Hexagonal Volume Local Binary Pattern (H-VLBP) with deep stacked autoencoder for Human Action Recognition
Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, n...
Uložené v:
| Vydané v: | Cognitive systems research Ročník 58; s. 71 - 93 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2019
|
| Predmet: | |
| ISSN: | 1389-0417, 1389-0417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, novel neighbourhood selection approaches based on geometric shapes including triangle, quadrilateral, pentagon, hexagon, octagon and heptagon are used in Volumetric Local Binary Pattern (VLBP) to extract the features from frame sequences based on motion and appearance information. Hexagonal Volume Local Binary Pattern (H-VLBP) descriptor has been found to produce better results among all other novel geometric shape based neighbourhood selection approaches for human action recognition. However, the dimensionality of extracted feature from H-VLBP is too large. Therefore, the deep stacked autoencoder is used for dimensionality reduction with the decoder layer replaced by softmax layer for performing multi-class recognition. The developed approach is applied to four publicly available benchmark datasets, namely KTH, Weizmann, UCF11 dataset and IXMAS dataset for human action recognition. The results obtained show that the proposed approach outperforms the state-of-art techniques. Moreover, the approach has been tested with a synthetic dataset and better results have been obtained. This illustrates the effectiveness of the approach in real time environment. |
|---|---|
| AbstractList | Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, novel neighbourhood selection approaches based on geometric shapes including triangle, quadrilateral, pentagon, hexagon, octagon and heptagon are used in Volumetric Local Binary Pattern (VLBP) to extract the features from frame sequences based on motion and appearance information. Hexagonal Volume Local Binary Pattern (H-VLBP) descriptor has been found to produce better results among all other novel geometric shape based neighbourhood selection approaches for human action recognition. However, the dimensionality of extracted feature from H-VLBP is too large. Therefore, the deep stacked autoencoder is used for dimensionality reduction with the decoder layer replaced by softmax layer for performing multi-class recognition. The developed approach is applied to four publicly available benchmark datasets, namely KTH, Weizmann, UCF11 dataset and IXMAS dataset for human action recognition. The results obtained show that the proposed approach outperforms the state-of-art techniques. Moreover, the approach has been tested with a synthetic dataset and better results have been obtained. This illustrates the effectiveness of the approach in real time environment. |
| Author | Kiruba, K Shiloah, Elizabeth D Sunil, Retmin Raj C |
| Author_xml | – sequence: 1 givenname: K surname: Kiruba fullname: Kiruba, K organization: Department of Computer Science and Engineering, Anna University, CEG Campus, Chennai 600025, Tamil Nadu, India – sequence: 2 givenname: Elizabeth D surname: Shiloah fullname: Shiloah, Elizabeth D email: shiloah@annauniv.edu organization: Department of Computer Science and Engineering, Anna University, CEG Campus, Chennai 600025, Tamil Nadu, India – sequence: 3 givenname: Retmin Raj C surname: Sunil fullname: Sunil, Retmin Raj C organization: Department of Information Technology, Anna University, MIT Campus, Chennai 600044, Tamil Nadu, India |
| BookMark | eNqFkEFPAjEQhRuDiYD-Aw896mHXdhcW1oMJEBUTEolRrs0wncUitKQtKv_eJXgwHvQ0b5J5L2--FmtYZ4mxcylSKWRxtUzRLcIupJmQZSryVAh5xJoy75eJ6Mhe44c-Ya0QlvVBUXazJjNj-oSFs7DiM7farolPHNbL0FjwOz6FGMlbfjFOZpPh9JJ_mPjKNdGGhwj4RprDNjqy6DR5XjnPx9s1WD7AaJzlT1Q3s2avT9lxBatAZ9-zzV7ubp9H42TyeP8wGkwSzEURE8oQxRyxA5DpDHVXgy56ErTsZUJ0-yQrWWWighKQdK7nAIRVJbAotYQ55m12fchF70LwVCk0EfYNogezUlKoPTS1VAdoag9NiVzVTGpz55d54826JvGf7eZgo_qxd0NeBTQ1FNLGE0alnfk74AtlD44W |
| CitedBy_id | crossref_primary_10_1007_s11042_024_19881_7 crossref_primary_10_1007_s11063_023_11358_2 crossref_primary_10_1016_j_micpro_2021_103834 crossref_primary_10_1007_s00170_021_08125_9 crossref_primary_10_1016_j_jvcir_2023_103781 crossref_primary_10_32604_cmc_2021_017800 crossref_primary_10_1016_j_image_2021_116399 crossref_primary_10_1002_cpe_7250 crossref_primary_10_1007_s40998_024_00776_0 crossref_primary_10_1016_j_dsp_2022_103487 crossref_primary_10_1007_s11042_023_17424_0 crossref_primary_10_1109_ACCESS_2021_3088155 crossref_primary_10_1016_j_apergo_2023_104090 crossref_primary_10_3390_s23052745 crossref_primary_10_3233_ICA_200637 |
| Cites_doi | 10.1109/TPAMI.2007.1110 10.1007/s00138-010-0298-4 10.1109/TPAMI.2012.59 10.1109/TCSVT.2015.2409012 10.1007/s10618-014-0356-z 10.1016/j.cogsys.2018.04.002 10.1007/s10044-014-0404-8 10.1049/iet-cvi.2015.0233 10.1260/174830108784300321 10.1016/j.cogsys.2015.12.009 10.1016/j.patcog.2015.08.027 10.1109/TSMCC.2011.2178594 10.1049/iet-cvi.2015.0235 10.1016/j.patrec.2016.03.021 10.1049/iet-cvi.2015.0087 10.1016/j.procs.2015.10.021 10.1109/TIP.2015.2441634 10.18100/ijamec.270683 10.1587/transinf.2017EDL8006 10.1109/TPAMI.2002.1017623 10.1109/TCSVT.2017.2665359 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cogsys.2019.03.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1389-0417 |
| EndPage | 93 |
| ExternalDocumentID | 10_1016_j_cogsys_2019_03_001 S1389041718306739 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFRF ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACNNM ACRLP ACXNI ACZNC ADEZE ADJOM AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSN SST SSV SSY SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT AEIPS AFJKZ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-e2cc0bcc4aa2d2cd5dad671ad1720058e1f1f20fa9aced3dbaaecff0c69d1abc3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488236400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-0417 |
| IngestDate | Sat Nov 29 07:01:01 EST 2025 Tue Nov 18 22:17:20 EST 2025 Fri Feb 23 02:21:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Action recognition Local binary pattern H-VLBP Deep stacked autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e2cc0bcc4aa2d2cd5dad671ad1720058e1f1f20fa9aced3dbaaecff0c69d1abc3 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cogsys_2019_03_001 crossref_primary_10_1016_j_cogsys_2019_03_001 elsevier_sciencedirect_doi_10_1016_j_cogsys_2019_03_001 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Cognitive systems research |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Abdolahi, Ghasemi, Gheissari (b0005) 2012 Ojala, Pietikainen, Maenpaa (b0135) 2002; 24 Ji, Xu, Yang, Yu (b0085) 2013; 35 Chun, Lee (b0065) 2016; 10 Qu, Li (b0145) 2017 Li, Yu, He, Sun, Ge (b0110) 2016 Baumann, Lao, Ehlers, Rosenhahn (b0035) 2014 Yeffet, Wolf (b0210) 2009 He, Wu, Jia, Hintz (b0075) 2008; 2 Sheena, Narayanan (b0160) 2015; 70 Morton, Waud (b0115) 1830 Zhao, Pietikainen (b0215) 2007; 29 Baccouche, Mamalet, Wolf, Garcia, Baskurt (b0030) 2011 Nguyen, Li, Ogunbona (b0125) 2016; 51 Nguyen, Caplier (b0120) 2012 Selmi, El-Yacoubi, Dorizzi (b0150) 2016; 10 Van Der Maaten, Postma, Van den Herik (b0185) 2009; 10 Vidya, Veni, Narayanankutty (b0195) 2009; 1 Ahsan, Tan, Kim, Ishikawa (b0015) 2014 Al-Berry, Salem, Ebeid, Hussein, Tolba (b0025) 2016; 10 Krig (b0105) 2016 Ahad, Tan, Kim, Ishikawa (b0010) 2012; 23 Katircioglu, Tekin, Salzmann, Lepetit, Fua (b0090) 2018 Sharma, S, Kiros, R., & Salakhutdinov, R. (2015). Action recognition using visual attention, arXiv preprint arXiv Su, Chiang, Lai (b0180) 2016; 26 Xu, Jiang, Sun (b0205) 2017; 27 Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv Veeriah, Zhuang, Qi (b0190) 2015 Kazak, Koc (b0095) 2016 Wang, Sun (b0200) 2015; 29 Akula, Shah, Ghosh (b0020) 2018; 50 . Charalampous, Gasteratos (b0045) 2016; 19 Ijjina (b0080) 2016; 83 Sisodiya, A.S., Reducing dimensionality of data using neural networks. Ojala, Pietikäinen, Mäenpää (b0130) 2000 Cheng, Liu, Wang, Li, Zhu (b0055) 2015; 24 Guo, Wang, Xie (b0070) 2017; 100 Chaudhry, Ravichandran, Hager, Vidal (b0050) 2009 Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2016). Sequential deep trajectory descriptor for action recognition with three-stream cnn. arXiv preprint arXiv Chun, Lee (b0060) 2016; 10 Buonamente, Dindo, Johnsson (b0040) 2016; 39 Popoola, Wang (b0140) 2012; 42 Kellokumpu, Zhao, Pietikäinen (b0100) 2008; Vol. 1 Ahsan (10.1016/j.cogsys.2019.03.001_b0015) 2014 Baccouche (10.1016/j.cogsys.2019.03.001_b0030) 2011 Nguyen (10.1016/j.cogsys.2019.03.001_b0120) 2012 10.1016/j.cogsys.2019.03.001_b0170 Kellokumpu (10.1016/j.cogsys.2019.03.001_b0100) 2008; Vol. 1 Ojala (10.1016/j.cogsys.2019.03.001_b0135) 2002; 24 Zhao (10.1016/j.cogsys.2019.03.001_b0215) 2007; 29 Baumann (10.1016/j.cogsys.2019.03.001_b0035) 2014 Yeffet (10.1016/j.cogsys.2019.03.001_b0210) 2009 Guo (10.1016/j.cogsys.2019.03.001_b0070) 2017; 100 Chaudhry (10.1016/j.cogsys.2019.03.001_b0050) 2009 Nguyen (10.1016/j.cogsys.2019.03.001_b0125) 2016; 51 Qu (10.1016/j.cogsys.2019.03.001_b0145) 2017 Ijjina (10.1016/j.cogsys.2019.03.001_b0080) 2016; 83 Wang (10.1016/j.cogsys.2019.03.001_b0200) 2015; 29 Morton (10.1016/j.cogsys.2019.03.001_b0115) 1830 Popoola (10.1016/j.cogsys.2019.03.001_b0140) 2012; 42 Ojala (10.1016/j.cogsys.2019.03.001_b0130) 2000 He (10.1016/j.cogsys.2019.03.001_b0075) 2008; 2 Katircioglu (10.1016/j.cogsys.2019.03.001_b0090) 2018 10.1016/j.cogsys.2019.03.001_b0155 10.1016/j.cogsys.2019.03.001_b0175 Al-Berry (10.1016/j.cogsys.2019.03.001_b0025) 2016; 10 Selmi (10.1016/j.cogsys.2019.03.001_b0150) 2016; 10 Buonamente (10.1016/j.cogsys.2019.03.001_b0040) 2016; 39 Cheng (10.1016/j.cogsys.2019.03.001_b0055) 2015; 24 Xu (10.1016/j.cogsys.2019.03.001_b0205) 2017; 27 Charalampous (10.1016/j.cogsys.2019.03.001_b0045) 2016; 19 Li (10.1016/j.cogsys.2019.03.001_b0110) 2016 Akula (10.1016/j.cogsys.2019.03.001_b0020) 2018; 50 Su (10.1016/j.cogsys.2019.03.001_b0180) 2016; 26 Van Der Maaten (10.1016/j.cogsys.2019.03.001_b0185) 2009; 10 Ahad (10.1016/j.cogsys.2019.03.001_b0010) 2012; 23 Vidya (10.1016/j.cogsys.2019.03.001_b0195) 2009; 1 Veeriah (10.1016/j.cogsys.2019.03.001_b0190) 2015 Abdolahi (10.1016/j.cogsys.2019.03.001_b0005) 2012 Ji (10.1016/j.cogsys.2019.03.001_b0085) 2013; 35 Chun (10.1016/j.cogsys.2019.03.001_b0060) 2016; 10 Chun (10.1016/j.cogsys.2019.03.001_b0065) 2016; 10 Kazak (10.1016/j.cogsys.2019.03.001_b0095) 2016 Sheena (10.1016/j.cogsys.2019.03.001_b0160) 2015; 70 Krig (10.1016/j.cogsys.2019.03.001_b0105) 2016 10.1016/j.cogsys.2019.03.001_b0165 |
| References_xml | – start-page: 404 year: 2000 end-page: 420 ident: b0130 article-title: Gray scale and rotation invariant texture classification with local binary patterns publication-title: European conference on computer vision – reference: Sharma, S, Kiros, R., & Salakhutdinov, R. (2015). Action recognition using visual attention, arXiv preprint arXiv: – volume: 10 start-page: 273 year: 2016 end-page: 278 ident: b0150 article-title: Two-layer discriminative model for human activity recognition publication-title: IET Computer Vision – start-page: 385 year: 2014 end-page: 392 ident: b0035 article-title: Motion binary patterns for action recognition publication-title: International conference on pattern recognition applications and methods – volume: 10 start-page: 250 year: 2016 end-page: 256 ident: b0060 article-title: Human action recognition using histogram of motion intensity and direction from multiple views publication-title: IET Computer vision – reference: Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2016). Sequential deep trajectory descriptor for action recognition with three-stream cnn. arXiv preprint arXiv: – volume: 50 start-page: 146 year: 2018 end-page: 154 ident: b0020 article-title: Deep learning approach for human action recognition in infrared images publication-title: Cognitive Systems Research – start-page: 187 year: 2016 end-page: 246 ident: b0105 article-title: Interest point detector and feature descriptor survey publication-title: Computer vision metrics – year: 1830 ident: b0115 article-title: Geometry, plane, solid, and spherical, in six books – volume: 100 start-page: 1388 year: 2017 end-page: 1392 ident: b0070 article-title: A novel 3d gradient lbp descriptor for action recognition publication-title: IEICE Transactions on Information and Systems – volume: 10 start-page: 153 year: 2016 end-page: 162 ident: b0025 article-title: Fusing directional wavelet local binary pattern and moments for human action recognition publication-title: IET Computer Vision – start-page: 1928 year: 2017 end-page: 1933 ident: b0145 article-title: Human action recognition based on improved cohog-lqc publication-title: IEEE conference on control and decision conference (CCDC) – volume: 10 start-page: 66 year: 2009 end-page: 71 ident: b0185 article-title: Dimensionality reduction: a comparative review publication-title: J Mach Learn Res – volume: 10 start-page: 250 year: 2016 end-page: 256 ident: b0065 article-title: Human action recognition using histogram of motion intensity and direction from multiple views publication-title: IET Computer vision – volume: 2 start-page: 61 year: 2008 end-page: 78 ident: b0075 article-title: Edge detection on hexagonal structure publication-title: Journal of Algorithms & Computational Technology – reference: Sisodiya, A.S., Reducing dimensionality of data using neural networks. – reference: Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv: – volume: 19 start-page: 337 year: 2016 end-page: 354 ident: b0045 article-title: On-line deep learning method for action recognition publication-title: Pattern Analysis and Applications – volume: 70 start-page: 36 year: 2015 end-page: 40 ident: b0160 article-title: Key-frame extraction by analysis of histograms of video frames using statistical methods publication-title: Procedia Computer Science – volume: 83 start-page: 268 year: 2016 end-page: 277 ident: b0080 article-title: Classification of human actions using pose-based features and stacked auto encoder publication-title: Pattern Recognition Letters – volume: Vol. 1 start-page: 2 year: 2008 ident: b0100 article-title: Human activity recognition using a dynamic texture based method publication-title: British machine vision conference – volume: 39 start-page: 33 year: 2016 end-page: 41 ident: b0040 article-title: Hierarchies of self-organizing maps for action recognition publication-title: Cognitive Systems Research – volume: 24 start-page: 3203 year: 2015 end-page: 3217 ident: b0055 article-title: Silhouette analysis for human action recognition based on supervised temporal t-sne and incremental learning publication-title: IEEE Transactions on Image Processing – start-page: 85 year: 2012 end-page: 96 ident: b0120 article-title: Elliptical local binary patterns for face recognition publication-title: Asian conference on computer vision – start-page: 1 year: 2018 end-page: 16 ident: b0090 article-title: Learning latent representations of 3d human pose with deep neural networks publication-title: International Journal of Computer Vision – reference: . – volume: 51 start-page: 148 year: 2016 end-page: 175 ident: b0125 article-title: Human detection from images and videos: A survey publication-title: Pattern Recognition – start-page: 29 year: 2011 end-page: 39 ident: b0030 article-title: Sequential deep learning for human action recognition publication-title: International workshop on human behavior understanding – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: b0135 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 27 start-page: 567 year: 2017 end-page: 576 ident: b0205 article-title: Two-stream dictionary learning architecture for action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 23 start-page: 255 year: 2012 end-page: 281 ident: b0010 article-title: Motion history image: Its variants and applications publication-title: Machine Vision and Applications – volume: 35 start-page: 221 year: 2013 end-page: 231 ident: b0085 article-title: 3d convolutional neural networks for human action recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 4041 year: 2015 end-page: 4049 ident: b0190 article-title: Differential recurrent neural networks for action recognition publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 993 year: 2016 end-page: 996 ident: b0110 article-title: Action recognition based on multiple key motion history images publication-title: 13th international conference on signal processing (ICSP) – volume: 1 start-page: 313 year: 2009 end-page: 328 ident: b0195 article-title: Performance analysis of edge detection methods on hexagonal sampling grid publication-title: International Journal of Electronic Engineering Research – volume: 29 start-page: 915 year: 2007 end-page: 928 ident: b0215 article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 42 start-page: 865 year: 2012 end-page: 878 ident: b0140 article-title: Video-based abnormal human behavior recognition-a review publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 29 start-page: 534 year: 2015 end-page: 564 ident: b0200 article-title: Survey on distance metric learning and dimensionality reduction in data mining publication-title: Data Mining and Knowledge Discovery – start-page: 151 year: 2012 end-page: 156 ident: b0005 article-title: Human motion analysis using dynamic textures publication-title: 16th CSI international symposium on artificial intelligence and signal processing (AISP) – start-page: 1007 year: 2014 end-page: 1011 ident: b0015 article-title: Histogram of spatio temporal local binary patterns for human action recognition publication-title: Joint 15th international symposium on soft computing and intelligent systems (SCIS) and 7th international conference on advanced intelligent systems (ISIS) – start-page: 1932 year: 2009 end-page: 1939 ident: b0050 article-title: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions publication-title: IEEE conference on computer vision and pattern recognition – start-page: 492 year: 2009 end-page: 497 ident: b0210 article-title: Local trinary patterns for human action recognition publication-title: IEEE 12th international conference on computer vision – start-page: 338 year: 2016 end-page: 341 ident: b0095 article-title: Performance analysis of spiral neighbourhood topology based local binary patterns in texture recognition publication-title: International Journal of Applied Mathematics, Electronics and Computers – volume: 26 start-page: 1476 year: 2016 end-page: 1489 ident: b0180 article-title: A multiattribute sparse coding approach for action recognition from a single unknown viewpoint publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 29 start-page: 915 issue: 6 year: 2007 ident: 10.1016/j.cogsys.2019.03.001_b0215 article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1110 – ident: 10.1016/j.cogsys.2019.03.001_b0165 – volume: 23 start-page: 255 issue: 2 year: 2012 ident: 10.1016/j.cogsys.2019.03.001_b0010 article-title: Motion history image: Its variants and applications publication-title: Machine Vision and Applications doi: 10.1007/s00138-010-0298-4 – volume: 35 start-page: 221 issue: 1 year: 2013 ident: 10.1016/j.cogsys.2019.03.001_b0085 article-title: 3d convolutional neural networks for human action recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.59 – start-page: 1932 year: 2009 ident: 10.1016/j.cogsys.2019.03.001_b0050 article-title: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions – volume: 26 start-page: 1476 issue: 8 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0180 article-title: A multiattribute sparse coding approach for action recognition from a single unknown viewpoint publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2015.2409012 – volume: 29 start-page: 534 issue: 2 year: 2015 ident: 10.1016/j.cogsys.2019.03.001_b0200 article-title: Survey on distance metric learning and dimensionality reduction in data mining publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-014-0356-z – volume: 50 start-page: 146 year: 2018 ident: 10.1016/j.cogsys.2019.03.001_b0020 article-title: Deep learning approach for human action recognition in infrared images publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.04.002 – start-page: 492 year: 2009 ident: 10.1016/j.cogsys.2019.03.001_b0210 article-title: Local trinary patterns for human action recognition – volume: 19 start-page: 337 issue: 2 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0045 article-title: On-line deep learning method for action recognition publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-014-0404-8 – volume: 10 start-page: 250 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0065 article-title: Human action recognition using histogram of motion intensity and direction from multiple views publication-title: IET Computer vision doi: 10.1049/iet-cvi.2015.0233 – start-page: 1007 year: 2014 ident: 10.1016/j.cogsys.2019.03.001_b0015 article-title: Histogram of spatio temporal local binary patterns for human action recognition – volume: 2 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.cogsys.2019.03.001_b0075 article-title: Edge detection on hexagonal structure publication-title: Journal of Algorithms & Computational Technology doi: 10.1260/174830108784300321 – start-page: 29 year: 2011 ident: 10.1016/j.cogsys.2019.03.001_b0030 article-title: Sequential deep learning for human action recognition – volume: 10 start-page: 66 year: 2009 ident: 10.1016/j.cogsys.2019.03.001_b0185 article-title: Dimensionality reduction: a comparative review publication-title: J Mach Learn Res – start-page: 187 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0105 article-title: Interest point detector and feature descriptor survey – ident: 10.1016/j.cogsys.2019.03.001_b0170 – ident: 10.1016/j.cogsys.2019.03.001_b0155 – start-page: 993 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0110 article-title: Action recognition based on multiple key motion history images – start-page: 385 year: 2014 ident: 10.1016/j.cogsys.2019.03.001_b0035 article-title: Motion binary patterns for action recognition – volume: 39 start-page: 33 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0040 article-title: Hierarchies of self-organizing maps for action recognition publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2015.12.009 – start-page: 404 year: 2000 ident: 10.1016/j.cogsys.2019.03.001_b0130 article-title: Gray scale and rotation invariant texture classification with local binary patterns – volume: 51 start-page: 148 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0125 article-title: Human detection from images and videos: A survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2015.08.027 – volume: 10 start-page: 250 issue: 4 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0060 article-title: Human action recognition using histogram of motion intensity and direction from multiple views publication-title: IET Computer vision doi: 10.1049/iet-cvi.2015.0233 – year: 1830 ident: 10.1016/j.cogsys.2019.03.001_b0115 – volume: 42 start-page: 865 issue: 6 year: 2012 ident: 10.1016/j.cogsys.2019.03.001_b0140 article-title: Video-based abnormal human behavior recognition-a review publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2011.2178594 – volume: 10 start-page: 273 issue: 4 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0150 article-title: Two-layer discriminative model for human activity recognition publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2015.0235 – start-page: 151 year: 2012 ident: 10.1016/j.cogsys.2019.03.001_b0005 article-title: Human motion analysis using dynamic textures – start-page: 85 year: 2012 ident: 10.1016/j.cogsys.2019.03.001_b0120 article-title: Elliptical local binary patterns for face recognition – volume: 83 start-page: 268 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0080 article-title: Classification of human actions using pose-based features and stacked auto encoder publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.03.021 – volume: Vol. 1 start-page: 2 year: 2008 ident: 10.1016/j.cogsys.2019.03.001_b0100 article-title: Human activity recognition using a dynamic texture based method – volume: 10 start-page: 153 issue: 2 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0025 article-title: Fusing directional wavelet local binary pattern and moments for human action recognition publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2015.0087 – volume: 70 start-page: 36 year: 2015 ident: 10.1016/j.cogsys.2019.03.001_b0160 article-title: Key-frame extraction by analysis of histograms of video frames using statistical methods publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.10.021 – start-page: 4041 year: 2015 ident: 10.1016/j.cogsys.2019.03.001_b0190 article-title: Differential recurrent neural networks for action recognition – volume: 24 start-page: 3203 issue: 10 year: 2015 ident: 10.1016/j.cogsys.2019.03.001_b0055 article-title: Silhouette analysis for human action recognition based on supervised temporal t-sne and incremental learning publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2441634 – start-page: 338 issue: 4 year: 2016 ident: 10.1016/j.cogsys.2019.03.001_b0095 article-title: Performance analysis of spiral neighbourhood topology based local binary patterns in texture recognition publication-title: International Journal of Applied Mathematics, Electronics and Computers doi: 10.18100/ijamec.270683 – volume: 100 start-page: 1388 issue: 6 year: 2017 ident: 10.1016/j.cogsys.2019.03.001_b0070 article-title: A novel 3d gradient lbp descriptor for action recognition publication-title: IEICE Transactions on Information and Systems doi: 10.1587/transinf.2017EDL8006 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.cogsys.2019.03.001_b0135 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1017623 – start-page: 1 year: 2018 ident: 10.1016/j.cogsys.2019.03.001_b0090 article-title: Learning latent representations of 3d human pose with deep neural networks publication-title: International Journal of Computer Vision – start-page: 1928 year: 2017 ident: 10.1016/j.cogsys.2019.03.001_b0145 article-title: Human action recognition based on improved cohog-lqc – ident: 10.1016/j.cogsys.2019.03.001_b0175 – volume: 27 start-page: 567 issue: 3 year: 2017 ident: 10.1016/j.cogsys.2019.03.001_b0205 article-title: Two-stream dictionary learning architecture for action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2017.2665359 – volume: 1 start-page: 313 issue: 4 year: 2009 ident: 10.1016/j.cogsys.2019.03.001_b0195 article-title: Performance analysis of edge detection methods on hexagonal sampling grid publication-title: International Journal of Electronic Engineering Research |
| SSID | ssj0016952 |
| Score | 2.280413 |
| Snippet | Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 71 |
| SubjectTerms | Action recognition Deep stacked autoencoder H-VLBP Local binary pattern |
| Title | Hexagonal Volume Local Binary Pattern (H-VLBP) with deep stacked autoencoder for Human Action Recognition |
| URI | https://dx.doi.org/10.1016/j.cogsys.2019.03.001 |
| Volume | 58 |
| WOSCitedRecordID | wos000488236400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1389-0417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016952 issn: 1389-0417 databaseCode: AIEXJ dateStart: 19991201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCy6EXxFOUAvKBAyhatG_HxxQVBVRVUSlVbqtZ21sSlW2UbqrwL_jJzNjebUoqXhKXVeTE643n2_F4_M0MY68ARF5CRjwcIQK0_1Ugw1QHWRVWuAuCvNSu2IQ4OhpMJnLc631vY2GuzkVdD1YrOf-vosY2FDaFzv6FuLubYgN-RqHjFcWO1z8S_Mis4Mz6906t5ukf0nLV33eBt2ObT5MkPhgFp4f7Y3ILWGesNmZOngV8rXUfls0FpbikTBNERHS-_qGrK37cko68SNtEBx0TyaWHpgOJNV-ZPehfLEu46VylUgrw5QbDbI2FvKydj_rYNF-nODLMvFvXOyoi-RPpYzOCxirchChbqYvffGtuafNa2iV492rWVW3xC7arsLixFDivxAwleYb_mkh8Pp1tdL30dYTETzQmDYkajkr3yDtsOxaZRD25PfxwMPnYnUzl0lZx6p6xDce0nMHNsW43d9ZMmJP77J7fe_Chw8wD1jP1Q7bTLYHfHrFpBx7uwMMteLgDD_fg4a8ddN5wAg4n4HAPHL4GHI7A4RY43AGHrwHnMfv8_uDk3SjwxTgChTPSBCZWKiyVSgFiHSudadC5iECjBUy1KU1URVUcViBBGZ3oEsCoqgpVLnUEpUqesK36ojZPGRcyxl0S3gVUlZo0wy-FzFQalZArHae7LGnnrFA-Uz0VTDkvWkrirHAzXdBMF2FCzMxdFnS95i5Ty29-L1pxFN7adFZkgQj6Zc9n_9xzj-1cvxnP2VazWJoX7K66aqaXi5ceaj8A93So1g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hexagonal+Volume+Local+Binary+Pattern+%28H-VLBP%29+with+deep+stacked+autoencoder+for+Human+Action+Recognition&rft.jtitle=Cognitive+systems+research&rft.au=Kiruba%2C+K&rft.au=Shiloah%2C+Elizabeth+D&rft.au=Sunil%2C+Retmin+Raj+C&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=1389-0417&rft.eissn=1389-0417&rft.volume=58&rft.spage=71&rft.epage=93&rft_id=info:doi/10.1016%2Fj.cogsys.2019.03.001&rft.externalDocID=S1389041718306739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon |