Discriminative distribution alignment: A unified framework for heterogeneous domain adaptation
•We design a discriminative embedding constraint for the heterogeneous domain adaptation problem, which enhances the discriminative power of the common subspace.•To the best of our knowledge, we are the first to integrate the classifier adaptation, distribution alignment, and discriminative embeddin...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 101; s. 107165 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2020
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We design a discriminative embedding constraint for the heterogeneous domain adaptation problem, which enhances the discriminative power of the common subspace.•To the best of our knowledge, we are the first to integrate the classifier adaptation, distribution alignment, and discriminative embedding constraints into a unified framework.•Many loss (e.g., cross-entropy loss or squared loss) and projection (e.g., linear projection or non-linear projection) functions can be incorporated into the proposed Discriminative Distribution Alignment framework. Two approaches are developed by using the cross-entropy loss and the squared loss, respectively.•Extensive experimental results are reported on the tasks of categorization across domains and modalities, which demonstrate the effectiveness of the proposed Discriminative Distribution Alignment framework.
Heterogeneous domain adaptation (HDA) aims to leverage knowledge from a source domain for helping learn an accurate model in a heterogeneous target domain. HDA is exceedingly challenging since the feature spaces of domains are distinct. To tackle this issue, we propose a unified learning framework called Discriminative Distribution Alignment (DDA) for deriving a domain-invariant subspace. The proposed DDA can simultaneously match the discriminative directions of domains, align the distributions across domains, and enhance the separability of data during adaptation. To achieve this, DDA trains an adaptive classifier by both reducing the distribution divergence and enlarging distances between class centroids. Based on the proposed DDA framework, we further develop two methods, by embedding the cross-entropy loss and squared loss into this framework, respectively. We conduct experiments on the tasks of categorization across domains and modalities. Experimental results clearly demonstrate that the proposed DDA outperforms several state-of-the-art models. |
|---|---|
| AbstractList | •We design a discriminative embedding constraint for the heterogeneous domain adaptation problem, which enhances the discriminative power of the common subspace.•To the best of our knowledge, we are the first to integrate the classifier adaptation, distribution alignment, and discriminative embedding constraints into a unified framework.•Many loss (e.g., cross-entropy loss or squared loss) and projection (e.g., linear projection or non-linear projection) functions can be incorporated into the proposed Discriminative Distribution Alignment framework. Two approaches are developed by using the cross-entropy loss and the squared loss, respectively.•Extensive experimental results are reported on the tasks of categorization across domains and modalities, which demonstrate the effectiveness of the proposed Discriminative Distribution Alignment framework.
Heterogeneous domain adaptation (HDA) aims to leverage knowledge from a source domain for helping learn an accurate model in a heterogeneous target domain. HDA is exceedingly challenging since the feature spaces of domains are distinct. To tackle this issue, we propose a unified learning framework called Discriminative Distribution Alignment (DDA) for deriving a domain-invariant subspace. The proposed DDA can simultaneously match the discriminative directions of domains, align the distributions across domains, and enhance the separability of data during adaptation. To achieve this, DDA trains an adaptive classifier by both reducing the distribution divergence and enlarging distances between class centroids. Based on the proposed DDA framework, we further develop two methods, by embedding the cross-entropy loss and squared loss into this framework, respectively. We conduct experiments on the tasks of categorization across domains and modalities. Experimental results clearly demonstrate that the proposed DDA outperforms several state-of-the-art models. |
| ArticleNumber | 107165 |
| Author | Ye, Yunming Li, Xutao Yao, Yuan Zhang, Yu |
| Author_xml | – sequence: 1 givenname: Yuan surname: Yao fullname: Yao, Yuan organization: Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Xutao surname: Li fullname: Li, Xutao organization: Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China – sequence: 4 givenname: Yunming orcidid: 0000-0002-3581-9476 surname: Ye fullname: Ye, Yunming email: yeyunming@hit.edu.cn organization: Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw_7B7Ymm81-9CCU-gmCF70assmkTm2TkqQV_71b1pMHPQ3M8LzM-0zIyHkHhFwyOmOUVVfr2U4l7VezgrK2X9WsEidkzJqa54KVxYiMKeUs5wXlZ2QS45pSVveHMXm7wagDbtGphAfIDMYUsNsn9C5TG1y5Lbg0zxbZ3qFFMJkNagufPnxk1ofsHRIEvwIHfh8z47cKe86oXVLHiHNyatUmwsXPnJLXu9uX5UP-9Hz_uFw85ZrTKuVQNK1iHYfC0LYRvOqE4nVd1JYVwjJhRFWZsu14w6wF2tfovwfBoSrromSGT0k55OrgYwxg5a4vpcKXZFQeHcm1HBzJoyM5OOqx-S9M4_B4Cgo3_8HXAwx9sQNCkFEjOA0GA-gkjce_A74BjjGIMg |
| CitedBy_id | crossref_primary_10_1007_s10044_024_01390_w crossref_primary_10_1007_s10489_022_03296_8 crossref_primary_10_1016_j_patcog_2024_110473 crossref_primary_10_1093_bib_bbae004 crossref_primary_10_1016_j_neunet_2023_11_048 crossref_primary_10_1109_JIOT_2024_3457894 crossref_primary_10_1109_TNNLS_2024_3372004 crossref_primary_10_1145_3469856 crossref_primary_10_1155_2022_8884669 crossref_primary_10_1109_JIOT_2023_3239872 crossref_primary_10_1109_JIOT_2022_3218339 crossref_primary_10_1016_j_patcog_2024_110857 crossref_primary_10_1016_j_patcog_2022_108955 crossref_primary_10_1109_TGRS_2024_3502236 crossref_primary_10_1016_j_knosys_2023_111092 crossref_primary_10_1109_TASLP_2023_3288415 crossref_primary_10_1109_TNNLS_2025_3563618 crossref_primary_10_1016_j_ins_2024_121836 crossref_primary_10_1007_s10489_021_02756_x crossref_primary_10_1016_j_patcog_2024_110409 crossref_primary_10_1109_TMM_2024_3411316 crossref_primary_10_1016_j_patcog_2021_108362 crossref_primary_10_1016_j_ymssp_2022_108853 crossref_primary_10_1016_j_knosys_2022_108443 crossref_primary_10_1080_24725854_2024_2405089 crossref_primary_10_1109_TCYB_2021_3070545 crossref_primary_10_1145_3544105 crossref_primary_10_1080_00207543_2021_1989076 crossref_primary_10_1007_s00521_024_09786_9 crossref_primary_10_1007_s13198_024_02684_2 crossref_primary_10_1016_j_jnca_2023_103760 crossref_primary_10_1007_s10994_024_06566_3 crossref_primary_10_1109_LGRS_2022_3175056 crossref_primary_10_1109_TNNLS_2021_3105868 crossref_primary_10_1007_s13042_022_01646_z |
| Cites_doi | 10.1016/j.patcog.2018.04.027 10.1016/j.patcog.2017.04.011 10.1090/S0025-5718-1980-0572855-7 10.1186/s40537-017-0089-0 10.1109/TPAMI.2013.167 10.1016/j.patcog.2018.03.005 10.1007/978-3-319-58347-1_1 10.1109/TPAMI.2014.2343216 10.1109/TPAMI.2018.2824309 10.1007/BF01589116 10.1007/s11263-014-0719-3 10.1016/j.patrec.2018.02.011 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2019.107165 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2019_107165 S0031320319304650 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-e289a1b3e2d098536b5a37727f125f15d566d49b381ffe0203714e53e647241d3 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525824600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:29:43 EST 2025 Tue Nov 18 21:01:58 EST 2025 Fri Feb 23 02:49:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Classifier adaptation Discriminative embedding Heterogeneous domain adaptation Subspace learning Distribution alignment |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e289a1b3e2d098536b5a37727f125f15d566d49b381ffe0203714e53e647241d3 |
| ORCID | 0000-0002-3581-9476 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2019_107165 crossref_citationtrail_10_1016_j_patcog_2019_107165 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107165 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Jing, Lu, Zhu, Shen (bib0038) 2019; 28 Yang, Ma, Yuen (bib0012) 2018; 81 Yan, Li, Ng, Tan, Wu, Min, Wu (bib0035) 2017 Nocedal (bib0050) 1980; 35 Zhou, Tsang, Pan, Tan (bib0032) 2014 Griffin, Holub, Perona (bib0054) 2007 G. Csurka, A Comprehensive Survey on Domain Adaptation for Visual Applications, Springer International Publishing, pp. 1–35. Day, Khoshgoftaar (bib0004) 2017; 4 Wang, Feng, Chen, Yu, Huang, Yu (bib0014) 2018 Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0048) 2007 Yan, Li, Wu, Min, Tan, Wu (bib0047) 2018 Ye, Sheng, Zhan, He (bib0046) 2018 Le, Ngiam, Coates, Lahiri, Prochnow, Ng (bib0052) 2011 Bousmalis, Trigeorgis, Silberman, Krishnan, Erhan (bib0020) 2016 Luo, Wen, Liu, Tao (bib0044) 2019; 41 Kulis, Saenko, Darrell (bib0029) 2011 Villani (bib0045) 2008 Zhang, Li, Ogunbona (bib0009) 2017 Yao, Pan, Ngo, Li, Mei (bib0010) 2015 Saenko, Kulis, Fritz, Darrell (bib0053) 2010 Long, Cao, Cao, Wang, Jordan (bib0021) 2018 Zhu, Chen, Lu, Pan, Xue, Yu, Yang (bib0011) 2011 Chen, Hsu, Tsai, Wang, Chen (bib0042) 2016 Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0057) 2014 Cao, Long, Wang (bib0022) 2018 Wang, Mahadevan (bib0025) 2011 Vapnik (bib0049) 1998 Xiao, Guo (bib0017) 2015; 37 Weiss, Khoshgoftaar, Wang (bib0002) 2016; 3 Hoffman, Rodner, Donahue, Kulis, Saenko (bib0031) 2014; 109 Tsai, Yeh, Wang (bib0034) 2016 Li, Duan, Xu, Tsang (bib0027) 2014; 36 Long, Zhu, Wang, Jordan (bib0007) 2017 Liu, Nocedal (bib0051) 1989; 45 Fang, Chiang (bib0037) 2018; 106 van der Maaten (bib0058) 2014 Bay, Tuytelaars, Gool (bib0056) 2006 Li, Lu, Huang, Zhu, Shen (bib0040) 2019; 49 Duan, Xu, Tsang (bib0026) 2012 Zhou, Bousquet, Lal, Weston, Schölkopf (bib0039) 2004 Hsieh, Tao, Tsai, Yeh, Wang (bib0028) 2016 Xiao, Guo (bib0016) 2015 Long, Cao, Wang, Jordan (bib0006) 2015 Shi, Liu, Fan, Yu, Zhu (bib0024) 2010 Pereira, Torres (bib0008) 2018; 75 Li, Wang, Shi, Hou, Liu (bib0015) 2018; 80 Tan, Zhang, Pan, Yang (bib0013) 2017 Li, Pan, Wan, Kot (bib0043) 2019 Long, Wang, Ding, Sun, Yu (bib0005) 2013 Hoffman, Rodner, Donahue, Saenko, Darrell (bib0030) 2013 Tsai, Yeh, Wang (bib0033) 2016 Ding, Nasrabadi, Fu (bib0023) 2018; 27 Li, Lu, Huang, Zhu, Shen (bib0036) 2018 Shu, Qi, Tang, Wang (bib0041) 2015 Amini, Usunier, Goutte (bib0055) 2009 Long, Wang, Ding, Pan, Yu (bib0019) 2014; 26 Pan, Yang (bib0001) 2010; 22 Tan, Song, Zhong, Yang (bib0018) 2015 Ding (10.1016/j.patcog.2019.107165_bib0023) 2018; 27 Li (10.1016/j.patcog.2019.107165_bib0038) 2019; 28 Li (10.1016/j.patcog.2019.107165_bib0040) 2019; 49 Amini (10.1016/j.patcog.2019.107165_bib0055) 2009 Villani (10.1016/j.patcog.2019.107165_bib0045) 2008 Yang (10.1016/j.patcog.2019.107165_bib0012) 2018; 81 van der Maaten (10.1016/j.patcog.2019.107165_bib0058) 2014 Zhou (10.1016/j.patcog.2019.107165_bib0039) 2004 Yan (10.1016/j.patcog.2019.107165_bib0035) 2017 Weiss (10.1016/j.patcog.2019.107165_bib0002) 2016; 3 Long (10.1016/j.patcog.2019.107165_bib0006) 2015 Chen (10.1016/j.patcog.2019.107165_bib0042) 2016 Nocedal (10.1016/j.patcog.2019.107165_bib0050) 1980; 35 Hoffman (10.1016/j.patcog.2019.107165_bib0030) 2013 Zhou (10.1016/j.patcog.2019.107165_bib0032) 2014 Tan (10.1016/j.patcog.2019.107165_bib0013) 2017 Luo (10.1016/j.patcog.2019.107165_bib0044) 2019; 41 Hsieh (10.1016/j.patcog.2019.107165_bib0028) 2016 Zhu (10.1016/j.patcog.2019.107165_bib0011) 2011 Li (10.1016/j.patcog.2019.107165_bib0036) 2018 Kulis (10.1016/j.patcog.2019.107165_bib0029) 2011 Pereira (10.1016/j.patcog.2019.107165_bib0008) 2018; 75 Tsai (10.1016/j.patcog.2019.107165_bib0033) 2016 Shu (10.1016/j.patcog.2019.107165_sbref0040) 2015 Shi (10.1016/j.patcog.2019.107165_bib0024) 2010 Long (10.1016/j.patcog.2019.107165_bib0019) 2014; 26 Long (10.1016/j.patcog.2019.107165_sbref0020) 2018 Bay (10.1016/j.patcog.2019.107165_bib0056) 2006 Yan (10.1016/j.patcog.2019.107165_bib0047) 2018 Wang (10.1016/j.patcog.2019.107165_bib0014) 2018 Cao (10.1016/j.patcog.2019.107165_bib0022) 2018 Long (10.1016/j.patcog.2019.107165_bib0007) 2017 Tsai (10.1016/j.patcog.2019.107165_bib0034) 2016 Griffin (10.1016/j.patcog.2019.107165_bib0054) 2007 Zhang (10.1016/j.patcog.2019.107165_bib0009) 2017 Xiao (10.1016/j.patcog.2019.107165_bib0017) 2015; 37 Gretton (10.1016/j.patcog.2019.107165_bib0048) 2007 Vapnik (10.1016/j.patcog.2019.107165_bib0049) 1998 Xiao (10.1016/j.patcog.2019.107165_bib0016) 2015 Day (10.1016/j.patcog.2019.107165_bib0004) 2017; 4 10.1016/j.patcog.2019.107165_bib0003 Saenko (10.1016/j.patcog.2019.107165_bib0053) 2010 Tan (10.1016/j.patcog.2019.107165_bib0018) 2015 Pan (10.1016/j.patcog.2019.107165_bib0001) 2010; 22 Ye (10.1016/j.patcog.2019.107165_bib0046) 2018 Li (10.1016/j.patcog.2019.107165_bib0043) 2019 Li (10.1016/j.patcog.2019.107165_bib0027) 2014; 36 Yao (10.1016/j.patcog.2019.107165_bib0010) 2015 Duan (10.1016/j.patcog.2019.107165_bib0026) 2012 Hoffman (10.1016/j.patcog.2019.107165_bib0031) 2014; 109 Long (10.1016/j.patcog.2019.107165_bib0005) 2013 Li (10.1016/j.patcog.2019.107165_bib0015) 2018; 80 Bousmalis (10.1016/j.patcog.2019.107165_bib0020) 2016 Wang (10.1016/j.patcog.2019.107165_bib0025) 2011 Liu (10.1016/j.patcog.2019.107165_bib0051) 1989; 45 Donahue (10.1016/j.patcog.2019.107165_bib0057) 2014 Fang (10.1016/j.patcog.2019.107165_bib0037) 2018; 106 Le (10.1016/j.patcog.2019.107165_bib0052) 2011 |
| References_xml | – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bib0051 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Program. – start-page: 265 year: 2011 end-page: 272 ident: bib0052 article-title: On optimization methods for deep learning publication-title: ICML – start-page: 5150 year: 2017 end-page: 5158 ident: bib0009 article-title: Joint geometrical and statistical alignment for visual domain adaptation publication-title: CVPR – start-page: 2842 year: 2016 end-page: 2846 ident: bib0034 article-title: Heterogeneous domain adaptation with label and structure consistency publication-title: ICASSP – start-page: 213 year: 2010 end-page: 226 ident: bib0053 article-title: Adapting visual category models to new domains publication-title: ECCV – year: 2008 ident: bib0045 publication-title: Optimal Transport: Old and New – start-page: 404 year: 2006 end-page: 417 ident: bib0056 article-title: Surf: Speeded up robust features publication-title: ECCV – volume: 75 start-page: 235 year: 2018 end-page: 249 ident: bib0008 article-title: Semi-supervised transfer subspace for domain adaptation publication-title: Pattern Recognit. – start-page: 1541 year: 2011 end-page: 1546 ident: bib0025 article-title: Heterogeneous domain adaptation using manifold alignment publication-title: IJCAI – start-page: 2142 year: 2015 end-page: 2150 ident: bib0010 article-title: Semi-supervised domain adaptation with subspace learning for visual recognition publication-title: CVPR – year: 1998 ident: bib0049 publication-title: Statistical Learning Theory – start-page: 2604 year: 2017 end-page: 2610 ident: bib0013 article-title: Distant domain transfer learning publication-title: AAAI – start-page: 28 year: 2009 end-page: 36 ident: bib0055 article-title: Learning from multiple partially observed views - an application to multilingual text categorization publication-title: NeurIPS – volume: 81 start-page: 615 year: 2018 end-page: 632 ident: bib0012 article-title: Learning domain-shared group-sparse representation for unsupervised domain adaptation publication-title: Pattern Recognit. – volume: 27 start-page: 5214 year: 2018 end-page: 5224 ident: bib0023 article-title: Semi-supervised deep domain adaptation via coupled neural networks publication-title: TIP – start-page: 2969 year: 2018 end-page: 2975 ident: bib0047 article-title: Semi-supervised optimal transport for heterogeneous domain adaptation publication-title: IJCAI – start-page: 5081 year: 2016 end-page: 5090 ident: bib0033 article-title: Learning cross-domain landmarks for heterogeneous domain adaptation publication-title: CVPR – year: 2016 ident: bib0042 article-title: Transfer neural trees for heterogeneous domain adaptation publication-title: ECCV – volume: 106 start-page: 13 year: 2018 end-page: 19 ident: bib0037 article-title: A discriminative feature mapping approach to heterogeneous domain adaptation publication-title: Pattern Recognit. Lett. – start-page: 711 year: 2012 end-page: 718 ident: bib0026 article-title: Learning with augmented features for heterogeneous domain adaptation publication-title: ICML – year: 2007 ident: bib0054 publication-title: Technical Report 7694 – start-page: 2208 year: 2017 end-page: 2217 ident: bib0007 article-title: Deep transfer learning with joint adaptation networks publication-title: ICML – start-page: 525 year: 2015 end-page: 540 ident: bib0016 article-title: Semi-supervised subspace co-projection for multi-class heterogeneous domain adaptation publication-title: ECML PKDD – start-page: 1304 year: 2011 end-page: 1309 ident: bib0011 article-title: Heterogeneous transfer learning for image classification publication-title: AAAI – start-page: 1785 year: 2011 end-page: 1792 ident: bib0029 article-title: What you saw is not what you get: domain adaptation using asymmetric kernel transforms publication-title: CVPR – start-page: 1095 year: 2014 end-page: 1103 ident: bib0032 article-title: Heterogeneous domain adaptation for multiple classes publication-title: AISTATS – start-page: 321 year: 2004 end-page: 328 ident: bib0039 article-title: Learning with local and global consistency publication-title: NeurIPS – start-page: 3221 year: 2014 end-page: 3245 ident: bib0058 article-title: Accelerating t-SNE using tree-based algorithms publication-title: JMLR – start-page: 35 year: 2015 end-page: 44 ident: bib0041 article-title: Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation publication-title: ACM MM – start-page: 1155 year: 2015 end-page: 1164 ident: bib0018 article-title: Transitive transfer learning publication-title: KDD – year: 2013 ident: bib0030 article-title: Efficient learning of domain-invariant image representations publication-title: ICLR – start-page: 8602 year: 2019 end-page: 8609 ident: bib0043 article-title: Heterogeneous transfer learning via deep matrix completion with adversarial kernel embedding publication-title: AAAI – volume: 41 start-page: 1013 year: 2019 end-page: 1026 ident: bib0044 article-title: Transferring knowledge fragments for learning distance metric from a heterogeneous domain publication-title: TPAMI – volume: 35 start-page: 773 year: 1980 end-page: 782 ident: bib0050 article-title: Updating Quasi-Newton matrices with limited storage publication-title: Math. Comput. – reference: G. Csurka, A Comprehensive Survey on Domain Adaptation for Visual Applications, Springer International Publishing, pp. 1–35. – start-page: 2200 year: 2013 end-page: 2207 ident: bib0005 article-title: Transfer feature learning with joint distribution adaptation publication-title: ICCV – volume: 37 start-page: 54 year: 2015 end-page: 66 ident: bib0017 article-title: Feature space independent semi-supervised domain adaptation via kernel matching publication-title: TPAMI – volume: 80 start-page: 109 year: 2018 end-page: 117 ident: bib0015 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. – start-page: 3252 year: 2017 end-page: 3258 ident: bib0035 article-title: Learning discriminative correlation subspace for heterogeneous domain adaptation publication-title: IJCAI – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib0001 article-title: A survey on transfer learning publication-title: TKDE – volume: 36 start-page: 1134 year: 2014 end-page: 1148 ident: bib0027 article-title: Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation publication-title: TPAMI – start-page: 1 year: 2016 end-page: 6 ident: bib0028 article-title: Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation publication-title: ICME – start-page: 97 year: 2015 end-page: 105 ident: bib0006 article-title: Learning transferable features with deep adaptation networks publication-title: ICML – year: 2018 ident: bib0021 article-title: Transferable representation learning with deep adaptation networks publication-title: TPAMI – start-page: 402 year: 2018 end-page: 410 ident: bib0014 article-title: Visual domain adaptation with manifold embedded distribution alignment publication-title: ACM MM – start-page: 1049 year: 2010 end-page: 1054 ident: bib0024 article-title: Transfer learning on heterogenous feature spaces via spectral transformation publication-title: ICDM – start-page: 3012 year: 2018 end-page: 3018 ident: bib0046 article-title: Distance metric facilitated transportation between heterogeneous domains publication-title: IJCAI – volume: 28 start-page: 6103 year: 2019 end-page: 6115 ident: bib0038 article-title: Locality preserving joint transfer for domain adaptation publication-title: TIP – volume: 26 start-page: 1076 year: 2014 end-page: 1089 ident: bib0019 article-title: Adaptation regularization: a general framework for transfer learning publication-title: TKDE – volume: 4 start-page: 29 year: 2017 ident: bib0004 article-title: A survey on heterogeneous transfer learning publication-title: J. Big Data – start-page: 513 year: 2007 end-page: 520 ident: bib0048 article-title: A kernel method for the two-sample-problem publication-title: NeurIPS – volume: 3 year: 2016 ident: bib0002 article-title: A survey of transfer learning publication-title: J. Big Data – year: 2018 ident: bib0022 article-title: Unsupervised domain adaptation with distribution matching machines publication-title: AAAI – volume: 49 start-page: 2144 year: 2019 end-page: 2155 ident: bib0040 article-title: Transfer independently together: A generalized framework for domain adaptation publication-title: TYCB – start-page: 1 year: 2018 end-page: 11 ident: bib0036 article-title: Heterogeneous domain adaptation through progressive alignment publication-title: TNNLS – year: 2014 ident: bib0057 article-title: Decaf: A deep convolutional activation feature for generic visual recognition publication-title: ICML – volume: 109 start-page: 28 year: 2014 end-page: 41 ident: bib0031 article-title: Asymmetric and category invariant feature transformations for domain adaptation publication-title: IJCV – start-page: 343 year: 2016 end-page: 351 ident: bib0020 article-title: Domain separation networks publication-title: NeurIPS – volume: 81 start-page: 615 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0012 article-title: Learning domain-shared group-sparse representation for unsupervised domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.04.027 – year: 2008 ident: 10.1016/j.patcog.2019.107165_bib0045 – start-page: 1304 year: 2011 ident: 10.1016/j.patcog.2019.107165_bib0011 article-title: Heterogeneous transfer learning for image classification – start-page: 525 year: 2015 ident: 10.1016/j.patcog.2019.107165_bib0016 article-title: Semi-supervised subspace co-projection for multi-class heterogeneous domain adaptation – start-page: 1095 year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0032 article-title: Heterogeneous domain adaptation for multiple classes – volume: 3 issue: 9 year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0002 article-title: A survey of transfer learning publication-title: J. Big Data – start-page: 3221 year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0058 article-title: Accelerating t-SNE using tree-based algorithms publication-title: JMLR – volume: 75 start-page: 235 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0008 article-title: Semi-supervised transfer subspace for domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.04.011 – start-page: 404 year: 2006 ident: 10.1016/j.patcog.2019.107165_bib0056 article-title: Surf: Speeded up robust features – start-page: 3252 year: 2017 ident: 10.1016/j.patcog.2019.107165_bib0035 article-title: Learning discriminative correlation subspace for heterogeneous domain adaptation – start-page: 402 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0014 article-title: Visual domain adaptation with manifold embedded distribution alignment – volume: 35 start-page: 773 year: 1980 ident: 10.1016/j.patcog.2019.107165_bib0050 article-title: Updating Quasi-Newton matrices with limited storage publication-title: Math. Comput. doi: 10.1090/S0025-5718-1980-0572855-7 – start-page: 265 year: 2011 ident: 10.1016/j.patcog.2019.107165_bib0052 article-title: On optimization methods for deep learning – volume: 4 start-page: 29 issue: 1 year: 2017 ident: 10.1016/j.patcog.2019.107165_bib0004 article-title: A survey on heterogeneous transfer learning publication-title: J. Big Data doi: 10.1186/s40537-017-0089-0 – volume: 27 start-page: 5214 issue: 11 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0023 article-title: Semi-supervised deep domain adaptation via coupled neural networks publication-title: TIP – year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0022 article-title: Unsupervised domain adaptation with distribution matching machines – start-page: 321 year: 2004 ident: 10.1016/j.patcog.2019.107165_bib0039 article-title: Learning with local and global consistency – start-page: 3012 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0046 article-title: Distance metric facilitated transportation between heterogeneous domains – start-page: 5081 year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0033 article-title: Learning cross-domain landmarks for heterogeneous domain adaptation – start-page: 8602 year: 2019 ident: 10.1016/j.patcog.2019.107165_bib0043 article-title: Heterogeneous transfer learning via deep matrix completion with adversarial kernel embedding – start-page: 343 year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0020 article-title: Domain separation networks – year: 2007 ident: 10.1016/j.patcog.2019.107165_bib0054 – start-page: 2969 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0047 article-title: Semi-supervised optimal transport for heterogeneous domain adaptation – year: 2013 ident: 10.1016/j.patcog.2019.107165_bib0030 article-title: Efficient learning of domain-invariant image representations – start-page: 1155 year: 2015 ident: 10.1016/j.patcog.2019.107165_bib0018 article-title: Transitive transfer learning – volume: 36 start-page: 1134 issue: 6 year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0027 article-title: Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation publication-title: TPAMI doi: 10.1109/TPAMI.2013.167 – start-page: 2142 year: 2015 ident: 10.1016/j.patcog.2019.107165_bib0010 article-title: Semi-supervised domain adaptation with subspace learning for visual recognition – start-page: 35 year: 2015 ident: 10.1016/j.patcog.2019.107165_sbref0040 article-title: Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation – volume: 80 start-page: 109 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0015 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.005 – start-page: 1049 year: 2010 ident: 10.1016/j.patcog.2019.107165_bib0024 article-title: Transfer learning on heterogenous feature spaces via spectral transformation – start-page: 5150 year: 2017 ident: 10.1016/j.patcog.2019.107165_bib0009 article-title: Joint geometrical and statistical alignment for visual domain adaptation – ident: 10.1016/j.patcog.2019.107165_bib0003 doi: 10.1007/978-3-319-58347-1_1 – start-page: 1 year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0028 article-title: Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation – year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0057 article-title: Decaf: A deep convolutional activation feature for generic visual recognition – volume: 37 start-page: 54 issue: 1 year: 2015 ident: 10.1016/j.patcog.2019.107165_bib0017 article-title: Feature space independent semi-supervised domain adaptation via kernel matching publication-title: TPAMI doi: 10.1109/TPAMI.2014.2343216 – volume: 41 start-page: 1013 issue: 4 year: 2019 ident: 10.1016/j.patcog.2019.107165_bib0044 article-title: Transferring knowledge fragments for learning distance metric from a heterogeneous domain publication-title: TPAMI doi: 10.1109/TPAMI.2018.2824309 – start-page: 2842 year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0034 article-title: Heterogeneous domain adaptation with label and structure consistency – volume: 49 start-page: 2144 issue: 6 year: 2019 ident: 10.1016/j.patcog.2019.107165_bib0040 article-title: Transfer independently together: A generalized framework for domain adaptation publication-title: TYCB – start-page: 2604 year: 2017 ident: 10.1016/j.patcog.2019.107165_bib0013 article-title: Distant domain transfer learning – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 10.1016/j.patcog.2019.107165_bib0051 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – start-page: 97 year: 2015 ident: 10.1016/j.patcog.2019.107165_bib0006 article-title: Learning transferable features with deep adaptation networks – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0036 article-title: Heterogeneous domain adaptation through progressive alignment publication-title: TNNLS – volume: 28 start-page: 6103 issue: 12 year: 2019 ident: 10.1016/j.patcog.2019.107165_bib0038 article-title: Locality preserving joint transfer for domain adaptation publication-title: TIP – start-page: 213 year: 2010 ident: 10.1016/j.patcog.2019.107165_bib0053 article-title: Adapting visual category models to new domains – start-page: 28 year: 2009 ident: 10.1016/j.patcog.2019.107165_bib0055 article-title: Learning from multiple partially observed views - an application to multilingual text categorization – start-page: 1785 year: 2011 ident: 10.1016/j.patcog.2019.107165_bib0029 article-title: What you saw is not what you get: domain adaptation using asymmetric kernel transforms – start-page: 2200 year: 2013 ident: 10.1016/j.patcog.2019.107165_bib0005 article-title: Transfer feature learning with joint distribution adaptation – volume: 26 start-page: 1076 issue: 5 year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0019 article-title: Adaptation regularization: a general framework for transfer learning publication-title: TKDE – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.patcog.2019.107165_bib0001 article-title: A survey on transfer learning publication-title: TKDE – volume: 109 start-page: 28 issue: 1 year: 2014 ident: 10.1016/j.patcog.2019.107165_bib0031 article-title: Asymmetric and category invariant feature transformations for domain adaptation publication-title: IJCV doi: 10.1007/s11263-014-0719-3 – year: 1998 ident: 10.1016/j.patcog.2019.107165_bib0049 – year: 2018 ident: 10.1016/j.patcog.2019.107165_sbref0020 article-title: Transferable representation learning with deep adaptation networks publication-title: TPAMI – start-page: 513 year: 2007 ident: 10.1016/j.patcog.2019.107165_bib0048 article-title: A kernel method for the two-sample-problem – start-page: 1541 year: 2011 ident: 10.1016/j.patcog.2019.107165_bib0025 article-title: Heterogeneous domain adaptation using manifold alignment – start-page: 2208 year: 2017 ident: 10.1016/j.patcog.2019.107165_bib0007 article-title: Deep transfer learning with joint adaptation networks – volume: 106 start-page: 13 year: 2018 ident: 10.1016/j.patcog.2019.107165_bib0037 article-title: A discriminative feature mapping approach to heterogeneous domain adaptation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.011 – start-page: 711 year: 2012 ident: 10.1016/j.patcog.2019.107165_bib0026 article-title: Learning with augmented features for heterogeneous domain adaptation – year: 2016 ident: 10.1016/j.patcog.2019.107165_bib0042 article-title: Transfer neural trees for heterogeneous domain adaptation |
| SSID | ssj0017142 |
| Score | 2.4900198 |
| Snippet | •We design a discriminative embedding constraint for the heterogeneous domain adaptation problem, which enhances the discriminative power of the common... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107165 |
| SubjectTerms | Classifier adaptation Discriminative embedding Distribution alignment Heterogeneous domain adaptation Subspace learning |
| Title | Discriminative distribution alignment: A unified framework for heterogeneous domain adaptation |
| URI | https://dx.doi.org/10.1016/j.patcog.2019.107165 |
| Volume | 101 |
| WOSCitedRecordID | wos000525824600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZWhQMXYHmI58oHbsgoqZPa5lYtrBYOCGlBai9ESWxDESQVNIifv-PYcVqBeElcosqN3crzafx5_HkGob2MAmwYC4lkjJFIqoBkQLuJ0FkvplEes9QWm2BnZ3wwEOfuoP2xLifAioI_P4vxt5oa2sDY5ursJ8ztB4UG-AxGhyeYHZ4fMvzRyHgCo3CpVUHSZMZ1Ra32gXRfFz4euF8VI20oqG4UWrXo8MYoZEoYXxl5rCzv0xH0lOl46tTe0dnzOjunuRHjZEjtof4wrYOww6qFnw9ODyuvA6rFBINqkpZt9Na-Utw3q6oLSnSDVgJoI2XNbZlWmlR7XxoS2g2sQ1PW4XJGCZC2WY9sh3rh3W2g4fZgDKtUeW10eQIaYccXt6uZ1xj-s2kpzS0tc_pr4jpzXRYL3kFz_ZPjwak_bGJhZJPKu7_X3LCsZYAvf-t1BjPFSi6W0aLbTuC-hcFP9EMVK2ipKdWBnedeRVezqMDTqMAeFYe4jx0msMcEBkzgGUxgiwncYmINXf45vvj9l7jSGiSHPeKEKNhnp2FGVVcGAhhbL4tTChstpoHw6jCWwPJlJDLgc1orc1oNk6Riqky1gSiUdB11irJQGwgHOudChkFPcA7fRJzSQDGe5VRoqrjaRLSZriR3eedN-ZO7pBEY3iZ2khMzyYmd5E1EfK-xzbvyzvussUTiuKPlhAmA582eW1_uuY0WWuzvoM7koVK7aD5_moweH345lP0Han2WSA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+distribution+alignment%3A+A+unified+framework+for+heterogeneous+domain+adaptation&rft.jtitle=Pattern+recognition&rft.au=Yao%2C+Yuan&rft.au=Zhang%2C+Yu&rft.au=Li%2C+Xutao&rft.au=Ye%2C+Yunming&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=101&rft_id=info:doi/10.1016%2Fj.patcog.2019.107165&rft.externalDocID=S0031320319304650 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |