Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem

This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 258; p. 109962
Main Authors: Qin, Haoxiang, Han, Yuyan, Wang, Yuting, Liu, Yiping, Li, Junqing, Pan, Quanke
Format: Journal Article
Language:English
Published: Elsevier B.V 22.12.2022
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and processed at organized manufacturing cells. We verify the correctness of the mathematical model of BHFGSP by using CPLEX. In this paper, we proposed a novel iterated greedy algorithm to solve the problem. The proposed algorithm has two key techniques. One is the decoding procedure that calculates the makespan of a job sequence, and the other is the neighborhood probabilistic selection strategies with families and blocking-based jobs. The performance of the proposed algorithm is investigated through a large number of numerical experiments. Comprehensive results show that the proposed algorithm is effective in solving BHFGSP.
AbstractList This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and processed at organized manufacturing cells. We verify the correctness of the mathematical model of BHFGSP by using CPLEX. In this paper, we proposed a novel iterated greedy algorithm to solve the problem. The proposed algorithm has two key techniques. One is the decoding procedure that calculates the makespan of a job sequence, and the other is the neighborhood probabilistic selection strategies with families and blocking-based jobs. The performance of the proposed algorithm is investigated through a large number of numerical experiments. Comprehensive results show that the proposed algorithm is effective in solving BHFGSP.
ArticleNumber 109962
Author Han, Yuyan
Pan, Quanke
Qin, Haoxiang
Wang, Yuting
Li, Junqing
Liu, Yiping
Author_xml – sequence: 1
  givenname: Haoxiang
  surname: Qin
  fullname: Qin, Haoxiang
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 2
  givenname: Yuyan
  surname: Han
  fullname: Han, Yuyan
  email: hanyuyan@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 3
  givenname: Yuting
  surname: Wang
  fullname: Wang, Yuting
  email: wangyuting@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 4
  givenname: Yiping
  surname: Liu
  fullname: Liu, Yiping
  organization: The College of Computer Science and Electronic Engineering, Hunan University, 410082, China
– sequence: 5
  givenname: Junqing
  surname: Li
  fullname: Li, Junqing
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 6
  givenname: Quanke
  surname: Pan
  fullname: Pan, Quanke
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
BookMark eNqFkM1OAjEUhRuDiYC-gYu-wGA7w_yxMCHEHxISN7puOu0tUyjtpC0YfAIf20FcudDVTU7Od5L7jdDAOgsI3VIyoYQWd5vJ1rpwDJOUpGkf1XWRXqAhrco0KaekHqAhqXOSlCSnV2gUwoaQvkmrIfpc2gjG6DXYiF0X9U5_8KidxXsrwePGOLHVdo2FsyF6rm0MMzzH1h3AYB3B8wgSrz2APGJu1s7r2O6wch7HFnB7bLyWWBn3jkPrur7p9h0OogW5N6fhzrvGwO4aXSpuAtz83DF6e3x4XTwnq5en5WK-SkRGipgAhSqt6jLllAOplKxllqkqpwUUinCaKiCQ80w1UBRkSqu6KZueKDnNFVcyG6PpeVd4F4IHxTqvd9wfGSXsZJNt2NkmO9lkZ5s9NvuFCR2_RZ2kmP_g-zMM_WMHDZ4FocEKkNqDiEw6_ffAF8KgmjM
CitedBy_id crossref_primary_10_1016_j_cie_2024_110635
crossref_primary_10_3390_app15115947
crossref_primary_10_1007_s12293_025_00454_6
crossref_primary_10_1016_j_jclepro_2023_137054
crossref_primary_10_3390_math11112453
crossref_primary_10_1016_j_cie_2024_110379
crossref_primary_10_1080_00207543_2023_2253925
crossref_primary_10_32604_cmc_2024_050612
crossref_primary_10_1016_j_asoc_2024_111593
crossref_primary_10_1109_ACCESS_2023_3293029
crossref_primary_10_1109_TEVC_2023_3312769
crossref_primary_10_1016_j_asoc_2025_113475
crossref_primary_10_1016_j_swevo_2024_101757
crossref_primary_10_1016_j_eswa_2023_121856
crossref_primary_10_1016_j_ins_2025_121971
crossref_primary_10_1016_j_cie_2025_111488
crossref_primary_10_1016_j_swevo_2024_101479
crossref_primary_10_1109_TASE_2024_3421889
crossref_primary_10_1016_j_optlastec_2023_110018
crossref_primary_10_1038_s41598_024_80785_5
crossref_primary_10_1016_j_cie_2025_110949
crossref_primary_10_1109_TEVC_2023_3339558
crossref_primary_10_1016_j_cirpj_2025_04_006
crossref_primary_10_1007_s42524_022_0242_0
crossref_primary_10_1016_j_orp_2025_100340
crossref_primary_10_1016_j_eswa_2023_120909
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1016_j_ejor_2023_05_010
crossref_primary_10_1016_j_eswa_2023_119805
crossref_primary_10_1016_j_eswa_2023_120878
crossref_primary_10_1016_j_ejor_2024_05_015
crossref_primary_10_1080_00207543_2023_2262616
crossref_primary_10_3390_app15063133
crossref_primary_10_1109_ACCESS_2023_3234428
crossref_primary_10_1016_j_knosys_2025_113424
crossref_primary_10_1016_j_swevo_2024_101604
crossref_primary_10_1016_j_swevo_2025_101849
crossref_primary_10_1016_j_eswa_2023_121667
crossref_primary_10_1016_j_swevo_2025_101965
crossref_primary_10_1016_j_swevo_2024_101545
crossref_primary_10_1007_s11081_024_09911_6
crossref_primary_10_1080_0305215X_2025_2507285
crossref_primary_10_1016_j_ress_2024_109990
crossref_primary_10_1016_j_eswa_2024_125101
crossref_primary_10_1109_ACCESS_2023_3268214
crossref_primary_10_1080_23311916_2023_2206074
Cites_doi 10.1016/j.ress.2018.04.004
10.1007/s10845-015-1049-1
10.1016/S0377-2217(99)00224-6
10.1109/TSMC.2019.2907575
10.1016/j.swevo.2020.100804
10.1016/j.knosys.2017.09.026
10.1080/00207543.2014.961209
10.1016/j.knosys.2018.11.021
10.1016/j.knosys.2021.107819
10.1109/TSMC.2015.2416127
10.1051/ro/2021076
10.1504/EJIE.2012.045604
10.1016/j.knosys.2020.105527
10.1016/j.rcim.2009.06.001
10.1016/j.cie.2018.12.025
10.1016/j.swevo.2021.100992
10.1080/00401706.1992.10484904
10.1016/j.cor.2009.04.013
10.1109/TSMC.2019.2916088
10.1016/j.cor.2009.08.001
10.1016/j.cie.2020.106638
10.1016/j.cor.2013.01.024
10.1109/TASE.2012.2204874
10.1109/TCYB.2015.2444383
10.1016/j.ijpe.2015.10.002
10.1109/TASE.2015.2425404
10.1016/j.swevo.2020.100742
10.1016/j.eswa.2020.113716
10.1016/S0377-2217(99)00387-2
10.1057/palgrave.jors.2601220
10.1016/j.ejor.2005.12.009
10.1016/j.cor.2009.11.001
10.1504/EJIE.2019.097920
10.1016/j.omega.2013.12.004
10.1016/j.cor.2019.05.002
10.3182/20120523-3-RO-2023.00310
10.1016/j.rcim.2004.07.002
10.1016/j.cor.2015.12.006
10.1016/S0925-5273(03)00065-3
10.1016/j.asoc.2016.12.021
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109962
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_109962
S0950705122010553
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-e1e828972a1ae08fd9d33f8516e6f0a12fe0e5a3fbe6604189b7b8287a15fafd3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893002600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:06:16 EST 2025
Tue Nov 18 22:27:10 EST 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Blocking
Iterated greedy algorithm
Makespan
Hybrid flow shop group scheduling problem
Neighborhood probabilistic selection strategies
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e1e828972a1ae08fd9d33f8516e6f0a12fe0e5a3fbe6604189b7b8287a15fafd3
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_109962
crossref_citationtrail_10_1016_j_knosys_2022_109962
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109962
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Neufeld, Gupta, Buscher (b39) 2015; 53
Hao, Huang, Zhang, Dai, Xin (b17) 2009; 25
Trabelsi, Sauvey, Sauer (b33) 2012; 45
Liou, Hsieh (b44) 2015; 170
Zheng, Wang, Wang (b28) 2020
Meng, Pan (b57) 2021; 60
Zhang, Pan, Meng, Lu, Mou, Li (b24) 2022; 238
Costa, Cappadonna, Fichera (b42) 2017
Huang, Pan, Gao (b54) 2020; 59
He, Pan, Gao, Wang, Suganthan (b18) 2021
Ronconi (b15) 2004; 87
Qin, Han, Zhang, Meng, Liu, Pan, Gong (b37) 2022; 69
Lin, Ying (b38) 2019; 128
Ribas, Leisten, Framinan (b25) 2010; 37
Li, Pan, Duan (b31) 2016; 46
Shao, Pi, Shao (b1) 2017; 137
Wang, Wang (b8) 2020; PP
Naderi, Salmasi (b45) 2012; 6
Neufeld, Gupta, Buscher (b40) 2016; 70
Qin, Han, Chen, Li, Sang (b53) 2021
Qin, Wang, Shi, Liu, Shi (b2) 2019; PP
Aqil, Allali (b10) 2021; 100
Pan, Wang, Mao, Zhao, Zhang (b27) 2013; 10
Lei, Gao, Zheng (b4) 2017
Aqil, Allali (b59) 2020; 162
Wang, Wang (b47) 2021
Han, Han, Zhang, Qin, Li, Liu, Gong (b11) 2022; 129
Fu, Zhou, Guo, Qi (b7) 2020; 50
Keshavarz, Salmasi, Varmazyar (b46) 2019; 13
Nakkaew, Kantanantha, Wongthatsanekorn (b34) 2016; 43
Wang, Wang (b55) 2016; 46
Zhang, Pan, Gao, Zhang, Sang, Li (b52) 2017; 52
Costa, Cappadonna, Fichera (b43) 2020; 89
Pan, Gao, Wang (b22) 2020; PP
Wilson, King, Hodgson (b19) 2004; 20
Hua, Tang, Duin (b16) 2010; 37
Fernandez-Viagas, Perez-Gonzalez, Framinan (b48) 2019; 109
Meng, Pan, Wang (b3) 2019; 184
Ronconi (b14) 2001; 52
Salmasi, Logendran, Skandari (b21) 2010; 37
Shao, Shao, Pi (b23) 2020
Ham (b49) 1983
Tang, Wang (b29) 2010; 18
Shao, Pi, Shao (b9) 2019; 165
Li, Pan, Mao (b5) 2016
Zhang, Pan, Gao, Meng, Li, Peng (b32) 2020; 50
Li, Li, Gao, Meng (b56) 2020; 147
Riahi, Newton, Su, Sattar (b12) 2018; 102
Huang, Pan, Huang, Suganthan, Gao (b51) 2020; 152
Marichelvam, Prabaharan, Yang (b6) 2014
Pan, Wang, Li, Duan (b30) 2014; 45
Schaller, Gupta, Vakharia (b20) 2000; 125
Elmi, Topaloglu (b35) 2013; 40
Missaoui, Boujelbene (b36) 2021; 55
Feng, Xi, Xiao, Xia, Pan (b41) 2018; 176
Grabowski, Pempera (b13) 2000; 125
Nair, Abraham, Mackay, Nelder, Box, Phadke, Kacker, Sacks, Welch, Lorenzen (b58) 1992; 34
Jph, Qkpa, Liang (b50) 2020; 59
Ruiz, Stützle (b26) 2007; 177
Grabowski (10.1016/j.knosys.2022.109962_b13) 2000; 125
Qin (10.1016/j.knosys.2022.109962_b37) 2022; 69
Li (10.1016/j.knosys.2022.109962_b56) 2020; 147
Naderi (10.1016/j.knosys.2022.109962_b45) 2012; 6
Wang (10.1016/j.knosys.2022.109962_b8) 2020; PP
Nakkaew (10.1016/j.knosys.2022.109962_b34) 2016; 43
Zhang (10.1016/j.knosys.2022.109962_b52) 2017; 52
Fu (10.1016/j.knosys.2022.109962_b7) 2020; 50
Salmasi (10.1016/j.knosys.2022.109962_b21) 2010; 37
Costa (10.1016/j.knosys.2022.109962_b42) 2017
Aqil (10.1016/j.knosys.2022.109962_b59) 2020; 162
Hua (10.1016/j.knosys.2022.109962_b16) 2010; 37
Missaoui (10.1016/j.knosys.2022.109962_b36) 2021; 55
Qin (10.1016/j.knosys.2022.109962_b53) 2021
Zhang (10.1016/j.knosys.2022.109962_b32) 2020; 50
Huang (10.1016/j.knosys.2022.109962_b51) 2020; 152
Tang (10.1016/j.knosys.2022.109962_b29) 2010; 18
Costa (10.1016/j.knosys.2022.109962_b43) 2020; 89
Hao (10.1016/j.knosys.2022.109962_b17) 2009; 25
Trabelsi (10.1016/j.knosys.2022.109962_b33) 2012; 45
Lin (10.1016/j.knosys.2022.109962_b38) 2019; 128
Lei (10.1016/j.knosys.2022.109962_b4) 2017
Han (10.1016/j.knosys.2022.109962_b11) 2022; 129
Liou (10.1016/j.knosys.2022.109962_b44) 2015; 170
Qin (10.1016/j.knosys.2022.109962_b2) 2019; PP
Fernandez-Viagas (10.1016/j.knosys.2022.109962_b48) 2019; 109
Shao (10.1016/j.knosys.2022.109962_b1) 2017; 137
Shao (10.1016/j.knosys.2022.109962_b9) 2019; 165
Wang (10.1016/j.knosys.2022.109962_b55) 2016; 46
Neufeld (10.1016/j.knosys.2022.109962_b40) 2016; 70
Feng (10.1016/j.knosys.2022.109962_b41) 2018; 176
Ronconi (10.1016/j.knosys.2022.109962_b15) 2004; 87
Huang (10.1016/j.knosys.2022.109962_b54) 2020; 59
Ruiz (10.1016/j.knosys.2022.109962_b26) 2007; 177
Elmi (10.1016/j.knosys.2022.109962_b35) 2013; 40
Zhang (10.1016/j.knosys.2022.109962_b24) 2022; 238
Pan (10.1016/j.knosys.2022.109962_b30) 2014; 45
Jph (10.1016/j.knosys.2022.109962_b50) 2020; 59
Wilson (10.1016/j.knosys.2022.109962_b19) 2004; 20
Riahi (10.1016/j.knosys.2022.109962_b12) 2018; 102
Pan (10.1016/j.knosys.2022.109962_b27) 2013; 10
Li (10.1016/j.knosys.2022.109962_b31) 2016; 46
Marichelvam (10.1016/j.knosys.2022.109962_b6) 2014
Pan (10.1016/j.knosys.2022.109962_b22) 2020; PP
Neufeld (10.1016/j.knosys.2022.109962_b39) 2015; 53
He (10.1016/j.knosys.2022.109962_b18) 2021
Keshavarz (10.1016/j.knosys.2022.109962_b46) 2019; 13
Meng (10.1016/j.knosys.2022.109962_b3) 2019; 184
Li (10.1016/j.knosys.2022.109962_b5) 2016
Wang (10.1016/j.knosys.2022.109962_b47) 2021
Ronconi (10.1016/j.knosys.2022.109962_b14) 2001; 52
Schaller (10.1016/j.knosys.2022.109962_b20) 2000; 125
Meng (10.1016/j.knosys.2022.109962_b57) 2021; 60
Ribas (10.1016/j.knosys.2022.109962_b25) 2010; 37
Ham (10.1016/j.knosys.2022.109962_b49) 1983
Nair (10.1016/j.knosys.2022.109962_b58) 1992; 34
Aqil (10.1016/j.knosys.2022.109962_b10) 2021; 100
Zheng (10.1016/j.knosys.2022.109962_b28) 2020
Shao (10.1016/j.knosys.2022.109962_b23) 2020
References_xml – year: 2020
  ident: b23
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 176
  start-page: 218
  year: 2018
  end-page: 229
  ident: b41
  article-title: Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 129
  year: 2022
  ident: b11
  article-title: An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion
  publication-title: Appl. Soft Comput.
– volume: 69
  year: 2022
  ident: b37
  article-title: An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b53
  article-title: A double level mutation iterated greedy algorithm for blocking hybrid flow shop scheduling
  publication-title: Control Decis.
– volume: PP
  start-page: 1
  year: 2019
  end-page: 12
  ident: b2
  article-title: A genetic programming-based scheduling approach for hybrid flow shop with a batch processor and waiting time constraint
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 100
  year: 2021
  ident: b10
  article-title: Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 109
  start-page: 77
  year: 2019
  end-page: 88
  ident: b48
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective
  publication-title: Comput. Oper. Res.
– volume: 125
  start-page: 324
  year: 2000
  end-page: 339
  ident: b20
  article-title: Scheduling a flowline manufacturing cell with sequence dependent family setup times
  publication-title: European J. Oper. Res.
– volume: 37
  start-page: 199
  year: 2010
  end-page: 212
  ident: b21
  article-title: Total flow time minimization in a flowshop sequence-dependent group scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 46
  start-page: 139
  year: 2016
  end-page: 149
  ident: b55
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 45
  start-page: 42
  year: 2014
  end-page: 56
  ident: b30
  article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation
  publication-title: Omega
– volume: 165
  start-page: 110
  year: 2019
  end-page: 131
  ident: b9
  article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 147
  year: 2020
  ident: b56
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Comput. Ind. Eng.
– volume: 34
  start-page: 127
  year: 1992
  end-page: 161
  ident: b58
  article-title: Taguchis̈ parameter design: A panel discussion
  publication-title: Technometrics
– year: 2014
  ident: b6
  article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems
  publication-title: IEEE Press
– volume: 50
  start-page: 4984
  year: 2020
  end-page: 4999
  ident: b32
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– start-page: 932
  year: 2016
  end-page: 949
  ident: b5
  article-title: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 59
  year: 2020
  ident: b50
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
– volume: 170
  start-page: 258
  year: 2015
  end-page: 267
  ident: b44
  article-title: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times
  publication-title: Int. J. Prod. Econ.
– volume: 13
  start-page: 54
  year: 2019
  ident: b46
  article-title: Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness
  publication-title: Eur. J. Ind. Eng.
– volume: PP
  start-page: 1
  year: 2020
  end-page: 15
  ident: b8
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 20
  start-page: 505
  year: 2004
  end-page: 51513
  ident: b19
  article-title: Scheduling non-similar groups on a flow line: multiple group setups
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 70
  start-page: 56
  year: 2016
  end-page: 74
  ident: b40
  article-title: A comprehensive review of flowshop group scheduling literature
  publication-title: Comput. Oper. Res.
– volume: 238
  year: 2022
  ident: b24
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 177
  year: 2012
  ident: b45
  article-title: Permutation flowshops in group scheduling with sequence-dependent setup times
  publication-title: Eur. J. Ind. Eng.
– volume: 18
  start-page: 1303
  year: 2010
  end-page: 1314
  ident: b29
  article-title: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 125
  start-page: 535
  year: 2000
  end-page: 550
  ident: b13
  article-title: Sequencing of jobs in some production system
  publication-title: European J. Oper. Res.
– volume: 10
  start-page: 307
  year: 2013
  end-page: 322
  ident: b27
  article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 45
  start-page: 1475
  year: 2012
  end-page: 1480
  ident: b33
  article-title: Mathematical model and lower bound for hybrid flowshop problem with mixed blocking constraints
  publication-title: IFAC Proc. Vol.
– volume: 43
  year: 2016
  ident: b34
  article-title: A comparison of genetic algorithm and artificial bee colony approaches in solving blocking hybrid flowshop scheduling problem with sequence dependent setup/changeover times
  publication-title: KKU Eng. J.
– volume: 152
  year: 2020
  ident: b51
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 60
  year: 2021
  ident: b57
  article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time
  publication-title: Swarm Evol. Comput.
– year: 2017
  ident: b42
  article-title: A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem
  publication-title: J. Intell. Manuf.
– volume: 25
  start-page: 962
  year: 2009
  end-page: 971
  ident: b17
  article-title: Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 37
  start-page: 1439
  year: 2010
  end-page: 1454
  ident: b25
  article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective
  publication-title: Comput. Oper. Res.
– volume: PP
  start-page: 1
  year: 2020
  end-page: 14
  ident: b22
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Trans. Cybern.
– volume: 59
  year: 2020
  ident: b54
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
– volume: 162
  year: 2020
  ident: b59
  article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing
  publication-title: Expert Syst. Appl.
– volume: 87
  start-page: 39
  year: 2004
  end-page: 48
  ident: b15
  article-title: A note on constructive heuristics for the flowshop problem with blocking
  publication-title: Int. J. Prod. Econ.
– year: 2021
  ident: b47
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 53
  start-page: 1791
  year: 2015
  end-page: 1806
  ident: b39
  article-title: Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times
  publication-title: Int. J. Prod. Res.
– volume: 52
  start-page: 14
  year: 2017
  end-page: 27
  ident: b52
  article-title: An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming
  publication-title: Appl. Soft Comput.
– volume: 184
  start-page: 104894.1
  year: 2019
  end-page: 104894.17
  ident: b3
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowl.-Based Syst.
– volume: 102
  start-page: 102
  year: 2018
  end-page: 120
  ident: b12
  article-title: Constraint guided accelerated search for mixed blocking permutation flowshop scheduling
  publication-title: Comput. Oper. Res.
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: b26
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European J. Oper. Res.
– volume: 40
  start-page: 2543
  year: 2013
  end-page: 2555
  ident: b35
  article-title: A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots
  publication-title: Comput. Oper. Res.
– volume: 128
  start-page: 1
  year: 2019
  end-page: 7
  ident: b38
  article-title: Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times
  publication-title: Comput. Ind. Eng.
– volume: 137
  start-page: 163
  year: 2017
  end-page: 181
  ident: b1
  article-title: Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2017
  end-page: 11
  ident: b4
  article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop
  publication-title: IEEE Trans. Eng. Manage.
– year: 2020
  ident: b28
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowl.-Based Syst.
– volume: 89
  start-page: 103413.1
  year: 2020
  end-page: 103413.15
  ident: b43
  article-title: Minimizing makespan in a flow shop sequence dependent group scheduling problem with blocking constraint
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 1289
  year: 2001
  end-page: 1297
  ident: b14
  article-title: Lower bounding schemes for flowshops with blocking in-process
  publication-title: J. Oper. Res. Soc.
– volume: 50
  start-page: 5037
  year: 2020
  end-page: 5048
  ident: b7
  article-title: Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 46
  start-page: 1311
  year: 2016
  end-page: 1324
  ident: b31
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2021
  ident: b18
  article-title: A greedy cooperative co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 1603
  year: 2021
  end-page: 1616
  ident: b36
  article-title: An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window
  publication-title: RAIRO - Oper. Res.
– volume: 37
  start-page: 960
  year: 2010
  end-page: 969
  ident: b16
  article-title: A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times
  publication-title: Comput. Oper. Res.
– year: 1983
  ident: b49
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 176
  start-page: 218
  issue: aug.
  year: 2018
  ident: 10.1016/j.knosys.2022.109962_b41
  article-title: Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.04.004
– year: 2017
  ident: 10.1016/j.knosys.2022.109962_b42
  article-title: A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1049-1
– volume: 102
  start-page: 102
  issue: FEB.
  year: 2018
  ident: 10.1016/j.knosys.2022.109962_b12
  article-title: Constraint guided accelerated search for mixed blocking permutation flowshop scheduling
  publication-title: Comput. Oper. Res.
– volume: 184
  start-page: 104894.1
  issue: Nov.15
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b3
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowl.-Based Syst.
– volume: 125
  start-page: 535
  issue: 3
  year: 2000
  ident: 10.1016/j.knosys.2022.109962_b13
  article-title: Sequencing of jobs in some production system
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00224-6
– volume: 50
  start-page: 5037
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b7
  article-title: Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2907575
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109962_b53
  article-title: A double level mutation iterated greedy algorithm for blocking hybrid flow shop scheduling
  publication-title: Control Decis.
– volume: 152
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b51
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109962_b18
  article-title: A greedy cooperative co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 60
  year: 2021
  ident: 10.1016/j.knosys.2022.109962_b57
  article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100804
– volume: 137
  start-page: 163
  issue: dec.1
  year: 2017
  ident: 10.1016/j.knosys.2022.109962_b1
  article-title: Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.09.026
– volume: 53
  start-page: 1791
  issue: 6
  year: 2015
  ident: 10.1016/j.knosys.2022.109962_b39
  article-title: Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.961209
– year: 1983
  ident: 10.1016/j.knosys.2022.109962_b49
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 165
  start-page: 110
  issue: FEB.1
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b9
  article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.021
– volume: 18
  start-page: 1303
  issue: 6
  year: 2010
  ident: 10.1016/j.knosys.2022.109962_b29
  article-title: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 238
  year: 2022
  ident: 10.1016/j.knosys.2022.109962_b24
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107819
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.109962_b55
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2015.2416127
– volume: 55
  start-page: 1603
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109962_b36
  article-title: An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window
  publication-title: RAIRO - Oper. Res.
  doi: 10.1051/ro/2021076
– volume: 6
  start-page: 177
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2022.109962_b45
  article-title: Permutation flowshops in group scheduling with sequence-dependent setup times
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2012.045604
– year: 2020
  ident: 10.1016/j.knosys.2022.109962_b23
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105527
– volume: 25
  start-page: 962
  issue: 6
  year: 2009
  ident: 10.1016/j.knosys.2022.109962_b17
  article-title: Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2009.06.001
– volume: 128
  start-page: 1
  issue: FEB.
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b38
  article-title: Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.12.025
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2022.109962_b4
  article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop
  publication-title: IEEE Trans. Eng. Manage.
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b8
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 69
  year: 2022
  ident: 10.1016/j.knosys.2022.109962_b37
  article-title: An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100992
– volume: 34
  start-page: 127
  issue: 2
  year: 1992
  ident: 10.1016/j.knosys.2022.109962_b58
  article-title: Taguchis̈ parameter design: A panel discussion
  publication-title: Technometrics
  doi: 10.1080/00401706.1992.10484904
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b2
  article-title: A genetic programming-based scheduling approach for hybrid flow shop with a batch processor and waiting time constraint
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 37
  start-page: 199
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2022.109962_b21
  article-title: Total flow time minimization in a flowshop sequence-dependent group scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.04.013
– volume: 50
  start-page: 4984
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b32
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2916088
– volume: 37
  start-page: 960
  issue: 5
  year: 2010
  ident: 10.1016/j.knosys.2022.109962_b16
  article-title: A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.08.001
– year: 2020
  ident: 10.1016/j.knosys.2022.109962_b28
  article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop
  publication-title: Knowl.-Based Syst.
– volume: 100
  issue: 104196
  year: 2021
  ident: 10.1016/j.knosys.2022.109962_b10
  article-title: Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 147
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b56
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106638
– volume: 40
  start-page: 2543
  issue: 10
  year: 2013
  ident: 10.1016/j.knosys.2022.109962_b35
  article-title: A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.01.024
– volume: 10
  start-page: 307
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2022.109962_b27
  article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2204874
– volume: 43
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2022.109962_b34
  article-title: A comparison of genetic algorithm and artificial bee colony approaches in solving blocking hybrid flowshop scheduling problem with sequence dependent setup/changeover times
  publication-title: KKU Eng. J.
– volume: 46
  start-page: 1311
  issue: 6
  year: 2016
  ident: 10.1016/j.knosys.2022.109962_b31
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2444383
– volume: 89
  start-page: 103413.1
  issue: Mar.
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b43
  article-title: Minimizing makespan in a flow shop sequence dependent group scheduling problem with blocking constraint
  publication-title: Eng. Appl. Artif. Intell.
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b22
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEE Trans. Cybern.
– volume: 129
  issue: 109502
  year: 2022
  ident: 10.1016/j.knosys.2022.109962_b11
  article-title: An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion
  publication-title: Appl. Soft Comput.
– volume: 170
  start-page: 258
  issue: DEC.PT.A
  year: 2015
  ident: 10.1016/j.knosys.2022.109962_b44
  article-title: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2015.10.002
– start-page: 932
  year: 2016
  ident: 10.1016/j.knosys.2022.109962_b5
  article-title: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2425404
– volume: 59
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b54
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100742
– volume: 162
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b59
  article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113716
– year: 2014
  ident: 10.1016/j.knosys.2022.109962_b6
  article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems
  publication-title: IEEE Press
– volume: 125
  start-page: 324
  issue: 2
  year: 2000
  ident: 10.1016/j.knosys.2022.109962_b20
  article-title: Scheduling a flowline manufacturing cell with sequence dependent family setup times
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00387-2
– volume: 52
  start-page: 1289
  year: 2001
  ident: 10.1016/j.knosys.2022.109962_b14
  article-title: Lower bounding schemes for flowshops with blocking in-process
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601220
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  ident: 10.1016/j.knosys.2022.109962_b26
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.009
– volume: 37
  start-page: 1439
  issue: 8
  year: 2010
  ident: 10.1016/j.knosys.2022.109962_b25
  article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.11.001
– year: 2021
  ident: 10.1016/j.knosys.2022.109962_b47
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 54
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b46
  article-title: Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2019.097920
– volume: 59
  year: 2020
  ident: 10.1016/j.knosys.2022.109962_b50
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
– volume: 45
  start-page: 42
  issue: jun.
  year: 2014
  ident: 10.1016/j.knosys.2022.109962_b30
  article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation
  publication-title: Omega
  doi: 10.1016/j.omega.2013.12.004
– volume: 109
  start-page: 77
  issue: SEP.
  year: 2019
  ident: 10.1016/j.knosys.2022.109962_b48
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.05.002
– volume: 45
  start-page: 1475
  issue: 6
  year: 2012
  ident: 10.1016/j.knosys.2022.109962_b33
  article-title: Mathematical model and lower bound for hybrid flowshop problem with mixed blocking constraints
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120523-3-RO-2023.00310
– volume: 20
  start-page: 505
  issue: 6
  year: 2004
  ident: 10.1016/j.knosys.2022.109962_b19
  article-title: Scheduling non-similar groups on a flow line: multiple group setups
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2004.07.002
– volume: 70
  start-page: 56
  issue: Jun.
  year: 2016
  ident: 10.1016/j.knosys.2022.109962_b40
  article-title: A comprehensive review of flowshop group scheduling literature
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.12.006
– volume: 87
  start-page: 39
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2022.109962_b15
  article-title: A note on constructive heuristics for the flowshop problem with blocking
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/S0925-5273(03)00065-3
– volume: 52
  start-page: 14
  year: 2017
  ident: 10.1016/j.knosys.2022.109962_b52
  article-title: An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.021
SSID ssj0002218
Score 2.5548854
Snippet This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109962
SubjectTerms Blocking
Hybrid flow shop group scheduling problem
Iterated greedy algorithm
Makespan
Neighborhood probabilistic selection strategies
Title Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem
URI https://dx.doi.org/10.1016/j.knosys.2022.109962
Volume 258
WOSCitedRecordID wos000893002600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0hy4WY78qL1ebhEqaqGqQCqQnqyNvZu4Te0odUL6D_gf_FFmH35AUaEHLitrtTu2M59nZybzIOR1wnLKIkHdPA5zV6VCujzhmStknIQCVYpER7t_OaRHR8l4zD4OBj-aXJj1nJZlstmwxX9lNc4hs1Xq7A3Y3RLFCbxGpuOIbMfxnxh_0BbZrJ0KBcK5zbTUHW-XKlI9OzOZtqp4LC9UIIVOTy-rtVANPFSZZVRD0RBHCezw-bRaFvXsvA1InF2qLC9HzqtvzsWsWjg6M8RBMxmPLZvdrrvU9BXfD43vzlXnZm4rSLcK_SdTymCfVxvE67STi3r6ZHXZgfir9XCfrOqiW3lYrPSkasU97bsyAt1VJeh7N1nkudSzFWiteA5MaXcrYNUfeUZ8X5H9xg1xOjwrK3yHobrBsFv-a6nt347ANjCxiXk7TQ2VVFFJDZVbZDugEUPRuT062Bu_bw_8INBu5PbpmwxNHUZ49Wn-rAH1tJrj--SuNUdgZGD0gAxE-ZDca1p9gJX8j8j3HqqgjyrQqIIGVdBD1RsYgcYUNJgCgyloMQWIKUBMgcEUKEyBwhRoTEGHKbCYekw-v9s7frvv2iYebobWaO0KXyijngbc58JLZM7yMJSo58cilh73Ayk8EfFQTkQce7t-wiZ0orowcD-SXObhE7JVVqV4SoD6XIYRjhnaGdEkmCAB1PFwK_MYlWyHhM0Pm2a2wr1643l6HVt3iNvuWpgKL39ZTxuepVZLNdpnikC8duezG97pObnTfSUvyFa9XImX5Ha2rouL5SuLwp9vo75v
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+optimization+under+blocking+constraints%3A+A+novel+iterated+greedy+algorithm+for+the+hybrid+flow+shop+group+scheduling+problem&rft.jtitle=Knowledge-based+systems&rft.au=Qin%2C+Haoxiang&rft.au=Han%2C+Yuyan&rft.au=Wang%2C+Yuting&rft.au=Liu%2C+Yiping&rft.date=2022-12-22&rft.issn=0950-7051&rft.volume=258&rft.spage=109962&rft_id=info:doi/10.1016%2Fj.knosys.2022.109962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_109962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon