cha (bb0285) 2022; 141 Fu, Liu, Tian, Li, Bao, Fang, Lu (bb0300) 2019 Lin, Broere, Cui (bb0010) 2022; 125 Chu, Wang, Deng (bb0280) 2022; 37 Chen, Zhu, Papandreou, Schroff, Adam (bb0215) 2018 Han, Chen, Li, Liu, Leng, Ahmed, Zhang (bb0015) 2022; 140 Badrinarayanan, Kendall, Cipolla (bb0230) 2017; 39 Ji, Chew, Xue, Zhang (bib302) 2022; 137 Liu, Cao, Wang, Wang (bb0245) 2019; 104 Zhang, Ji, Zhang, Xu, Zhou (bb0150) 2023; 152 Zhou, Wang, Mao, Gong, Liu (bb0115) 2019; 39 Dang, Wang, Li, Park, Oh, Nguyen, Moon (bb0035) 2022; 124 Meng, Gao, Lai, Manocha (bb0175) 2019 Hu, Hao, Wei, Li (bb0290) 2022; 52 Wang, Suo, Ma, Pokrovsky, Urtasun (bb0155) 2018 Qi, Su, Kaichun, Guibas (bb0080) 2017 Liu, Sun, Li, Hu, Wang (bb0135) 2019; 19 Bang, Park, Kim, Kim (bb0240) 2019; 34 Duan, Qiu, Cheng, Zheng, Lu (bb0060) 2021; 130 Wang, Tan, Mei (bb0075) 2020; 27 Ji, Zhou, Zhang, Tiong, Xue (bib301) 2023; 146 Lee, Park, Ryu (bb0205) 2021; 130 Li, Xie, Gong, Yu, Xu, Sun, Wang (bb0020) 2021; 47 Fotsing, Menadjou, Bobda (bb0160) 2021; 125 Chen, Feng, McCullough, Prasad, McAlinden, Soibelman (bb0250) 2020; 34 Du, Li, Yang, Horng (bb0225) 2020; 388 Zhang, Hao, Wang, de Silva, Fu (bb0190) 2019 Ye, Li, Huang, Du, Zhang (bb0095) 2018 Zhou, Tuzel (bb0170) 2018 Yang, Zhang, Ni, Li, Liu, Zhou, Tian (bb0265) 2019 Pierdicca, Paolanti, Matrone, Martini, Morbidoni, Malinverni, Frontoni, Lingua (bb0200) 2020; 12 10.1016/j.autcon.2023.105131_bb0180 Liu (10.1016/j.autcon.2023.105131_bb0245) 2019; 104 Liu (10.1016/j.autcon.2023.105131_bb0185) 2019 Wang (10.1016/j.autcon.2023.105131_bb0075) 2020; 27 Chen (10.1016/j.autcon.2023.105131_bb0215) 2018 Zhang (10.1016/j.autcon.2023.105131_bib304) 2022; 142 Hassani (10.1016/j.autcon.2023.105131_bb0195) 2019 Komarichev (10.1016/j.autcon.2023.105131_bb0105) 2019 Mirzaei (10.1016/j.autcon.2023.105131_bb0070) 2022; 51 Xue (10.1016/j.autcon.2023.105131_bb0050) 2022; 37 Bang (10.1016/j.autcon.2023.105131_bb0240) 2019; 34 Lin (10.1016/j.autcon.2023.105131_bb0010) 2022; 125 Zhao (10.1016/j.autcon.2023.105131_bb0045) 2021; 132 Li (10.1016/j.autcon.2023.105131_bb0020) 2021; 47 Cheng (10.1016/j.autcon.2023.105131_bb0055) 2019; 106 Pierdicca (10.1016/j.autcon.2023.105131_bb0200) 2020; 12 Zhou (10.1016/j.autcon.2023.105131_bb0270) 2021 Duan (10.1016/j.autcon.2023.105131_bb0060) 2021; 130 Lee (10.1016/j.autcon.2023.105131_bb0205) 2021; 130 Ali (10.1016/j.autcon.2023.105131_bb0285) 2022; 141 Guo (10.1016/j.autcon.2023.105131_bb0275) 2021; 7 Qi (10.1016/j.autcon.2023.105131_bb0085) 2017 Wang (10.1016/j.autcon.2023.105131_bb0090) 2018 Dang (10.1016/j.autcon.2023.105131_bb0035) 2022; 124 Dung (10.1016/j.autcon.2023.105131_bb0235) 2019; 99 Wang (10.1016/j.autcon.2023.105131_bb0155) 2018 Horache (10.1016/j.autcon.2023.105131_bb0260) 2021 Meng (10.1016/j.autcon.2023.105131_bb0175) 2019 Zhou (10.1016/j.autcon.2023.105131_bb0130) 2020; 133 Yang (10.1016/j.autcon.2023.105131_bb0265) 2019 Wang (10.1016/j.autcon.2023.105131_bb0120) 2019 Graham (10.1016/j.autcon.2023.105131_bb0165) 2018 Ji (10.1016/j.autcon.2023.105131_bib302) 2022; 137 Li (10.1016/j.autcon.2023.105131_bb0100) 2018 Du (10.1016/j.autcon.2023.105131_bb0225) 2020; 388 Han (10.1016/j.autcon.2023.105131_bb0015) 2022; 140 Mirzaei (10.1016/j.autcon.2023.105131_bb0145) 2022; 51 Chu (10.1016/j.autcon.2023.105131_bb0280) 2022; 37 Hu (10.1016/j.autcon.2023.105131_bb0005) 2023; 151 Chew (10.1016/j.autcon.2023.105131_bb0210) 2022; 133 Zhou (10.1016/j.autcon.2023.105131_bb0115) 2019; 39 Qi (10.1016/j.autcon.2023.105131_bb0080) 2017 Xu (10.1016/j.autcon.2023.105131_bb0140) 2021; 126 Zhou (10.1016/j.autcon.2023.105131_bib303) 2023; 146 Ye (10.1016/j.autcon.2023.105131_bb0220) 2019 Hu (10.1016/j.autcon.2023.105131_bb0290) 2022; 52 Argyroudis (10.1016/j.autcon.2023.105131_bb0025) 2019; 191 Zhang (10.1016/j.autcon.2023.105131_bb0255) 2021; 27 Ji (10.1016/j.autcon.2023.105131_bib301) 2023; 146 Zhang (10.1016/j.autcon.2023.105131_bb0295) 2022; 144 Ye (10.1016/j.autcon.2023.105131_bb0095) 2018 Fu (10.1016/j.autcon.2023.105131_bb0300) 2019 Zhang (10.1016/j.autcon.2023.105131_bb0040) 2022; 139 Guo (10.1016/j.autcon.2023.105131_bb0065) 2021; 43 Feng (10.1016/j.autcon.2023.105131_bb0125) 2020; 107 Fotsing (10.1016/j.autcon.2023.105131_bb0160) 2021; 125 Badrinarayanan (10.1016/j.autcon.2023.105131_bb0230) 2017; 39 Chen (10.1016/j.autcon.2023.105131_bb0250) 2020; 34 Zhou (10.1016/j.autcon.2023.105131_bb0170) 2018 Liu (10.1016/j.autcon.2023.105131_bb0135) 2019; 19 Xu (10.1016/j.autcon.2023.105131_bb0030) 2021; 178 Zhang (10.1016/j.autcon.2023.105131_bb0190) 2019 Pham (10.1016/j.autcon.2023.105131_bb0110) 2019 Zhang (10.1016/j.autcon.2023.105131_bb0150) 2023; 152 |
| References_xml | – volume: 388 start-page: 269 year: 2020 end-page: 279 ident: bb0225 article-title: Multivariate time series forecasting via attention-based encoder–decoder framework publication-title: Neurocomputing. – start-page: 10288 year: 2019 end-page: 10297 ident: bb0120 article-title: Graph attention convolution for point cloud semantic segmentation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – start-page: 8499 year: 2019 end-page: 8507 ident: bb0175 article-title: VV-net: Voxel VAE net with group convolutions for point cloud segmentation publication-title: Proc. IEEE Int. Conf. Comput. Vis. – volume: 12 start-page: 1005 year: 2020 ident: bb0200 article-title: Point cloud semantic segmentation using a deep learning framework for cultural heritage publication-title: Remote Sens. – volume: 137 start-page: 104187 year: 2022 ident: bib302 article-title: An encoder-decoder deep learning method for multi-class object segmentation from 3D tunnel point clouds publication-title: Autom. Constr. – start-page: 1 year: 2021 end-page: 7 ident: bb0270 article-title: NDT-transformer: large-scale 3D point cloud localisation using the normal distribution transform representation publication-title: ArXiv. – start-page: 4490 year: 2018 end-page: 4499 ident: bb0170 article-title: VoxelNet: end-to-end learning for point cloud based 3D object detection publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 151 year: 2023 ident: bb0005 article-title: Robust metro train scheduling integrated with skip-stop pattern and passenger flow control strategy under uncertain passenger demands publication-title: Comput. Oper. Res. – volume: 133 start-page: 327 year: 2020 end-page: 333 ident: bb0130 article-title: Feature fusion network based on attention mechanism for 3D semantic segmentation of point clouds publication-title: Pattern Recogn. Lett. – start-page: 7545 year: 2019 end-page: 7554 ident: bb0185 article-title: Dynamic points agglomeration for hierarchical point sets learning publication-title: Proc. IEEE Int. Conf. Comput. Vis. – start-page: 7064 year: 2019 end-page: 7073 ident: bb0220 article-title: Understanding geometry of encoder-decoder CNNs publication-title: Proc. 36th Int. Conf. Mach. Learn. PMLR – volume: 146 start-page: 104667 year: 2023 ident: bib303 article-title: Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation publication-title: Autom. Constr. – start-page: 1351 year: 2021 end-page: 1361 ident: bb0260 article-title: 3D point cloud registration with multi-scale architecture and unsupervised transfer learning publication-title: Proc. 2021 Int. Conf. 3D Vis. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bb0230 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 47 year: 2021 ident: bb0020 article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system publication-title: Adv. Eng. Inform. – volume: 107 year: 2020 ident: bb0125 article-title: Point attention network for semantic segmentation of 3D point clouds publication-title: Pattern Recogn. – volume: 130 year: 2021 ident: bb0205 article-title: Semantic segmentation of bridge components based on hierarchical point cloud model publication-title: Autom. Constr. – volume: 133 year: 2022 ident: bb0210 article-title: Large-scale 3D point-cloud semantic segmentation of urban and rural scenes using data volume decomposition coupled with pipeline parallelism publication-title: Autom. Constr. – start-page: 1 year: 2017 end-page: 14 ident: bb0085 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space publication-title: ArXiv. – start-page: 801 year: 2018 end-page: 818 ident: bb0215 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proc. Eur. Conf. Comput. Vis. (ECCV) – start-page: 7413 year: 2019 end-page: 7422 ident: bb0105 article-title: A-CNN: Annularly convolutional neural networks on point clouds publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – start-page: 1 year: 2019 end-page: 8 ident: bb0190 article-title: Linked dynamic graph CNN: learning on point cloud via linking hierarchical features publication-title: ArXiv. – volume: 106 year: 2019 ident: bb0055 article-title: Automatic creation of as-is building information model from single-track railway tunnel point clouds publication-title: Autom. Constr. – volume: 191 year: 2019 ident: bb0025 article-title: Fragility of transport assets exposed to multiple hazards: state-of-the-art review toward infrastructural resilience publication-title: Reliab. Eng. Syst. Saf. – volume: 124 year: 2022 ident: bb0035 article-title: Automatic tunnel lining crack evaluation and measurement using deep learning publication-title: Tunn. Undergr. Sp. Technol. – volume: 104 start-page: 129 year: 2019 end-page: 139 ident: bb0245 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. – volume: 43 start-page: 4338 year: 2021 end-page: 4364 ident: bb0065 article-title: Deep learning for 3D point clouds: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 187 year: 2021 end-page: 199 ident: bb0275 article-title: PCT: point cloud transformer publication-title: Comput. Vis. Media. – volume: 125 year: 2021 ident: bb0160 article-title: Iterative closest point for accurate plane detection in unorganized point clouds publication-title: Autom. Constr. – volume: 178 year: 2021 ident: bb0030 article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN publication-title: Meas. J. Int. Meas. Confed. – volume: 140 year: 2022 ident: bb0015 article-title: Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels publication-title: Autom. Constr. – volume: 27 start-page: 479 year: 2020 end-page: 499 ident: bb0075 article-title: Computational methods of acquisition and processing of 3D point cloud data for construction applications publication-title: Arch. Comput. Methods Eng. – volume: 142 start-page: 104456 year: 2022 ident: bib304 article-title: UnrollingNet: an attention-based deep learning approach for the segmentation of large-scale point clouds of tunnels publication-title: Autom. Constr. – volume: 37 start-page: 386 year: 2022 end-page: 402 ident: bb0050 article-title: An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels publication-title: Comput. Civ. Infrastruct. Eng. – volume: 51 year: 2022 ident: bb0070 article-title: 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review publication-title: Adv. Eng. Inform. – start-page: 652 year: 2017 end-page: 660 ident: bb0080 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogn. – start-page: 2569 year: 2018 end-page: 2578 ident: bb0090 article-title: SGPN: Similarity group proposal network for 3D point cloud instance segmentation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 99 start-page: 52 year: 2019 end-page: 58 ident: bb0235 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. – start-page: 403 year: 2018 end-page: 417 ident: bb0095 article-title: 3D recurrent neural networks with context fusion for point cloud semantic segmentation publication-title: Proc. Eur. Conf. Comput. Vis. – volume: 126 year: 2021 ident: bb0140 article-title: Voxel-based representation of 3D point clouds: methods, applications, and its potential use in the construction industry publication-title: Autom. Constr. – volume: 52 year: 2022 ident: bb0290 article-title: An efficient solder joint defects method for 3D point clouds with double-flow region attention network publication-title: Adv. Eng. Inform. – volume: 39 start-page: 309 year: 2019 end-page: 321 ident: bb0115 article-title: SiamesePointNet: a siamese point network architecture for learning 3D shape descriptor publication-title: Comput. Graph Forum. – volume: 125 year: 2022 ident: bb0010 article-title: Metro systems and urban development: impacts and implications publication-title: Tunn. Undergr. Sp. Technol. – start-page: 8159 year: 2019 end-page: 8170 ident: bb0195 article-title: Unsupervised multi-task feature learning on point clouds publication-title: Proc. IEEE Int. Conf. Comput. Vis. – volume: 34 start-page: 713 year: 2019 end-page: 727 ident: bb0240 article-title: Encoder–decoder network for pixel-level road crack detection in black-box images publication-title: Comput. Civ. Infrastruct. Eng. – reference: Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph Cnn for learning on point clouds, ACM Trans. Graph. 38 (2019) 146, doi:10.1145/3326362. – volume: 37 start-page: 1914 year: 2022 end-page: 1931 ident: bb0280 article-title: Tiny-crack-net: a multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks publication-title: Comput. Civ. Infrastruct. Eng. – volume: 146 start-page: 104668 year: 2023 ident: bib301 article-title: Semi-supervised learning-based point cloud network for segmentation of 3D tunnel scenes publication-title: Autom. Constr. – volume: 130 year: 2021 ident: bb0060 article-title: Reconstruction of shield tunnel lining using point cloud publication-title: Autom. Constr. – volume: 141 year: 2022 ident: bb0285 article-title: Attention-based generative adversarial network with internal damage segmentation using thermography publication-title: Autom. Constr. – volume: 139 year: 2022 ident: bb0040 article-title: Subway tunnel damage detection based on in-service train dynamic response, variational mode decomposition, convolutional neural networks and long short-term memory publication-title: Autom. Constr. – start-page: 3141 year: 2019 end-page: 3149 ident: bb0300 article-title: Dual attention network for scene segmentation publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 27 start-page: 2015 year: 2021 end-page: 2027 ident: bb0255 article-title: Pointfilter: point cloud filtering via encoder-decoder modeling publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 34 start-page: 04020048 year: 2020 ident: bb0250 article-title: 3D photogrammetry point cloud segmentation using a model ensembling framework publication-title: J. Comput. Civ. Eng. – volume: 152 year: 2023 ident: bb0150 article-title: Deep learning for large-scale point cloud segmentation in tunnels considering causal inference publication-title: Autom. Constr. – start-page: 9224 year: 2018 end-page: 9232 ident: bb0165 article-title: 3D semantic segmentation with submanifold sparse convolutional networks publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – start-page: 828 year: 2018 end-page: 838 ident: bb0100 article-title: PointCNN: Convolution on X-transformed points publication-title: Conf. Neural Inf. Process. Syst. – volume: 132 year: 2021 ident: bb0045 article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images publication-title: Autom. Constr. – start-page: 3318 year: 2019 end-page: 3327 ident: bb0265 article-title: Modeling point clouds with self-attention and gumbel subset sampling publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 51 year: 2022 ident: bb0145 article-title: 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review publication-title: Adv. Eng. Inform. – volume: 144 year: 2022 ident: bb0295 article-title: Road damage detection using UAV images based on multi-level attention mechanism publication-title: Autom. Constr. – start-page: 2589 year: 2018 end-page: 2597 ident: bb0155 article-title: Deep parametric continuous convolutional neural networks publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 19 start-page: 4188 year: 2019 ident: bb0135 article-title: Deep learning on point clouds and its application: a survey publication-title: Sensors (Switzerland). – start-page: 8819 year: 2019 end-page: 8828 ident: bb0110 article-title: JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. – volume: 51 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0070 article-title: 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101501 – volume: 137 start-page: 104187 year: 2022 ident: 10.1016/j.autcon.2023.105131_bib302 article-title: An encoder-decoder deep learning method for multi-class object segmentation from 3D tunnel point clouds publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104187 – start-page: 801 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0215 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – volume: 52 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0290 article-title: An efficient solder joint defects method for 3D point clouds with double-flow region attention network publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101608 – volume: 133 start-page: 327 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0130 article-title: Feature fusion network based on attention mechanism for 3D semantic segmentation of point clouds publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.03.021 – volume: 141 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0285 article-title: Attention-based generative adversarial network with internal damage segmentation using thermography publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104412 – start-page: 1 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0270 article-title: NDT-transformer: large-scale 3D point cloud localisation using the normal distribution transform representation publication-title: ArXiv. – volume: 151 year: 2023 ident: 10.1016/j.autcon.2023.105131_bb0005 article-title: Robust metro train scheduling integrated with skip-stop pattern and passenger flow control strategy under uncertain passenger demands publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.106116 – volume: 130 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0060 article-title: Reconstruction of shield tunnel lining using point cloud publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103860 – volume: 191 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0025 article-title: Fragility of transport assets exposed to multiple hazards: state-of-the-art review toward infrastructural resilience publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106567 – volume: 104 start-page: 129 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0245 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.005 – volume: 144 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0295 article-title: Road damage detection using UAV images based on multi-level attention mechanism publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104613 – volume: 19 start-page: 4188 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0135 article-title: Deep learning on point clouds and its application: a survey publication-title: Sensors (Switzerland). doi: 10.3390/s19194188 – volume: 39 start-page: 309 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0115 article-title: SiamesePointNet: a siamese point network architecture for learning 3D shape descriptor publication-title: Comput. Graph Forum. doi: 10.1111/cgf.13804 – volume: 12 start-page: 1005 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0200 article-title: Point cloud semantic segmentation using a deep learning framework for cultural heritage publication-title: Remote Sens. doi: 10.3390/rs12061005 – start-page: 9224 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0165 article-title: 3D semantic segmentation with submanifold sparse convolutional networks – volume: 139 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0040 article-title: Subway tunnel damage detection based on in-service train dynamic response, variational mode decomposition, convolutional neural networks and long short-term memory publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104293 – start-page: 1 year: 2017 ident: 10.1016/j.autcon.2023.105131_bb0085 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space publication-title: ArXiv. – start-page: 7545 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0185 article-title: Dynamic points agglomeration for hierarchical point sets learning – start-page: 8159 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0195 article-title: Unsupervised multi-task feature learning on point clouds – volume: 130 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0205 article-title: Semantic segmentation of bridge components based on hierarchical point cloud model publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103847 – volume: 140 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0015 article-title: Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104345 – volume: 34 start-page: 713 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0240 article-title: Encoder–decoder network for pixel-level road crack detection in black-box images publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12440 – volume: 152 year: 2023 ident: 10.1016/j.autcon.2023.105131_bb0150 article-title: Deep learning for large-scale point cloud segmentation in tunnels considering causal inference publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104915 – ident: 10.1016/j.autcon.2023.105131_bb0180 doi: 10.1145/3326362 – volume: 37 start-page: 386 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0050 article-title: An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12731 – start-page: 10288 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0120 article-title: Graph attention convolution for point cloud semantic segmentation – volume: 125 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0010 article-title: Metro systems and urban development: impacts and implications publication-title: Tunn. Undergr. Sp. Technol. doi: 10.1016/j.tust.2022.104509 – start-page: 2589 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0155 article-title: Deep parametric continuous convolutional neural networks – start-page: 8499 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0175 article-title: VV-net: Voxel VAE net with group convolutions for point cloud segmentation – volume: 133 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0210 article-title: Large-scale 3D point-cloud semantic segmentation of urban and rural scenes using data volume decomposition coupled with pipeline parallelism publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103995 – volume: 51 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0145 article-title: 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101501 – volume: 34 start-page: 04020048 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0250 article-title: 3D photogrammetry point cloud segmentation using a model ensembling framework publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000929 – start-page: 1 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0190 article-title: Linked dynamic graph CNN: learning on point cloud via linking hierarchical features publication-title: ArXiv. – volume: 27 start-page: 2015 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0255 article-title: Pointfilter: point cloud filtering via encoder-decoder modeling publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.3027069 – volume: 27 start-page: 479 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0075 article-title: Computational methods of acquisition and processing of 3D point cloud data for construction applications publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09320-4 – volume: 124 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0035 article-title: Automatic tunnel lining crack evaluation and measurement using deep learning publication-title: Tunn. Undergr. Sp. Technol. doi: 10.1016/j.tust.2022.104472 – volume: 99 start-page: 52 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0235 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.028 – start-page: 7413 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0105 article-title: A-CNN: Annularly convolutional neural networks on point clouds – start-page: 3141 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0300 article-title: Dual attention network for scene segmentation – volume: 7 start-page: 187 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0275 article-title: PCT: point cloud transformer publication-title: Comput. Vis. Media. doi: 10.1007/s41095-021-0229-5 – volume: 37 start-page: 1914 year: 2022 ident: 10.1016/j.autcon.2023.105131_bb0280 article-title: Tiny-crack-net: a multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12881 – volume: 388 start-page: 269 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0225 article-title: Multivariate time series forecasting via attention-based encoder–decoder framework publication-title: Neurocomputing. doi: 10.1016/j.neucom.2019.12.118 – start-page: 2569 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0090 article-title: SGPN: Similarity group proposal network for 3D point cloud instance segmentation – start-page: 828 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0100 article-title: PointCNN: Convolution on X-transformed points publication-title: Conf. Neural Inf. Process. Syst. – volume: 47 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0020 article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101206 – start-page: 1351 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0260 article-title: 3D point cloud registration with multi-scale architecture and unsupervised transfer learning – volume: 178 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0030 article-title: Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN publication-title: Meas. J. Int. Meas. Confed. – start-page: 3318 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0265 article-title: Modeling point clouds with self-attention and gumbel subset sampling – volume: 146 start-page: 104667 year: 2023 ident: 10.1016/j.autcon.2023.105131_bib303 article-title: Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104667 – volume: 106 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0055 article-title: Automatic creation of as-is building information model from single-track railway tunnel point clouds publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102911 – volume: 107 year: 2020 ident: 10.1016/j.autcon.2023.105131_bb0125 article-title: Point attention network for semantic segmentation of 3D point clouds publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107446 – volume: 132 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0045 article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103934 – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.autcon.2023.105131_bb0230 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 403 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0095 article-title: 3D recurrent neural networks with context fusion for point cloud semantic segmentation – start-page: 8819 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0110 article-title: JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields – volume: 126 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0140 article-title: Voxel-based representation of 3D point clouds: methods, applications, and its potential use in the construction industry publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103675 – volume: 142 start-page: 104456 year: 2022 ident: 10.1016/j.autcon.2023.105131_bib304 article-title: UnrollingNet: an attention-based deep learning approach for the segmentation of large-scale point clouds of tunnels publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104456 – volume: 43 start-page: 4338 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0065 article-title: Deep learning for 3D point clouds: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3005434 – volume: 125 year: 2021 ident: 10.1016/j.autcon.2023.105131_bb0160 article-title: Iterative closest point for accurate plane detection in unorganized point clouds publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103610 – start-page: 652 year: 2017 ident: 10.1016/j.autcon.2023.105131_bb0080 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation – volume: 146 start-page: 104668 year: 2023 ident: 10.1016/j.autcon.2023.105131_bib301 article-title: Semi-supervised learning-based point cloud network for segmentation of 3D tunnel scenes publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104668 – start-page: 4490 year: 2018 ident: 10.1016/j.autcon.2023.105131_bb0170 article-title: VoxelNet: end-to-end learning for point cloud based 3D object detection – start-page: 7064 year: 2019 ident: 10.1016/j.autcon.2023.105131_bb0220 article-title: Understanding geometry of encoder-decoder CNNs |
| SSID | ssj0007069 |
| Score | 2.4952345 |
| Snippet | Aiming to automatically segment multi-class objects on the tunnel point cloud, a deep learning network named dual attention-based point cloud network (DAPCNet)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105131 |
| SubjectTerms | 3D dual attention module Deep learning Encoder-decoder Semantic segmentation Tunnel point cloud |
| Title | Dual attention-based deep learning network for multi-class object semantic segmentation of tunnel point clouds |
| URI | https://dx.doi.org/10.1016/j.autcon.2023.105131 |
| Volume | 156 |
| WOSCitedRecordID | wos001105973700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007069 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLRLlgKCAKC_5wC2ylM3L2WMFRQWhCoki5RY5trNK2U0WNlv12n_OTMZJQxfxkrhYURTHq5kv9nj2m8-MvdJhFJjURkKqMhaRUb5QpQqFtRqWF2WklHTYhDw9TbNs_nEyueprYS6Wsq7Ty8v5-r-6Gu6Bs7F09i_cPbwUbsA1OB1acDu0f-T4N1gQgqqZHY9R4DJlPGPtuj8hYuHVxP3uKIYdo1BoDKK9psCsjLexK7B3peFisXK1SV1U2W6RFeOtm6puPb1stlQlPKjYbtuGKiG9jt1-LU478HQqIlF-UW7BHKesP1Qr1Qx4osTsSVMvvlZD_2zb5V-zSsGc7V7hUhZBeIP-sVtLQwnJIBFx6tN_3Jam41RC_J_SeV7DfE1K5DtzP6UhzpH5g6kEHBhPMZ65VeZHVe1POByOBlswFMlPbrG9QMbzdMr2jt4dZ--H5Vz6CQk2up_X1192JMHdsX4e34xilrP77J7bbPAjAskDNrH1AbvT16JvDtjdkRzlQ1YjdPgN6HCEDu-hwx10OECHj6DDCTq8hw4fQ4c3JSfo8A46nKDziH1-e3z2-kS48ziEho1lK2xkZSh9XRZzJbUqShTs0lKZKNGhNqqM_LkGI8YQFaowLeO0MGamrQ-PJzryw8dsWje1fcJ4rFRhZRHbmQ0iaAownZwFMkFBQGnSQxb2Vsy1E6vHM1OWec9KPM_J9jnaPifbHzIx9FqTWMtvnpe9g3IXcFIgmQOmftnz6T_3fMb2rz-J52wKH6J9wW7ri7bafHvpwPcdiDSsXA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+attention-based+deep+learning+network+for+multi-class+object+semantic+segmentation+of+tunnel+point+clouds&rft.jtitle=Automation+in+construction&rft.au=Ji%2C+Ankang&rft.au=Zhang%2C+Limao&rft.au=Fan%2C+Hongqin&rft.au=Xue%2C+Xiaolong&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=156&rft_id=info:doi/10.1016%2Fj.autcon.2023.105131&rft.externalDocID=S0926580523003916 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |