Autoencoder-aided measurement of concentration from a single line of speckle

We demonstrate that a single 6mm line sample of simulated near-field speckle intensity suffices for accurate estimation of the concentration of dielectric micro-particles over a range from 104 to 6⋅106 particles per ml. For this estimation, we analyze the speckle using both standard methods (linear...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 27; no. 20; p. 29098
Main Authors: Karamehmedović, Mirza, Šehić, Kenan, Dammann, Bernd, Suljagić, Mirza, Karamehmedović, Emir
Format: Journal Article
Language:English
Published: 30.09.2019
ISSN:1094-4087, 1094-4087
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that a single 6mm line sample of simulated near-field speckle intensity suffices for accurate estimation of the concentration of dielectric micro-particles over a range from 104 to 6⋅106 particles per ml. For this estimation, we analyze the speckle using both standard methods (linear principal component analysis, support vector machine (SVM)) and a neural network, in the form of a sparse stacked autoencoder (SSAE) with a softmax classifier or with an SVM. Using an SSAE with SVM, we classify line speckle samples according to particle concentration with an average accuracy of over 78%, with other methods close behind.We demonstrate that a single 6mm line sample of simulated near-field speckle intensity suffices for accurate estimation of the concentration of dielectric micro-particles over a range from 104 to 6⋅106 particles per ml. For this estimation, we analyze the speckle using both standard methods (linear principal component analysis, support vector machine (SVM)) and a neural network, in the form of a sparse stacked autoencoder (SSAE) with a softmax classifier or with an SVM. Using an SSAE with SVM, we classify line speckle samples according to particle concentration with an average accuracy of over 78%, with other methods close behind.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.029098