Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem
This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 258; s. 109962 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
22.12.2022
|
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and processed at organized manufacturing cells. We verify the correctness of the mathematical model of BHFGSP by using CPLEX. In this paper, we proposed a novel iterated greedy algorithm to solve the problem. The proposed algorithm has two key techniques. One is the decoding procedure that calculates the makespan of a job sequence, and the other is the neighborhood probabilistic selection strategies with families and blocking-based jobs. The performance of the proposed algorithm is investigated through a large number of numerical experiments. Comprehensive results show that the proposed algorithm is effective in solving BHFGSP. |
|---|---|
| AbstractList | This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the problem, no buffers exist between any adjacent machines, and a set of jobs with different sequence-dependent setup times needs to be scheduled and processed at organized manufacturing cells. We verify the correctness of the mathematical model of BHFGSP by using CPLEX. In this paper, we proposed a novel iterated greedy algorithm to solve the problem. The proposed algorithm has two key techniques. One is the decoding procedure that calculates the makespan of a job sequence, and the other is the neighborhood probabilistic selection strategies with families and blocking-based jobs. The performance of the proposed algorithm is investigated through a large number of numerical experiments. Comprehensive results show that the proposed algorithm is effective in solving BHFGSP. |
| ArticleNumber | 109962 |
| Author | Han, Yuyan Pan, Quanke Qin, Haoxiang Wang, Yuting Li, Junqing Liu, Yiping |
| Author_xml | – sequence: 1 givenname: Haoxiang surname: Qin fullname: Qin, Haoxiang organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 2 givenname: Yuyan surname: Han fullname: Han, Yuyan email: hanyuyan@lcu-cs.com organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 3 givenname: Yuting surname: Wang fullname: Wang, Yuting email: wangyuting@lcu-cs.com organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 4 givenname: Yiping surname: Liu fullname: Liu, Yiping organization: The College of Computer Science and Electronic Engineering, Hunan University, 410082, China – sequence: 5 givenname: Junqing surname: Li fullname: Li, Junqing organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 6 givenname: Quanke surname: Pan fullname: Pan, Quanke organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China |
| BookMark | eNqFkM1OAjEUhRuDiYC-gYu-wGA7w_yxMCHEHxISN7puOu0tUyjtpC0YfAIf20FcudDVTU7Od5L7jdDAOgsI3VIyoYQWd5vJ1rpwDJOUpGkf1XWRXqAhrco0KaekHqAhqXOSlCSnV2gUwoaQvkmrIfpc2gjG6DXYiF0X9U5_8KidxXsrwePGOLHVdo2FsyF6rm0MMzzH1h3AYB3B8wgSrz2APGJu1s7r2O6wch7HFnB7bLyWWBn3jkPrur7p9h0OogW5N6fhzrvGwO4aXSpuAtz83DF6e3x4XTwnq5en5WK-SkRGipgAhSqt6jLllAOplKxllqkqpwUUinCaKiCQ80w1UBRkSqu6KZueKDnNFVcyG6PpeVd4F4IHxTqvd9wfGSXsZJNt2NkmO9lkZ5s9NvuFCR2_RZ2kmP_g-zMM_WMHDZ4FocEKkNqDiEw6_ffAF8KgmjM |
| CitedBy_id | crossref_primary_10_1016_j_cie_2024_110635 crossref_primary_10_3390_app15115947 crossref_primary_10_1007_s12293_025_00454_6 crossref_primary_10_1016_j_jclepro_2023_137054 crossref_primary_10_3390_math11112453 crossref_primary_10_1016_j_cie_2024_110379 crossref_primary_10_1080_00207543_2023_2253925 crossref_primary_10_32604_cmc_2024_050612 crossref_primary_10_1016_j_asoc_2024_111593 crossref_primary_10_1109_ACCESS_2023_3293029 crossref_primary_10_1109_TEVC_2023_3312769 crossref_primary_10_1016_j_asoc_2025_113475 crossref_primary_10_1016_j_swevo_2024_101757 crossref_primary_10_1016_j_eswa_2023_121856 crossref_primary_10_1016_j_ins_2025_121971 crossref_primary_10_1016_j_cie_2025_111488 crossref_primary_10_1016_j_swevo_2024_101479 crossref_primary_10_1109_TASE_2024_3421889 crossref_primary_10_1016_j_optlastec_2023_110018 crossref_primary_10_1038_s41598_024_80785_5 crossref_primary_10_1016_j_cie_2025_110949 crossref_primary_10_1109_TEVC_2023_3339558 crossref_primary_10_1016_j_cirpj_2025_04_006 crossref_primary_10_1007_s42524_022_0242_0 crossref_primary_10_1016_j_orp_2025_100340 crossref_primary_10_1016_j_eswa_2023_120909 crossref_primary_10_1016_j_knosys_2023_110808 crossref_primary_10_1016_j_ejor_2023_05_010 crossref_primary_10_1016_j_eswa_2023_119805 crossref_primary_10_1016_j_eswa_2023_120878 crossref_primary_10_1016_j_ejor_2024_05_015 crossref_primary_10_1080_00207543_2023_2262616 crossref_primary_10_3390_app15063133 crossref_primary_10_1109_ACCESS_2023_3234428 crossref_primary_10_1016_j_knosys_2025_113424 crossref_primary_10_1016_j_swevo_2024_101604 crossref_primary_10_1016_j_swevo_2025_101849 crossref_primary_10_1016_j_eswa_2023_121667 crossref_primary_10_1016_j_swevo_2025_101965 crossref_primary_10_1016_j_swevo_2024_101545 crossref_primary_10_1007_s11081_024_09911_6 crossref_primary_10_1080_0305215X_2025_2507285 crossref_primary_10_1016_j_ress_2024_109990 crossref_primary_10_1016_j_eswa_2024_125101 crossref_primary_10_1109_ACCESS_2023_3268214 crossref_primary_10_1080_23311916_2023_2206074 |
| Cites_doi | 10.1016/j.ress.2018.04.004 10.1007/s10845-015-1049-1 10.1016/S0377-2217(99)00224-6 10.1109/TSMC.2019.2907575 10.1016/j.swevo.2020.100804 10.1016/j.knosys.2017.09.026 10.1080/00207543.2014.961209 10.1016/j.knosys.2018.11.021 10.1016/j.knosys.2021.107819 10.1109/TSMC.2015.2416127 10.1051/ro/2021076 10.1504/EJIE.2012.045604 10.1016/j.knosys.2020.105527 10.1016/j.rcim.2009.06.001 10.1016/j.cie.2018.12.025 10.1016/j.swevo.2021.100992 10.1080/00401706.1992.10484904 10.1016/j.cor.2009.04.013 10.1109/TSMC.2019.2916088 10.1016/j.cor.2009.08.001 10.1016/j.cie.2020.106638 10.1016/j.cor.2013.01.024 10.1109/TASE.2012.2204874 10.1109/TCYB.2015.2444383 10.1016/j.ijpe.2015.10.002 10.1109/TASE.2015.2425404 10.1016/j.swevo.2020.100742 10.1016/j.eswa.2020.113716 10.1016/S0377-2217(99)00387-2 10.1057/palgrave.jors.2601220 10.1016/j.ejor.2005.12.009 10.1016/j.cor.2009.11.001 10.1504/EJIE.2019.097920 10.1016/j.omega.2013.12.004 10.1016/j.cor.2019.05.002 10.3182/20120523-3-RO-2023.00310 10.1016/j.rcim.2004.07.002 10.1016/j.cor.2015.12.006 10.1016/S0925-5273(03)00065-3 10.1016/j.asoc.2016.12.021 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2022.109962 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2022_109962 S0950705122010553 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-e1e828972a1ae08fd9d33f8516e6f0a12fe0e5a3fbe6604189b7b8287a15fafd3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893002600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:06:16 EST 2025 Tue Nov 18 22:27:10 EST 2025 Fri Feb 23 02:39:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Blocking Iterated greedy algorithm Makespan Hybrid flow shop group scheduling problem Neighborhood probabilistic selection strategies |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e1e828972a1ae08fd9d33f8516e6f0a12fe0e5a3fbe6604189b7b8287a15fafd3 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2022_109962 crossref_citationtrail_10_1016_j_knosys_2022_109962 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109962 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-22 |
| PublicationDateYYYYMMDD | 2022-12-22 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Neufeld, Gupta, Buscher (b39) 2015; 53 Hao, Huang, Zhang, Dai, Xin (b17) 2009; 25 Trabelsi, Sauvey, Sauer (b33) 2012; 45 Liou, Hsieh (b44) 2015; 170 Zheng, Wang, Wang (b28) 2020 Meng, Pan (b57) 2021; 60 Zhang, Pan, Meng, Lu, Mou, Li (b24) 2022; 238 Costa, Cappadonna, Fichera (b42) 2017 Huang, Pan, Gao (b54) 2020; 59 He, Pan, Gao, Wang, Suganthan (b18) 2021 Ronconi (b15) 2004; 87 Qin, Han, Zhang, Meng, Liu, Pan, Gong (b37) 2022; 69 Lin, Ying (b38) 2019; 128 Ribas, Leisten, Framinan (b25) 2010; 37 Li, Pan, Duan (b31) 2016; 46 Shao, Pi, Shao (b1) 2017; 137 Wang, Wang (b8) 2020; PP Naderi, Salmasi (b45) 2012; 6 Neufeld, Gupta, Buscher (b40) 2016; 70 Qin, Han, Chen, Li, Sang (b53) 2021 Qin, Wang, Shi, Liu, Shi (b2) 2019; PP Aqil, Allali (b10) 2021; 100 Pan, Wang, Mao, Zhao, Zhang (b27) 2013; 10 Lei, Gao, Zheng (b4) 2017 Aqil, Allali (b59) 2020; 162 Wang, Wang (b47) 2021 Han, Han, Zhang, Qin, Li, Liu, Gong (b11) 2022; 129 Fu, Zhou, Guo, Qi (b7) 2020; 50 Keshavarz, Salmasi, Varmazyar (b46) 2019; 13 Nakkaew, Kantanantha, Wongthatsanekorn (b34) 2016; 43 Wang, Wang (b55) 2016; 46 Zhang, Pan, Gao, Zhang, Sang, Li (b52) 2017; 52 Costa, Cappadonna, Fichera (b43) 2020; 89 Pan, Gao, Wang (b22) 2020; PP Wilson, King, Hodgson (b19) 2004; 20 Hua, Tang, Duin (b16) 2010; 37 Fernandez-Viagas, Perez-Gonzalez, Framinan (b48) 2019; 109 Meng, Pan, Wang (b3) 2019; 184 Ronconi (b14) 2001; 52 Salmasi, Logendran, Skandari (b21) 2010; 37 Shao, Shao, Pi (b23) 2020 Ham (b49) 1983 Tang, Wang (b29) 2010; 18 Shao, Pi, Shao (b9) 2019; 165 Li, Pan, Mao (b5) 2016 Zhang, Pan, Gao, Meng, Li, Peng (b32) 2020; 50 Li, Li, Gao, Meng (b56) 2020; 147 Riahi, Newton, Su, Sattar (b12) 2018; 102 Huang, Pan, Huang, Suganthan, Gao (b51) 2020; 152 Marichelvam, Prabaharan, Yang (b6) 2014 Pan, Wang, Li, Duan (b30) 2014; 45 Schaller, Gupta, Vakharia (b20) 2000; 125 Elmi, Topaloglu (b35) 2013; 40 Missaoui, Boujelbene (b36) 2021; 55 Feng, Xi, Xiao, Xia, Pan (b41) 2018; 176 Grabowski, Pempera (b13) 2000; 125 Nair, Abraham, Mackay, Nelder, Box, Phadke, Kacker, Sacks, Welch, Lorenzen (b58) 1992; 34 Jph, Qkpa, Liang (b50) 2020; 59 Ruiz, Stützle (b26) 2007; 177 Grabowski (10.1016/j.knosys.2022.109962_b13) 2000; 125 Qin (10.1016/j.knosys.2022.109962_b37) 2022; 69 Li (10.1016/j.knosys.2022.109962_b56) 2020; 147 Naderi (10.1016/j.knosys.2022.109962_b45) 2012; 6 Wang (10.1016/j.knosys.2022.109962_b8) 2020; PP Nakkaew (10.1016/j.knosys.2022.109962_b34) 2016; 43 Zhang (10.1016/j.knosys.2022.109962_b52) 2017; 52 Fu (10.1016/j.knosys.2022.109962_b7) 2020; 50 Salmasi (10.1016/j.knosys.2022.109962_b21) 2010; 37 Costa (10.1016/j.knosys.2022.109962_b42) 2017 Aqil (10.1016/j.knosys.2022.109962_b59) 2020; 162 Hua (10.1016/j.knosys.2022.109962_b16) 2010; 37 Missaoui (10.1016/j.knosys.2022.109962_b36) 2021; 55 Qin (10.1016/j.knosys.2022.109962_b53) 2021 Zhang (10.1016/j.knosys.2022.109962_b32) 2020; 50 Huang (10.1016/j.knosys.2022.109962_b51) 2020; 152 Tang (10.1016/j.knosys.2022.109962_b29) 2010; 18 Costa (10.1016/j.knosys.2022.109962_b43) 2020; 89 Hao (10.1016/j.knosys.2022.109962_b17) 2009; 25 Trabelsi (10.1016/j.knosys.2022.109962_b33) 2012; 45 Lin (10.1016/j.knosys.2022.109962_b38) 2019; 128 Lei (10.1016/j.knosys.2022.109962_b4) 2017 Han (10.1016/j.knosys.2022.109962_b11) 2022; 129 Liou (10.1016/j.knosys.2022.109962_b44) 2015; 170 Qin (10.1016/j.knosys.2022.109962_b2) 2019; PP Fernandez-Viagas (10.1016/j.knosys.2022.109962_b48) 2019; 109 Shao (10.1016/j.knosys.2022.109962_b1) 2017; 137 Shao (10.1016/j.knosys.2022.109962_b9) 2019; 165 Wang (10.1016/j.knosys.2022.109962_b55) 2016; 46 Neufeld (10.1016/j.knosys.2022.109962_b40) 2016; 70 Feng (10.1016/j.knosys.2022.109962_b41) 2018; 176 Ronconi (10.1016/j.knosys.2022.109962_b15) 2004; 87 Huang (10.1016/j.knosys.2022.109962_b54) 2020; 59 Ruiz (10.1016/j.knosys.2022.109962_b26) 2007; 177 Elmi (10.1016/j.knosys.2022.109962_b35) 2013; 40 Zhang (10.1016/j.knosys.2022.109962_b24) 2022; 238 Pan (10.1016/j.knosys.2022.109962_b30) 2014; 45 Jph (10.1016/j.knosys.2022.109962_b50) 2020; 59 Wilson (10.1016/j.knosys.2022.109962_b19) 2004; 20 Riahi (10.1016/j.knosys.2022.109962_b12) 2018; 102 Pan (10.1016/j.knosys.2022.109962_b27) 2013; 10 Li (10.1016/j.knosys.2022.109962_b31) 2016; 46 Marichelvam (10.1016/j.knosys.2022.109962_b6) 2014 Pan (10.1016/j.knosys.2022.109962_b22) 2020; PP Neufeld (10.1016/j.knosys.2022.109962_b39) 2015; 53 He (10.1016/j.knosys.2022.109962_b18) 2021 Keshavarz (10.1016/j.knosys.2022.109962_b46) 2019; 13 Meng (10.1016/j.knosys.2022.109962_b3) 2019; 184 Li (10.1016/j.knosys.2022.109962_b5) 2016 Wang (10.1016/j.knosys.2022.109962_b47) 2021 Ronconi (10.1016/j.knosys.2022.109962_b14) 2001; 52 Schaller (10.1016/j.knosys.2022.109962_b20) 2000; 125 Meng (10.1016/j.knosys.2022.109962_b57) 2021; 60 Ribas (10.1016/j.knosys.2022.109962_b25) 2010; 37 Ham (10.1016/j.knosys.2022.109962_b49) 1983 Nair (10.1016/j.knosys.2022.109962_b58) 1992; 34 Aqil (10.1016/j.knosys.2022.109962_b10) 2021; 100 Zheng (10.1016/j.knosys.2022.109962_b28) 2020 Shao (10.1016/j.knosys.2022.109962_b23) 2020 |
| References_xml | – year: 2020 ident: b23 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl.-Based Syst. – volume: 176 start-page: 218 year: 2018 end-page: 229 ident: b41 article-title: Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling publication-title: Reliab. Eng. Syst. Saf. – volume: 129 year: 2022 ident: b11 article-title: An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion publication-title: Appl. Soft Comput. – volume: 69 year: 2022 ident: b37 article-title: An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem publication-title: Swarm Evol. Comput. – start-page: 1 year: 2021 end-page: 10 ident: b53 article-title: A double level mutation iterated greedy algorithm for blocking hybrid flow shop scheduling publication-title: Control Decis. – volume: PP start-page: 1 year: 2019 end-page: 12 ident: b2 article-title: A genetic programming-based scheduling approach for hybrid flow shop with a batch processor and waiting time constraint publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 100 year: 2021 ident: b10 article-title: Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem publication-title: Eng. Appl. Artif. Intell. – volume: 109 start-page: 77 year: 2019 end-page: 88 ident: b48 article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective publication-title: Comput. Oper. Res. – volume: 125 start-page: 324 year: 2000 end-page: 339 ident: b20 article-title: Scheduling a flowline manufacturing cell with sequence dependent family setup times publication-title: European J. Oper. Res. – volume: 37 start-page: 199 year: 2010 end-page: 212 ident: b21 article-title: Total flow time minimization in a flowshop sequence-dependent group scheduling problem publication-title: Comput. Oper. Res. – volume: 46 start-page: 139 year: 2016 end-page: 149 ident: b55 article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 45 start-page: 42 year: 2014 end-page: 56 ident: b30 article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation publication-title: Omega – volume: 165 start-page: 110 year: 2019 end-page: 131 ident: b9 article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. – volume: 147 year: 2020 ident: b56 article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Ind. Eng. – volume: 34 start-page: 127 year: 1992 end-page: 161 ident: b58 article-title: Taguchis̈ parameter design: A panel discussion publication-title: Technometrics – year: 2014 ident: b6 article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems publication-title: IEEE Press – volume: 50 start-page: 4984 year: 2020 end-page: 4999 ident: b32 article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – start-page: 932 year: 2016 end-page: 949 ident: b5 article-title: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 59 year: 2020 ident: b50 article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. – volume: 170 start-page: 258 year: 2015 end-page: 267 ident: b44 article-title: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times publication-title: Int. J. Prod. Econ. – volume: 13 start-page: 54 year: 2019 ident: b46 article-title: Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness publication-title: Eur. J. Ind. Eng. – volume: PP start-page: 1 year: 2020 end-page: 15 ident: b8 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 20 start-page: 505 year: 2004 end-page: 51513 ident: b19 article-title: Scheduling non-similar groups on a flow line: multiple group setups publication-title: Robot. Comput.-Integr. Manuf. – volume: 70 start-page: 56 year: 2016 end-page: 74 ident: b40 article-title: A comprehensive review of flowshop group scheduling literature publication-title: Comput. Oper. Res. – volume: 238 year: 2022 ident: b24 article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots publication-title: Knowl.-Based Syst. – volume: 6 start-page: 177 year: 2012 ident: b45 article-title: Permutation flowshops in group scheduling with sequence-dependent setup times publication-title: Eur. J. Ind. Eng. – volume: 18 start-page: 1303 year: 2010 end-page: 1314 ident: b29 article-title: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry publication-title: IEEE Trans. Control Syst. Technol. – volume: 125 start-page: 535 year: 2000 end-page: 550 ident: b13 article-title: Sequencing of jobs in some production system publication-title: European J. Oper. Res. – volume: 10 start-page: 307 year: 2013 end-page: 322 ident: b27 article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 45 start-page: 1475 year: 2012 end-page: 1480 ident: b33 article-title: Mathematical model and lower bound for hybrid flowshop problem with mixed blocking constraints publication-title: IFAC Proc. Vol. – volume: 43 year: 2016 ident: b34 article-title: A comparison of genetic algorithm and artificial bee colony approaches in solving blocking hybrid flowshop scheduling problem with sequence dependent setup/changeover times publication-title: KKU Eng. J. – volume: 152 year: 2020 ident: b51 article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem publication-title: Comput. Ind. Eng. – volume: 60 year: 2021 ident: b57 article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time publication-title: Swarm Evol. Comput. – year: 2017 ident: b42 article-title: A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem publication-title: J. Intell. Manuf. – volume: 25 start-page: 962 year: 2009 end-page: 971 ident: b17 article-title: Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm publication-title: Robot. Comput.-Integr. Manuf. – volume: 37 start-page: 1439 year: 2010 end-page: 1454 ident: b25 article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective publication-title: Comput. Oper. Res. – volume: PP start-page: 1 year: 2020 end-page: 14 ident: b22 article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems publication-title: IEEE Trans. Cybern. – volume: 59 year: 2020 ident: b54 article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. – volume: 162 year: 2020 ident: b59 article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing publication-title: Expert Syst. Appl. – volume: 87 start-page: 39 year: 2004 end-page: 48 ident: b15 article-title: A note on constructive heuristics for the flowshop problem with blocking publication-title: Int. J. Prod. Econ. – year: 2021 ident: b47 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 53 start-page: 1791 year: 2015 end-page: 1806 ident: b39 article-title: Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times publication-title: Int. J. Prod. Res. – volume: 52 start-page: 14 year: 2017 end-page: 27 ident: b52 article-title: An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming publication-title: Appl. Soft Comput. – volume: 184 start-page: 104894.1 year: 2019 end-page: 104894.17 ident: b3 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowl.-Based Syst. – volume: 102 start-page: 102 year: 2018 end-page: 120 ident: b12 article-title: Constraint guided accelerated search for mixed blocking permutation flowshop scheduling publication-title: Comput. Oper. Res. – volume: 177 start-page: 2033 year: 2007 end-page: 2049 ident: b26 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European J. Oper. Res. – volume: 40 start-page: 2543 year: 2013 end-page: 2555 ident: b35 article-title: A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots publication-title: Comput. Oper. Res. – volume: 128 start-page: 1 year: 2019 end-page: 7 ident: b38 article-title: Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times publication-title: Comput. Ind. Eng. – volume: 137 start-page: 163 year: 2017 end-page: 181 ident: b1 article-title: Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms publication-title: Knowl.-Based Syst. – start-page: 1 year: 2017 end-page: 11 ident: b4 article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop publication-title: IEEE Trans. Eng. Manage. – year: 2020 ident: b28 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowl.-Based Syst. – volume: 89 start-page: 103413.1 year: 2020 end-page: 103413.15 ident: b43 article-title: Minimizing makespan in a flow shop sequence dependent group scheduling problem with blocking constraint publication-title: Eng. Appl. Artif. Intell. – volume: 52 start-page: 1289 year: 2001 end-page: 1297 ident: b14 article-title: Lower bounding schemes for flowshops with blocking in-process publication-title: J. Oper. Res. Soc. – volume: 50 start-page: 5037 year: 2020 end-page: 5048 ident: b7 article-title: Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 46 start-page: 1311 year: 2016 end-page: 1324 ident: b31 article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2021 ident: b18 article-title: A greedy cooperative co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems publication-title: IEEE Trans. Evol. Comput. – volume: 55 start-page: 1603 year: 2021 end-page: 1616 ident: b36 article-title: An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window publication-title: RAIRO - Oper. Res. – volume: 37 start-page: 960 year: 2010 end-page: 969 ident: b16 article-title: A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times publication-title: Comput. Oper. Res. – year: 1983 ident: b49 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega – volume: 176 start-page: 218 issue: aug. year: 2018 ident: 10.1016/j.knosys.2022.109962_b41 article-title: Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.04.004 – year: 2017 ident: 10.1016/j.knosys.2022.109962_b42 article-title: A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1049-1 – volume: 102 start-page: 102 issue: FEB. year: 2018 ident: 10.1016/j.knosys.2022.109962_b12 article-title: Constraint guided accelerated search for mixed blocking permutation flowshop scheduling publication-title: Comput. Oper. Res. – volume: 184 start-page: 104894.1 issue: Nov.15 year: 2019 ident: 10.1016/j.knosys.2022.109962_b3 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowl.-Based Syst. – volume: 125 start-page: 535 issue: 3 year: 2000 ident: 10.1016/j.knosys.2022.109962_b13 article-title: Sequencing of jobs in some production system publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(99)00224-6 – volume: 50 start-page: 5037 issue: 12 year: 2020 ident: 10.1016/j.knosys.2022.109962_b7 article-title: Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2019.2907575 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2022.109962_b53 article-title: A double level mutation iterated greedy algorithm for blocking hybrid flow shop scheduling publication-title: Control Decis. – volume: 152 issue: 3 year: 2020 ident: 10.1016/j.knosys.2022.109962_b51 article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem publication-title: Comput. Ind. Eng. – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2022.109962_b18 article-title: A greedy cooperative co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems publication-title: IEEE Trans. Evol. Comput. – volume: 60 year: 2021 ident: 10.1016/j.knosys.2022.109962_b57 article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100804 – volume: 137 start-page: 163 issue: dec.1 year: 2017 ident: 10.1016/j.knosys.2022.109962_b1 article-title: Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.09.026 – volume: 53 start-page: 1791 issue: 6 year: 2015 ident: 10.1016/j.knosys.2022.109962_b39 article-title: Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2014.961209 – year: 1983 ident: 10.1016/j.knosys.2022.109962_b49 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega – volume: 165 start-page: 110 issue: FEB.1 year: 2019 ident: 10.1016/j.knosys.2022.109962_b9 article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.021 – volume: 18 start-page: 1303 issue: 6 year: 2010 ident: 10.1016/j.knosys.2022.109962_b29 article-title: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry publication-title: IEEE Trans. Control Syst. Technol. – volume: 238 year: 2022 ident: 10.1016/j.knosys.2022.109962_b24 article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107819 – volume: 46 start-page: 139 issue: 1 year: 2016 ident: 10.1016/j.knosys.2022.109962_b55 article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2015.2416127 – volume: 55 start-page: 1603 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109962_b36 article-title: An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window publication-title: RAIRO - Oper. Res. doi: 10.1051/ro/2021076 – volume: 6 start-page: 177 issue: 2 year: 2012 ident: 10.1016/j.knosys.2022.109962_b45 article-title: Permutation flowshops in group scheduling with sequence-dependent setup times publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2012.045604 – year: 2020 ident: 10.1016/j.knosys.2022.109962_b23 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105527 – volume: 25 start-page: 962 issue: 6 year: 2009 ident: 10.1016/j.knosys.2022.109962_b17 article-title: Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2009.06.001 – volume: 128 start-page: 1 issue: FEB. year: 2019 ident: 10.1016/j.knosys.2022.109962_b38 article-title: Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.12.025 – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2022.109962_b4 article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop publication-title: IEEE Trans. Eng. Manage. – volume: PP start-page: 1 issue: 99 year: 2020 ident: 10.1016/j.knosys.2022.109962_b8 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 69 year: 2022 ident: 10.1016/j.knosys.2022.109962_b37 article-title: An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100992 – volume: 34 start-page: 127 issue: 2 year: 1992 ident: 10.1016/j.knosys.2022.109962_b58 article-title: Taguchis̈ parameter design: A panel discussion publication-title: Technometrics doi: 10.1080/00401706.1992.10484904 – volume: PP start-page: 1 issue: 99 year: 2019 ident: 10.1016/j.knosys.2022.109962_b2 article-title: A genetic programming-based scheduling approach for hybrid flow shop with a batch processor and waiting time constraint publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 37 start-page: 199 issue: 1 year: 2010 ident: 10.1016/j.knosys.2022.109962_b21 article-title: Total flow time minimization in a flowshop sequence-dependent group scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.04.013 – volume: 50 start-page: 4984 issue: 12 year: 2020 ident: 10.1016/j.knosys.2022.109962_b32 article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2019.2916088 – volume: 37 start-page: 960 issue: 5 year: 2010 ident: 10.1016/j.knosys.2022.109962_b16 article-title: A two-stage flow shop scheduling problem on a batching machine and a discrete machine with blocking and shared setup times publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.08.001 – year: 2020 ident: 10.1016/j.knosys.2022.109962_b28 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowl.-Based Syst. – volume: 100 issue: 104196 year: 2021 ident: 10.1016/j.knosys.2022.109962_b10 article-title: Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem publication-title: Eng. Appl. Artif. Intell. – volume: 147 year: 2020 ident: 10.1016/j.knosys.2022.109962_b56 article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106638 – volume: 40 start-page: 2543 issue: 10 year: 2013 ident: 10.1016/j.knosys.2022.109962_b35 article-title: A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.01.024 – volume: 10 start-page: 307 issue: 2 year: 2013 ident: 10.1016/j.knosys.2022.109962_b27 article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2204874 – volume: 43 issue: 2 year: 2016 ident: 10.1016/j.knosys.2022.109962_b34 article-title: A comparison of genetic algorithm and artificial bee colony approaches in solving blocking hybrid flowshop scheduling problem with sequence dependent setup/changeover times publication-title: KKU Eng. J. – volume: 46 start-page: 1311 issue: 6 year: 2016 ident: 10.1016/j.knosys.2022.109962_b31 article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2444383 – volume: 89 start-page: 103413.1 issue: Mar. year: 2020 ident: 10.1016/j.knosys.2022.109962_b43 article-title: Minimizing makespan in a flow shop sequence dependent group scheduling problem with blocking constraint publication-title: Eng. Appl. Artif. Intell. – volume: PP start-page: 1 issue: 99 year: 2020 ident: 10.1016/j.knosys.2022.109962_b22 article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems publication-title: IEEE Trans. Cybern. – volume: 129 issue: 109502 year: 2022 ident: 10.1016/j.knosys.2022.109962_b11 article-title: An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion publication-title: Appl. Soft Comput. – volume: 170 start-page: 258 issue: DEC.PT.A year: 2015 ident: 10.1016/j.knosys.2022.109962_b44 article-title: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2015.10.002 – start-page: 932 year: 2016 ident: 10.1016/j.knosys.2022.109962_b5 article-title: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2425404 – volume: 59 year: 2020 ident: 10.1016/j.knosys.2022.109962_b54 article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100742 – volume: 162 year: 2020 ident: 10.1016/j.knosys.2022.109962_b59 article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113716 – year: 2014 ident: 10.1016/j.knosys.2022.109962_b6 article-title: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems publication-title: IEEE Press – volume: 125 start-page: 324 issue: 2 year: 2000 ident: 10.1016/j.knosys.2022.109962_b20 article-title: Scheduling a flowline manufacturing cell with sequence dependent family setup times publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(99)00387-2 – volume: 52 start-page: 1289 year: 2001 ident: 10.1016/j.knosys.2022.109962_b14 article-title: Lower bounding schemes for flowshops with blocking in-process publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601220 – volume: 177 start-page: 2033 issue: 3 year: 2007 ident: 10.1016/j.knosys.2022.109962_b26 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2005.12.009 – volume: 37 start-page: 1439 issue: 8 year: 2010 ident: 10.1016/j.knosys.2022.109962_b25 article-title: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.11.001 – year: 2021 ident: 10.1016/j.knosys.2022.109962_b47 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 54 issue: 1 year: 2019 ident: 10.1016/j.knosys.2022.109962_b46 article-title: Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2019.097920 – volume: 59 year: 2020 ident: 10.1016/j.knosys.2022.109962_b50 article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. – volume: 45 start-page: 42 issue: jun. year: 2014 ident: 10.1016/j.knosys.2022.109962_b30 article-title: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation publication-title: Omega doi: 10.1016/j.omega.2013.12.004 – volume: 109 start-page: 77 issue: SEP. year: 2019 ident: 10.1016/j.knosys.2022.109962_b48 article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2019.05.002 – volume: 45 start-page: 1475 issue: 6 year: 2012 ident: 10.1016/j.knosys.2022.109962_b33 article-title: Mathematical model and lower bound for hybrid flowshop problem with mixed blocking constraints publication-title: IFAC Proc. Vol. doi: 10.3182/20120523-3-RO-2023.00310 – volume: 20 start-page: 505 issue: 6 year: 2004 ident: 10.1016/j.knosys.2022.109962_b19 article-title: Scheduling non-similar groups on a flow line: multiple group setups publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2004.07.002 – volume: 70 start-page: 56 issue: Jun. year: 2016 ident: 10.1016/j.knosys.2022.109962_b40 article-title: A comprehensive review of flowshop group scheduling literature publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.12.006 – volume: 87 start-page: 39 issue: 1 year: 2004 ident: 10.1016/j.knosys.2022.109962_b15 article-title: A note on constructive heuristics for the flowshop problem with blocking publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(03)00065-3 – volume: 52 start-page: 14 year: 2017 ident: 10.1016/j.knosys.2022.109962_b52 article-title: An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.021 |
| SSID | ssj0002218 |
| Score | 2.5548854 |
| Snippet | This paper introduces a new flow shop combinatorial optimization problem, called the blocking hybrid flow shop group scheduling problem (BHFGSP). In the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109962 |
| SubjectTerms | Blocking Hybrid flow shop group scheduling problem Iterated greedy algorithm Makespan Neighborhood probabilistic selection strategies |
| Title | Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.109962 |
| Volume | 258 |
| WOSCitedRecordID | wos000893002600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXoeXAhTeivDQHbpYjv73LLUJFLaAKpCLSk-XHbuI2taPUCek_4H_wR5l9-AFFhR64WNHKXtuZL7Mzk50ZQl4LXLViwZlNA8HsgHq5zXL0eQIaRjQoXO5EutlEfHREp1P2aTT60ebCbBZxVdHtli3_q6hxDIUtU2dvIO5uUhzAzyh0PKLY8fhPgj_simw2Vo0K4dxkWqqOtyu5Uz0_05m2snhsWsqNFCo9vao3XDbwkGWW0QxFRxw1sJUuZvWqbObn3YbE-aXM8rLEov5mXczrpaUyQyx0k3HZMtntqkvN0PD90MbubLluFqaCdGfQf9alDA7Seou8znq9qIZP1pc9xF9NhPtk3ZT9mR_LtRqUrbhnw1CGp7qqeMPoJgsdO3ZMBVqjnj1d2t0oWPlHnlbfV3S_DkOcjs-qGt9hLG8w7k__tdT2b0tgtzGx3fN2muhZEjlLome5RXa9OGSoOncnh_vT992C73kqjNw9fZuhqbYRXn2aP1tAA6vm-D65a9wRmGiMHpARrx6Se22rDzCa_xH5PqAKhlSBogpaqmBA1RuYgGIKWqZAMwUdU4BMATIFmimQTIFkChRT0DMFhqnH5Mu7_eO3B7Zp4mHn6I02Nne5dOpjL3VT7lBRsML3Bdr5EY-Ek7qe4A4PU19kPIqcwKUsizPZhSF1Q5GKwn9Cdqq64k8JFIFbUM6CyEcvIPRDGoks9VnGeebkTLA94rdfbJKbCvfyjRfJdWLdI3Z31VJXePnL-XErs8RYqdr6TBDEa698dsM7PSd3-l_JC7LTrNb8Jbmdb5ryYvXKUPgT1Ja92A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+optimization+under+blocking+constraints%3A+A+novel+iterated+greedy+algorithm+for+the+hybrid+flow+shop+group+scheduling+problem&rft.jtitle=Knowledge-based+systems&rft.au=Qin%2C+Haoxiang&rft.au=Han%2C+Yuyan&rft.au=Wang%2C+Yuting&rft.au=Liu%2C+Yiping&rft.date=2022-12-22&rft.issn=0950-7051&rft.volume=258&rft.spage=109962&rft_id=info:doi/10.1016%2Fj.knosys.2022.109962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_109962 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |