Hexagonal Volume Local Binary Pattern (H-VLBP) with deep stacked autoencoder for Human Action Recognition

Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cognitive systems research Ročník 58; s. 71 - 93
Hlavní autori: Kiruba, K, Shiloah, Elizabeth D, Sunil, Retmin Raj C
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2019
Predmet:
ISSN:1389-0417, 1389-0417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, novel neighbourhood selection approaches based on geometric shapes including triangle, quadrilateral, pentagon, hexagon, octagon and heptagon are used in Volumetric Local Binary Pattern (VLBP) to extract the features from frame sequences based on motion and appearance information. Hexagonal Volume Local Binary Pattern (H-VLBP) descriptor has been found to produce better results among all other novel geometric shape based neighbourhood selection approaches for human action recognition. However, the dimensionality of extracted feature from H-VLBP is too large. Therefore, the deep stacked autoencoder is used for dimensionality reduction with the decoder layer replaced by softmax layer for performing multi-class recognition. The developed approach is applied to four publicly available benchmark datasets, namely KTH, Weizmann, UCF11 dataset and IXMAS dataset for human action recognition. The results obtained show that the proposed approach outperforms the state-of-art techniques. Moreover, the approach has been tested with a synthetic dataset and better results have been obtained. This illustrates the effectiveness of the approach in real time environment.
AbstractList Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and time. In the second stage, novel neighbourhood selection approaches based on geometric shapes including triangle, quadrilateral, pentagon, hexagon, octagon and heptagon are used in Volumetric Local Binary Pattern (VLBP) to extract the features from frame sequences based on motion and appearance information. Hexagonal Volume Local Binary Pattern (H-VLBP) descriptor has been found to produce better results among all other novel geometric shape based neighbourhood selection approaches for human action recognition. However, the dimensionality of extracted feature from H-VLBP is too large. Therefore, the deep stacked autoencoder is used for dimensionality reduction with the decoder layer replaced by softmax layer for performing multi-class recognition. The developed approach is applied to four publicly available benchmark datasets, namely KTH, Weizmann, UCF11 dataset and IXMAS dataset for human action recognition. The results obtained show that the proposed approach outperforms the state-of-art techniques. Moreover, the approach has been tested with a synthetic dataset and better results have been obtained. This illustrates the effectiveness of the approach in real time environment.
Author Kiruba, K
Shiloah, Elizabeth D
Sunil, Retmin Raj C
Author_xml – sequence: 1
  givenname: K
  surname: Kiruba
  fullname: Kiruba, K
  organization: Department of Computer Science and Engineering, Anna University, CEG Campus, Chennai 600025, Tamil Nadu, India
– sequence: 2
  givenname: Elizabeth D
  surname: Shiloah
  fullname: Shiloah, Elizabeth D
  email: shiloah@annauniv.edu
  organization: Department of Computer Science and Engineering, Anna University, CEG Campus, Chennai 600025, Tamil Nadu, India
– sequence: 3
  givenname: Retmin Raj C
  surname: Sunil
  fullname: Sunil, Retmin Raj C
  organization: Department of Information Technology, Anna University, MIT Campus, Chennai 600044, Tamil Nadu, India
BookMark eNqFkEFPAjEQhRuDiYD-Aw896mHXdhcW1oMJEBUTEolRrs0wncUitKQtKv_eJXgwHvQ0b5J5L2--FmtYZ4mxcylSKWRxtUzRLcIupJmQZSryVAh5xJoy75eJ6Mhe44c-Ya0QlvVBUXazJjNj-oSFs7DiM7farolPHNbL0FjwOz6FGMlbfjFOZpPh9JJ_mPjKNdGGhwj4RprDNjqy6DR5XjnPx9s1WD7AaJzlT1Q3s2avT9lxBatAZ9-zzV7ubp9H42TyeP8wGkwSzEURE8oQxRyxA5DpDHVXgy56ErTsZUJ0-yQrWWWighKQdK7nAIRVJbAotYQ55m12fchF70LwVCk0EfYNogezUlKoPTS1VAdoag9NiVzVTGpz55d54826JvGf7eZgo_qxd0NeBTQ1FNLGE0alnfk74AtlD44W
CitedBy_id crossref_primary_10_1007_s11042_024_19881_7
crossref_primary_10_1007_s11063_023_11358_2
crossref_primary_10_1016_j_micpro_2021_103834
crossref_primary_10_1007_s00170_021_08125_9
crossref_primary_10_1016_j_jvcir_2023_103781
crossref_primary_10_32604_cmc_2021_017800
crossref_primary_10_1016_j_image_2021_116399
crossref_primary_10_1002_cpe_7250
crossref_primary_10_1007_s40998_024_00776_0
crossref_primary_10_1016_j_dsp_2022_103487
crossref_primary_10_1007_s11042_023_17424_0
crossref_primary_10_1109_ACCESS_2021_3088155
crossref_primary_10_1016_j_apergo_2023_104090
crossref_primary_10_3390_s23052745
crossref_primary_10_3233_ICA_200637
Cites_doi 10.1109/TPAMI.2007.1110
10.1007/s00138-010-0298-4
10.1109/TPAMI.2012.59
10.1109/TCSVT.2015.2409012
10.1007/s10618-014-0356-z
10.1016/j.cogsys.2018.04.002
10.1007/s10044-014-0404-8
10.1049/iet-cvi.2015.0233
10.1260/174830108784300321
10.1016/j.cogsys.2015.12.009
10.1016/j.patcog.2015.08.027
10.1109/TSMCC.2011.2178594
10.1049/iet-cvi.2015.0235
10.1016/j.patrec.2016.03.021
10.1049/iet-cvi.2015.0087
10.1016/j.procs.2015.10.021
10.1109/TIP.2015.2441634
10.18100/ijamec.270683
10.1587/transinf.2017EDL8006
10.1109/TPAMI.2002.1017623
10.1109/TCSVT.2017.2665359
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cogsys.2019.03.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1389-0417
EndPage 93
ExternalDocumentID 10_1016_j_cogsys_2019_03_001
S1389041718306739
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADEZE
ADJOM
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSN
SST
SSV
SSY
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-e2cc0bcc4aa2d2cd5dad671ad1720058e1f1f20fa9aced3dbaaecff0c69d1abc3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488236400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-0417
IngestDate Sat Nov 29 07:01:01 EST 2025
Tue Nov 18 22:17:20 EST 2025
Fri Feb 23 02:21:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Action recognition
Local binary pattern
H-VLBP
Deep stacked autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e2cc0bcc4aa2d2cd5dad671ad1720058e1f1f20fa9aced3dbaaecff0c69d1abc3
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_cogsys_2019_03_001
crossref_primary_10_1016_j_cogsys_2019_03_001
elsevier_sciencedirect_doi_10_1016_j_cogsys_2019_03_001
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Cognitive systems research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abdolahi, Ghasemi, Gheissari (b0005) 2012
Ojala, Pietikainen, Maenpaa (b0135) 2002; 24
Ji, Xu, Yang, Yu (b0085) 2013; 35
Chun, Lee (b0065) 2016; 10
Qu, Li (b0145) 2017
Li, Yu, He, Sun, Ge (b0110) 2016
Baumann, Lao, Ehlers, Rosenhahn (b0035) 2014
Yeffet, Wolf (b0210) 2009
He, Wu, Jia, Hintz (b0075) 2008; 2
Sheena, Narayanan (b0160) 2015; 70
Morton, Waud (b0115) 1830
Zhao, Pietikainen (b0215) 2007; 29
Baccouche, Mamalet, Wolf, Garcia, Baskurt (b0030) 2011
Nguyen, Li, Ogunbona (b0125) 2016; 51
Nguyen, Caplier (b0120) 2012
Selmi, El-Yacoubi, Dorizzi (b0150) 2016; 10
Van Der Maaten, Postma, Van den Herik (b0185) 2009; 10
Vidya, Veni, Narayanankutty (b0195) 2009; 1
Ahsan, Tan, Kim, Ishikawa (b0015) 2014
Al-Berry, Salem, Ebeid, Hussein, Tolba (b0025) 2016; 10
Krig (b0105) 2016
Ahad, Tan, Kim, Ishikawa (b0010) 2012; 23
Katircioglu, Tekin, Salzmann, Lepetit, Fua (b0090) 2018
Sharma, S, Kiros, R., & Salakhutdinov, R. (2015). Action recognition using visual attention, arXiv preprint arXiv
Su, Chiang, Lai (b0180) 2016; 26
Xu, Jiang, Sun (b0205) 2017; 27
Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv
Veeriah, Zhuang, Qi (b0190) 2015
Kazak, Koc (b0095) 2016
Wang, Sun (b0200) 2015; 29
Akula, Shah, Ghosh (b0020) 2018; 50
.
Charalampous, Gasteratos (b0045) 2016; 19
Ijjina (b0080) 2016; 83
Sisodiya, A.S., Reducing dimensionality of data using neural networks.
Ojala, Pietikäinen, Mäenpää (b0130) 2000
Cheng, Liu, Wang, Li, Zhu (b0055) 2015; 24
Guo, Wang, Xie (b0070) 2017; 100
Chaudhry, Ravichandran, Hager, Vidal (b0050) 2009
Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2016). Sequential deep trajectory descriptor for action recognition with three-stream cnn. arXiv preprint arXiv
Chun, Lee (b0060) 2016; 10
Buonamente, Dindo, Johnsson (b0040) 2016; 39
Popoola, Wang (b0140) 2012; 42
Kellokumpu, Zhao, Pietikäinen (b0100) 2008; Vol. 1
Ahsan (10.1016/j.cogsys.2019.03.001_b0015) 2014
Baccouche (10.1016/j.cogsys.2019.03.001_b0030) 2011
Nguyen (10.1016/j.cogsys.2019.03.001_b0120) 2012
10.1016/j.cogsys.2019.03.001_b0170
Kellokumpu (10.1016/j.cogsys.2019.03.001_b0100) 2008; Vol. 1
Ojala (10.1016/j.cogsys.2019.03.001_b0135) 2002; 24
Zhao (10.1016/j.cogsys.2019.03.001_b0215) 2007; 29
Baumann (10.1016/j.cogsys.2019.03.001_b0035) 2014
Yeffet (10.1016/j.cogsys.2019.03.001_b0210) 2009
Guo (10.1016/j.cogsys.2019.03.001_b0070) 2017; 100
Chaudhry (10.1016/j.cogsys.2019.03.001_b0050) 2009
Nguyen (10.1016/j.cogsys.2019.03.001_b0125) 2016; 51
Qu (10.1016/j.cogsys.2019.03.001_b0145) 2017
Ijjina (10.1016/j.cogsys.2019.03.001_b0080) 2016; 83
Wang (10.1016/j.cogsys.2019.03.001_b0200) 2015; 29
Morton (10.1016/j.cogsys.2019.03.001_b0115) 1830
Popoola (10.1016/j.cogsys.2019.03.001_b0140) 2012; 42
Ojala (10.1016/j.cogsys.2019.03.001_b0130) 2000
He (10.1016/j.cogsys.2019.03.001_b0075) 2008; 2
Katircioglu (10.1016/j.cogsys.2019.03.001_b0090) 2018
10.1016/j.cogsys.2019.03.001_b0155
10.1016/j.cogsys.2019.03.001_b0175
Al-Berry (10.1016/j.cogsys.2019.03.001_b0025) 2016; 10
Selmi (10.1016/j.cogsys.2019.03.001_b0150) 2016; 10
Buonamente (10.1016/j.cogsys.2019.03.001_b0040) 2016; 39
Cheng (10.1016/j.cogsys.2019.03.001_b0055) 2015; 24
Xu (10.1016/j.cogsys.2019.03.001_b0205) 2017; 27
Charalampous (10.1016/j.cogsys.2019.03.001_b0045) 2016; 19
Li (10.1016/j.cogsys.2019.03.001_b0110) 2016
Akula (10.1016/j.cogsys.2019.03.001_b0020) 2018; 50
Su (10.1016/j.cogsys.2019.03.001_b0180) 2016; 26
Van Der Maaten (10.1016/j.cogsys.2019.03.001_b0185) 2009; 10
Ahad (10.1016/j.cogsys.2019.03.001_b0010) 2012; 23
Vidya (10.1016/j.cogsys.2019.03.001_b0195) 2009; 1
Veeriah (10.1016/j.cogsys.2019.03.001_b0190) 2015
Abdolahi (10.1016/j.cogsys.2019.03.001_b0005) 2012
Ji (10.1016/j.cogsys.2019.03.001_b0085) 2013; 35
Chun (10.1016/j.cogsys.2019.03.001_b0060) 2016; 10
Chun (10.1016/j.cogsys.2019.03.001_b0065) 2016; 10
Kazak (10.1016/j.cogsys.2019.03.001_b0095) 2016
Sheena (10.1016/j.cogsys.2019.03.001_b0160) 2015; 70
Krig (10.1016/j.cogsys.2019.03.001_b0105) 2016
10.1016/j.cogsys.2019.03.001_b0165
References_xml – start-page: 404
  year: 2000
  end-page: 420
  ident: b0130
  article-title: Gray scale and rotation invariant texture classification with local binary patterns
  publication-title: European conference on computer vision
– reference: Sharma, S, Kiros, R., & Salakhutdinov, R. (2015). Action recognition using visual attention, arXiv preprint arXiv:
– volume: 10
  start-page: 273
  year: 2016
  end-page: 278
  ident: b0150
  article-title: Two-layer discriminative model for human activity recognition
  publication-title: IET Computer Vision
– start-page: 385
  year: 2014
  end-page: 392
  ident: b0035
  article-title: Motion binary patterns for action recognition
  publication-title: International conference on pattern recognition applications and methods
– volume: 10
  start-page: 250
  year: 2016
  end-page: 256
  ident: b0060
  article-title: Human action recognition using histogram of motion intensity and direction from multiple views
  publication-title: IET Computer vision
– reference: Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2016). Sequential deep trajectory descriptor for action recognition with three-stream cnn. arXiv preprint arXiv:
– volume: 50
  start-page: 146
  year: 2018
  end-page: 154
  ident: b0020
  article-title: Deep learning approach for human action recognition in infrared images
  publication-title: Cognitive Systems Research
– start-page: 187
  year: 2016
  end-page: 246
  ident: b0105
  article-title: Interest point detector and feature descriptor survey
  publication-title: Computer vision metrics
– year: 1830
  ident: b0115
  article-title: Geometry, plane, solid, and spherical, in six books
– volume: 100
  start-page: 1388
  year: 2017
  end-page: 1392
  ident: b0070
  article-title: A novel 3d gradient lbp descriptor for action recognition
  publication-title: IEICE Transactions on Information and Systems
– volume: 10
  start-page: 153
  year: 2016
  end-page: 162
  ident: b0025
  article-title: Fusing directional wavelet local binary pattern and moments for human action recognition
  publication-title: IET Computer Vision
– start-page: 1928
  year: 2017
  end-page: 1933
  ident: b0145
  article-title: Human action recognition based on improved cohog-lqc
  publication-title: IEEE conference on control and decision conference (CCDC)
– volume: 10
  start-page: 66
  year: 2009
  end-page: 71
  ident: b0185
  article-title: Dimensionality reduction: a comparative review
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 250
  year: 2016
  end-page: 256
  ident: b0065
  article-title: Human action recognition using histogram of motion intensity and direction from multiple views
  publication-title: IET Computer vision
– volume: 2
  start-page: 61
  year: 2008
  end-page: 78
  ident: b0075
  article-title: Edge detection on hexagonal structure
  publication-title: Journal of Algorithms & Computational Technology
– reference: Sisodiya, A.S., Reducing dimensionality of data using neural networks.
– reference: Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv preprint arXiv:
– volume: 19
  start-page: 337
  year: 2016
  end-page: 354
  ident: b0045
  article-title: On-line deep learning method for action recognition
  publication-title: Pattern Analysis and Applications
– volume: 70
  start-page: 36
  year: 2015
  end-page: 40
  ident: b0160
  article-title: Key-frame extraction by analysis of histograms of video frames using statistical methods
  publication-title: Procedia Computer Science
– volume: 83
  start-page: 268
  year: 2016
  end-page: 277
  ident: b0080
  article-title: Classification of human actions using pose-based features and stacked auto encoder
  publication-title: Pattern Recognition Letters
– volume: Vol. 1
  start-page: 2
  year: 2008
  ident: b0100
  article-title: Human activity recognition using a dynamic texture based method
  publication-title: British machine vision conference
– volume: 39
  start-page: 33
  year: 2016
  end-page: 41
  ident: b0040
  article-title: Hierarchies of self-organizing maps for action recognition
  publication-title: Cognitive Systems Research
– volume: 24
  start-page: 3203
  year: 2015
  end-page: 3217
  ident: b0055
  article-title: Silhouette analysis for human action recognition based on supervised temporal t-sne and incremental learning
  publication-title: IEEE Transactions on Image Processing
– start-page: 85
  year: 2012
  end-page: 96
  ident: b0120
  article-title: Elliptical local binary patterns for face recognition
  publication-title: Asian conference on computer vision
– start-page: 1
  year: 2018
  end-page: 16
  ident: b0090
  article-title: Learning latent representations of 3d human pose with deep neural networks
  publication-title: International Journal of Computer Vision
– reference: .
– volume: 51
  start-page: 148
  year: 2016
  end-page: 175
  ident: b0125
  article-title: Human detection from images and videos: A survey
  publication-title: Pattern Recognition
– start-page: 29
  year: 2011
  end-page: 39
  ident: b0030
  article-title: Sequential deep learning for human action recognition
  publication-title: International workshop on human behavior understanding
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: b0135
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 27
  start-page: 567
  year: 2017
  end-page: 576
  ident: b0205
  article-title: Two-stream dictionary learning architecture for action recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 23
  start-page: 255
  year: 2012
  end-page: 281
  ident: b0010
  article-title: Motion history image: Its variants and applications
  publication-title: Machine Vision and Applications
– volume: 35
  start-page: 221
  year: 2013
  end-page: 231
  ident: b0085
  article-title: 3d convolutional neural networks for human action recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 4041
  year: 2015
  end-page: 4049
  ident: b0190
  article-title: Differential recurrent neural networks for action recognition
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 993
  year: 2016
  end-page: 996
  ident: b0110
  article-title: Action recognition based on multiple key motion history images
  publication-title: 13th international conference on signal processing (ICSP)
– volume: 1
  start-page: 313
  year: 2009
  end-page: 328
  ident: b0195
  article-title: Performance analysis of edge detection methods on hexagonal sampling grid
  publication-title: International Journal of Electronic Engineering Research
– volume: 29
  start-page: 915
  year: 2007
  end-page: 928
  ident: b0215
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 42
  start-page: 865
  year: 2012
  end-page: 878
  ident: b0140
  article-title: Video-based abnormal human behavior recognition-a review
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 29
  start-page: 534
  year: 2015
  end-page: 564
  ident: b0200
  article-title: Survey on distance metric learning and dimensionality reduction in data mining
  publication-title: Data Mining and Knowledge Discovery
– start-page: 151
  year: 2012
  end-page: 156
  ident: b0005
  article-title: Human motion analysis using dynamic textures
  publication-title: 16th CSI international symposium on artificial intelligence and signal processing (AISP)
– start-page: 1007
  year: 2014
  end-page: 1011
  ident: b0015
  article-title: Histogram of spatio temporal local binary patterns for human action recognition
  publication-title: Joint 15th international symposium on soft computing and intelligent systems (SCIS) and 7th international conference on advanced intelligent systems (ISIS)
– start-page: 1932
  year: 2009
  end-page: 1939
  ident: b0050
  article-title: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions
  publication-title: IEEE conference on computer vision and pattern recognition
– start-page: 492
  year: 2009
  end-page: 497
  ident: b0210
  article-title: Local trinary patterns for human action recognition
  publication-title: IEEE 12th international conference on computer vision
– start-page: 338
  year: 2016
  end-page: 341
  ident: b0095
  article-title: Performance analysis of spiral neighbourhood topology based local binary patterns in texture recognition
  publication-title: International Journal of Applied Mathematics, Electronics and Computers
– volume: 26
  start-page: 1476
  year: 2016
  end-page: 1489
  ident: b0180
  article-title: A multiattribute sparse coding approach for action recognition from a single unknown viewpoint
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  ident: 10.1016/j.cogsys.2019.03.001_b0215
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1110
– ident: 10.1016/j.cogsys.2019.03.001_b0165
– volume: 23
  start-page: 255
  issue: 2
  year: 2012
  ident: 10.1016/j.cogsys.2019.03.001_b0010
  article-title: Motion history image: Its variants and applications
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-010-0298-4
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 10.1016/j.cogsys.2019.03.001_b0085
  article-title: 3d convolutional neural networks for human action recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.59
– start-page: 1932
  year: 2009
  ident: 10.1016/j.cogsys.2019.03.001_b0050
  article-title: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions
– volume: 26
  start-page: 1476
  issue: 8
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0180
  article-title: A multiattribute sparse coding approach for action recognition from a single unknown viewpoint
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2015.2409012
– volume: 29
  start-page: 534
  issue: 2
  year: 2015
  ident: 10.1016/j.cogsys.2019.03.001_b0200
  article-title: Survey on distance metric learning and dimensionality reduction in data mining
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-014-0356-z
– volume: 50
  start-page: 146
  year: 2018
  ident: 10.1016/j.cogsys.2019.03.001_b0020
  article-title: Deep learning approach for human action recognition in infrared images
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.04.002
– start-page: 492
  year: 2009
  ident: 10.1016/j.cogsys.2019.03.001_b0210
  article-title: Local trinary patterns for human action recognition
– volume: 19
  start-page: 337
  issue: 2
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0045
  article-title: On-line deep learning method for action recognition
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-014-0404-8
– volume: 10
  start-page: 250
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0065
  article-title: Human action recognition using histogram of motion intensity and direction from multiple views
  publication-title: IET Computer vision
  doi: 10.1049/iet-cvi.2015.0233
– start-page: 1007
  year: 2014
  ident: 10.1016/j.cogsys.2019.03.001_b0015
  article-title: Histogram of spatio temporal local binary patterns for human action recognition
– volume: 2
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.cogsys.2019.03.001_b0075
  article-title: Edge detection on hexagonal structure
  publication-title: Journal of Algorithms & Computational Technology
  doi: 10.1260/174830108784300321
– start-page: 29
  year: 2011
  ident: 10.1016/j.cogsys.2019.03.001_b0030
  article-title: Sequential deep learning for human action recognition
– volume: 10
  start-page: 66
  year: 2009
  ident: 10.1016/j.cogsys.2019.03.001_b0185
  article-title: Dimensionality reduction: a comparative review
  publication-title: J Mach Learn Res
– start-page: 187
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0105
  article-title: Interest point detector and feature descriptor survey
– ident: 10.1016/j.cogsys.2019.03.001_b0170
– ident: 10.1016/j.cogsys.2019.03.001_b0155
– start-page: 993
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0110
  article-title: Action recognition based on multiple key motion history images
– start-page: 385
  year: 2014
  ident: 10.1016/j.cogsys.2019.03.001_b0035
  article-title: Motion binary patterns for action recognition
– volume: 39
  start-page: 33
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0040
  article-title: Hierarchies of self-organizing maps for action recognition
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2015.12.009
– start-page: 404
  year: 2000
  ident: 10.1016/j.cogsys.2019.03.001_b0130
  article-title: Gray scale and rotation invariant texture classification with local binary patterns
– volume: 51
  start-page: 148
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0125
  article-title: Human detection from images and videos: A survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2015.08.027
– volume: 10
  start-page: 250
  issue: 4
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0060
  article-title: Human action recognition using histogram of motion intensity and direction from multiple views
  publication-title: IET Computer vision
  doi: 10.1049/iet-cvi.2015.0233
– year: 1830
  ident: 10.1016/j.cogsys.2019.03.001_b0115
– volume: 42
  start-page: 865
  issue: 6
  year: 2012
  ident: 10.1016/j.cogsys.2019.03.001_b0140
  article-title: Video-based abnormal human behavior recognition-a review
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2011.2178594
– volume: 10
  start-page: 273
  issue: 4
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0150
  article-title: Two-layer discriminative model for human activity recognition
  publication-title: IET Computer Vision
  doi: 10.1049/iet-cvi.2015.0235
– start-page: 151
  year: 2012
  ident: 10.1016/j.cogsys.2019.03.001_b0005
  article-title: Human motion analysis using dynamic textures
– start-page: 85
  year: 2012
  ident: 10.1016/j.cogsys.2019.03.001_b0120
  article-title: Elliptical local binary patterns for face recognition
– volume: 83
  start-page: 268
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0080
  article-title: Classification of human actions using pose-based features and stacked auto encoder
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.03.021
– volume: Vol. 1
  start-page: 2
  year: 2008
  ident: 10.1016/j.cogsys.2019.03.001_b0100
  article-title: Human activity recognition using a dynamic texture based method
– volume: 10
  start-page: 153
  issue: 2
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0025
  article-title: Fusing directional wavelet local binary pattern and moments for human action recognition
  publication-title: IET Computer Vision
  doi: 10.1049/iet-cvi.2015.0087
– volume: 70
  start-page: 36
  year: 2015
  ident: 10.1016/j.cogsys.2019.03.001_b0160
  article-title: Key-frame extraction by analysis of histograms of video frames using statistical methods
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.10.021
– start-page: 4041
  year: 2015
  ident: 10.1016/j.cogsys.2019.03.001_b0190
  article-title: Differential recurrent neural networks for action recognition
– volume: 24
  start-page: 3203
  issue: 10
  year: 2015
  ident: 10.1016/j.cogsys.2019.03.001_b0055
  article-title: Silhouette analysis for human action recognition based on supervised temporal t-sne and incremental learning
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2441634
– start-page: 338
  issue: 4
  year: 2016
  ident: 10.1016/j.cogsys.2019.03.001_b0095
  article-title: Performance analysis of spiral neighbourhood topology based local binary patterns in texture recognition
  publication-title: International Journal of Applied Mathematics, Electronics and Computers
  doi: 10.18100/ijamec.270683
– volume: 100
  start-page: 1388
  issue: 6
  year: 2017
  ident: 10.1016/j.cogsys.2019.03.001_b0070
  article-title: A novel 3d gradient lbp descriptor for action recognition
  publication-title: IEICE Transactions on Information and Systems
  doi: 10.1587/transinf.2017EDL8006
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.cogsys.2019.03.001_b0135
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017623
– start-page: 1
  year: 2018
  ident: 10.1016/j.cogsys.2019.03.001_b0090
  article-title: Learning latent representations of 3d human pose with deep neural networks
  publication-title: International Journal of Computer Vision
– start-page: 1928
  year: 2017
  ident: 10.1016/j.cogsys.2019.03.001_b0145
  article-title: Human action recognition based on improved cohog-lqc
– ident: 10.1016/j.cogsys.2019.03.001_b0175
– volume: 27
  start-page: 567
  issue: 3
  year: 2017
  ident: 10.1016/j.cogsys.2019.03.001_b0205
  article-title: Two-stream dictionary learning architecture for action recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2017.2665359
– volume: 1
  start-page: 313
  issue: 4
  year: 2009
  ident: 10.1016/j.cogsys.2019.03.001_b0195
  article-title: Performance analysis of edge detection methods on hexagonal sampling grid
  publication-title: International Journal of Electronic Engineering Research
SSID ssj0016952
Score 2.280413
Snippet Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing stages. In the first...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Action recognition
Deep stacked autoencoder
H-VLBP
Local binary pattern
Title Hexagonal Volume Local Binary Pattern (H-VLBP) with deep stacked autoencoder for Human Action Recognition
URI https://dx.doi.org/10.1016/j.cogsys.2019.03.001
Volume 58
WOSCitedRecordID wos000488236400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1389-0417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016952
  issn: 1389-0417
  databaseCode: AIEXJ
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCy6EXxFOUAvKBAyhatG_HxxQVBVRVUSlVbqtZ21sSlW2UbqrwL_jJzNjebUoqXhKXVeTE643n2_F4_M0MY68ARF5CRjwcIQK0_1Ugw1QHWRVWuAuCvNSu2IQ4OhpMJnLc631vY2GuzkVdD1YrOf-vosY2FDaFzv6FuLubYgN-RqHjFcWO1z8S_Mis4Mz6906t5ukf0nLV33eBt2ObT5MkPhgFp4f7Y3ILWGesNmZOngV8rXUfls0FpbikTBNERHS-_qGrK37cko68SNtEBx0TyaWHpgOJNV-ZPehfLEu46VylUgrw5QbDbI2FvKydj_rYNF-nODLMvFvXOyoi-RPpYzOCxirchChbqYvffGtuafNa2iV492rWVW3xC7arsLixFDivxAwleYb_mkh8Pp1tdL30dYTETzQmDYkajkr3yDtsOxaZRD25PfxwMPnYnUzl0lZx6p6xDce0nMHNsW43d9ZMmJP77J7fe_Chw8wD1jP1Q7bTLYHfHrFpBx7uwMMteLgDD_fg4a8ddN5wAg4n4HAPHL4GHI7A4RY43AGHrwHnMfv8_uDk3SjwxTgChTPSBCZWKiyVSgFiHSudadC5iECjBUy1KU1URVUcViBBGZ3oEsCoqgpVLnUEpUqesK36ojZPGRcyxl0S3gVUlZo0wy-FzFQalZArHae7LGnnrFA-Uz0VTDkvWkrirHAzXdBMF2FCzMxdFnS95i5Ty29-L1pxFN7adFZkgQj6Zc9n_9xzj-1cvxnP2VazWJoX7K66aqaXi5ceaj8A93So1g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hexagonal+Volume+Local+Binary+Pattern+%28H-VLBP%29+with+deep+stacked+autoencoder+for+Human+Action+Recognition&rft.jtitle=Cognitive+systems+research&rft.au=Kiruba%2C+K&rft.au=Shiloah%2C+Elizabeth+D&rft.au=Sunil%2C+Retmin+Raj+C&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=1389-0417&rft.eissn=1389-0417&rft.volume=58&rft.spage=71&rft.epage=93&rft_id=info:doi/10.1016%2Fj.cogsys.2019.03.001&rft.externalDocID=S1389041718306739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon