Bayesian estimation of generalized Gamma mixture model based on variational EM algorithm

•We propose a VEM algorithm for the inference of the generalized Gamma mixture model (GMM) with all the closed-form update equations.•The help function is used to approximate the lower bound of the variational objective function in GMM.•With the proposed VEM algorithm, the effective number of compon...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 87; pp. 269 - 284
Main Authors: Liu, Chi, Li, Heng-Chao, Fu, Kun, Zhang, Fan, Datcu, Mihai, Emery, William J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2019
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose a VEM algorithm for the inference of the generalized Gamma mixture model (GMM) with all the closed-form update equations.•The help function is used to approximate the lower bound of the variational objective function in GMM.•With the proposed VEM algorithm, the effective number of components as well as all the other underlying parameters in GMM can be estimated automatically and simultaneously.•The results reveal that the proposed inference method is more efficient than the standard EM algorithm.•The experimental results show that the GMM is more appropriate for the asymmetric and heavy-tailed data than Gaussian mixture model. In this paper, we propose a Bayesian inference method for the generalized Gamma mixture model (GΓMM) based on variational expectation-maximization algorithm. Specifically, the shape parameters, the inverse scale parameters, and the mixing coefficients in the GΓMM are treated as random variables, while the power parameters are left as parameters without assigning prior distributions. The help function is designed to approximate the lower bound of the variational objective function, which facilitates the assignment of the conjugate prior distributions and leads to the closed-form update equations. On this basis, the variational E-step and the variational M-step are alternatively implemented to infer the posteriors of the variables and estimate the parameters. The computational demand is reduced by the proposed method. More importantly, the effective number of components of the GΓMM can be determined automatically. The experimental results demonstrate the effectiveness of the proposed method especially in modeling the asymmetric and heavy-tailed data.
AbstractList •We propose a VEM algorithm for the inference of the generalized Gamma mixture model (GMM) with all the closed-form update equations.•The help function is used to approximate the lower bound of the variational objective function in GMM.•With the proposed VEM algorithm, the effective number of components as well as all the other underlying parameters in GMM can be estimated automatically and simultaneously.•The results reveal that the proposed inference method is more efficient than the standard EM algorithm.•The experimental results show that the GMM is more appropriate for the asymmetric and heavy-tailed data than Gaussian mixture model. In this paper, we propose a Bayesian inference method for the generalized Gamma mixture model (GΓMM) based on variational expectation-maximization algorithm. Specifically, the shape parameters, the inverse scale parameters, and the mixing coefficients in the GΓMM are treated as random variables, while the power parameters are left as parameters without assigning prior distributions. The help function is designed to approximate the lower bound of the variational objective function, which facilitates the assignment of the conjugate prior distributions and leads to the closed-form update equations. On this basis, the variational E-step and the variational M-step are alternatively implemented to infer the posteriors of the variables and estimate the parameters. The computational demand is reduced by the proposed method. More importantly, the effective number of components of the GΓMM can be determined automatically. The experimental results demonstrate the effectiveness of the proposed method especially in modeling the asymmetric and heavy-tailed data.
Author Li, Heng-Chao
Liu, Chi
Emery, William J.
Datcu, Mihai
Zhang, Fan
Fu, Kun
Author_xml – sequence: 1
  givenname: Chi
  surname: Liu
  fullname: Liu, Chi
  organization: Sichuan Provincial Key Laboratory of Information Coding and Transmission, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 2
  givenname: Heng-Chao
  orcidid: 0000-0002-9735-570X
  surname: Li
  fullname: Li, Heng-Chao
  email: lihengchao_78@163.com
  organization: Sichuan Provincial Key Laboratory of Information Coding and Transmission, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 3
  givenname: Kun
  surname: Fu
  fullname: Fu, Kun
  organization: Key Laboratory of Spatial Information Processing and Application System Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 5
  givenname: Mihai
  surname: Datcu
  fullname: Datcu, Mihai
  organization: Remote Sensing Technology Institute, German Aerospace Center, Wessling 82234, Germany
– sequence: 6
  givenname: William J.
  surname: Emery
  fullname: Emery, William J.
  organization: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309, USA
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNSbzG9dCFpqFSpuFNyFO5k7NWV-ShKL9elNW1cudHXhnPsdOGfEBl3fEWOXAiYCRHa1nmzQ6341kSCKIE1ApidsKIo8jlKRyAEbAsQiiiXEZ2zk3BpA5MEYsrc73JEz2HFy3rToTd_xvuYr6shiY76o4gtsW-St-fQflnjbV9TwEl1wwu8WrTlQ2PD5E8dm1Vvj39tzdlpj4-ji547Z6_38ZfYQLZ8Xj7PbZaRjyHxEAqUs4kqnOi3KvC7SFItSCIlVroGyrJRTKKEqaSpSyJO6kAQVZilIXQIl8Zglx1xte-cs1WpjQw-7UwLUfh21Vsd11H6dvRrWCdj1L0wbf-jhLZrmP_jmCFMotjVkldOGOk2VsaS9qnrzd8A3fKaGZg
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110791
crossref_primary_10_1016_j_neucom_2020_06_114
crossref_primary_10_1109_ACCESS_2025_3540971
crossref_primary_10_1016_j_ins_2021_06_034
crossref_primary_10_1016_j_tust_2025_106646
crossref_primary_10_1007_s10618_025_01131_5
crossref_primary_10_1016_j_neucom_2020_12_042
crossref_primary_10_1016_j_patcog_2020_107783
crossref_primary_10_3390_math10040589
crossref_primary_10_1016_j_ultras_2023_107103
crossref_primary_10_1016_j_patcog_2020_107641
crossref_primary_10_1016_j_patcog_2022_108658
crossref_primary_10_1016_j_patcog_2022_109129
crossref_primary_10_3233_JCM_226416
crossref_primary_10_1134_S1054661820030074
crossref_primary_10_1002_int_22721
crossref_primary_10_1109_ACCESS_2023_3272572
crossref_primary_10_1109_TGRS_2021_3131272
crossref_primary_10_1016_j_knosys_2025_114506
crossref_primary_10_3390_math8030373
crossref_primary_10_1109_TNNLS_2022_3213518
crossref_primary_10_1016_j_jvcir_2021_103148
crossref_primary_10_1016_j_ins_2024_121001
crossref_primary_10_1016_j_geoen_2023_211640
crossref_primary_10_1109_TGRS_2020_3011209
crossref_primary_10_3390_math13101605
crossref_primary_10_3390_wevj12010043
Cites_doi 10.1080/00401706.1992.10484955
10.1109/TNNLS.2012.2190298
10.1155/2012/481923
10.1016/j.patcog.2003.08.013
10.1080/01621459.1990.10474918
10.1016/j.patcog.2017.06.035
10.1109/TIP.2004.834664
10.1109/LSP.2012.2209874
10.1109/LCOMM.2005.02027
10.1109/TSP.2007.894234
10.1016/j.patcog.2012.04.031
10.1016/j.patcog.2014.04.002
10.1016/j.patcog.2012.09.024
10.1038/clpt.1993.124
10.1109/24.406571
10.1109/34.990138
10.1109/TGRS.2007.904951
10.1109/MSP.2008.929620
10.1109/LGRS.2013.2250905
10.1002/jae.3950060206
10.1109/TPAMI.2011.63
10.1023/A:1007665907178
10.1109/TMI.2011.2165342
10.1016/j.patcog.2013.09.036
10.1109/JSTSP.2011.2138675
10.1109/LSP.2004.840869
10.1016/j.patcog.2010.09.001
10.1016/j.patcog.2006.09.012
10.1109/TSP.2011.2168521
10.1016/j.patcog.2009.03.027
10.1016/j.patcog.2007.02.016
10.1214/aoms/1177704481
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2018.10.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 284
ExternalDocumentID 10_1016_j_patcog_2018_10_025
S0031320318303789
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-e1a2283dc5c58b7f855a8b112ad7c0e66b290b0dbe915074f82e0da6502cb0e43
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453338200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:26:29 EST 2025
Tue Nov 18 21:14:54 EST 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Maximum likelihood estimation
Finite mixture models
Generalized Gamma distribution
Extended factorized approximation
Variational expectation-maximization (VEM)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e1a2283dc5c58b7f855a8b112ad7c0e66b290b0dbe915074f82e0da6502cb0e43
ORCID 0000-0002-9735-570X
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_patcog_2018_10_025
crossref_citationtrail_10_1016_j_patcog_2018_10_025
elsevier_sciencedirect_doi_10_1016_j_patcog_2018_10_025
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Patrikar, Baker (bib0038) 2016
Figueiredo, Jain (bib0002) 2002; 24
Boyd, Vandenberghe (bib0032) 2004
Bouguila, Ziou, Vaillancourt (bib0013) 2004; 13
Zhou, Li, Ogunbona, Zhang (bib0008) 2017; 72
Zou, Li (bib0023) 2012
Parisi (bib0031) 1988
Chatzis, Kosmopoulos (bib0030) 2011; 44
Vegas-Sánchez-Ferrero, Martin-Fernandez, Sanches (bib0034) 2014
Dempster, Laird, Rubin (bib0025) 1977; 39
Zhan, Ma (bib0009) 2012; 19
Ma, Rana, Taghia, Flierl, Leijon (bib0012) 2014; 47
Bouveyron, Girard (bib0037) 2009; 42
Li, Prasad, Fowler (bib0010) 2014; 11
Ma, Leijon (bib0011) 2011; 33
Yang, Lai, Lin (bib0026) 2012; 45
Vegas-Sanchez-Ferrero, Fernandez, Palencia, Fernandez (bib0024) 2012; 2012
Bechte, Bonaiti-Pellie, Poisson, andP. R. Bechtel (bib0039) 1993; 54
Nguyen, Wu (bib0015) 2012; 31
Zeng, Cheung (bib0003) 2014; 47
Todros, Tabrikian (bib0006) 2007; 55
Jaggia (bib0018) 1991; 6
Li, Hong, Wu, Fan (bib0022) 2011; 5
Yang, Han, Wang, Tao, Tai (bib0016) 2013; 46
Shin, Chang, Kim (bib0021) 2005; 12
Jordan, Ghahramani, Jaakkola, Saul (bib0029) 1999; 37
Fan, Bouguila, Ziou (bib0014) 2012; 23
Bishop (bib0028) 2006
Kim, Kang (bib0036) 2007; 40
Yu, Sapiro (bib0007) 2011; 59
Chen, Chen, Hou (bib0004) 2004; 37
Stacy (bib0017) 1962; 33
Uso, Pla, Sotoca, Sevilla (bib0033) 2007; 45
Aalo, Piboongungon, Iskander (bib0020) 2005; 9
Tzikas, Likas, Galatsanos (bib0027) 2008; 25
Roeder (bib0041) 1990; 85
McLachlan, Peel (bib0001) 2004
Pham, Almhana (bib0019) 1995; 44
Faundez-Zanuy, Hagmüller, Kubin (bib0005) 2007; 40
Ghahramani, Jordan (bib0035) 1994
Crawford, DeGroot, Kadane, Small (bib0040) 1992; 34
Shin (10.1016/j.patcog.2018.10.025_bib0021) 2005; 12
Dempster (10.1016/j.patcog.2018.10.025_bib0025) 1977; 39
Chatzis (10.1016/j.patcog.2018.10.025_bib0030) 2011; 44
Vegas-Sánchez-Ferrero (10.1016/j.patcog.2018.10.025_bib0034) 2014
Nguyen (10.1016/j.patcog.2018.10.025_bib0015) 2012; 31
Boyd (10.1016/j.patcog.2018.10.025_bib0032) 2004
Bechte (10.1016/j.patcog.2018.10.025_bib0039) 1993; 54
Bouguila (10.1016/j.patcog.2018.10.025_bib0013) 2004; 13
Li (10.1016/j.patcog.2018.10.025_bib0022) 2011; 5
Bouveyron (10.1016/j.patcog.2018.10.025_bib0037) 2009; 42
Chen (10.1016/j.patcog.2018.10.025_bib0004) 2004; 37
Figueiredo (10.1016/j.patcog.2018.10.025_bib0002) 2002; 24
Zou (10.1016/j.patcog.2018.10.025_bib0023) 2012
Vegas-Sanchez-Ferrero (10.1016/j.patcog.2018.10.025_bib0024) 2012; 2012
Fan (10.1016/j.patcog.2018.10.025_bib0014) 2012; 23
Crawford (10.1016/j.patcog.2018.10.025_bib0040) 1992; 34
Patrikar (10.1016/j.patcog.2018.10.025_bib0038) 2016
Bishop (10.1016/j.patcog.2018.10.025_bib0028) 2006
Aalo (10.1016/j.patcog.2018.10.025_bib0020) 2005; 9
Zhan (10.1016/j.patcog.2018.10.025_bib0009) 2012; 19
Tzikas (10.1016/j.patcog.2018.10.025_bib0027) 2008; 25
Jordan (10.1016/j.patcog.2018.10.025_bib0029) 1999; 37
Uso (10.1016/j.patcog.2018.10.025_bib0033) 2007; 45
Yu (10.1016/j.patcog.2018.10.025_bib0007) 2011; 59
Li (10.1016/j.patcog.2018.10.025_bib0010) 2014; 11
Stacy (10.1016/j.patcog.2018.10.025_bib0017) 1962; 33
Parisi (10.1016/j.patcog.2018.10.025_bib0031) 1988
Roeder (10.1016/j.patcog.2018.10.025_bib0041) 1990; 85
Ghahramani (10.1016/j.patcog.2018.10.025_bib0035) 1994
Faundez-Zanuy (10.1016/j.patcog.2018.10.025_bib0005) 2007; 40
Ma (10.1016/j.patcog.2018.10.025_bib0012) 2014; 47
Yang (10.1016/j.patcog.2018.10.025_bib0026) 2012; 45
McLachlan (10.1016/j.patcog.2018.10.025_bib0001) 2004
Todros (10.1016/j.patcog.2018.10.025_bib0006) 2007; 55
Jaggia (10.1016/j.patcog.2018.10.025_bib0018) 1991; 6
Kim (10.1016/j.patcog.2018.10.025_bib0036) 2007; 40
Yang (10.1016/j.patcog.2018.10.025_bib0016) 2013; 46
Zeng (10.1016/j.patcog.2018.10.025_bib0003) 2014; 47
Pham (10.1016/j.patcog.2018.10.025_bib0019) 1995; 44
Zhou (10.1016/j.patcog.2018.10.025_bib0008) 2017; 72
Ma (10.1016/j.patcog.2018.10.025_bib0011) 2011; 33
References_xml – volume: 47
  start-page: 2011
  year: 2014
  end-page: 2030
  ident: bib0003
  article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion
  publication-title: Pattern Recognit.
– year: 2004
  ident: bib0001
  article-title: Finite Mixture Models
– volume: 2012
  start-page: 481923(1
  year: 2012
  end-page: 25)
  ident: bib0024
  article-title: A generalized Gamma mixture model for ultrasonic tissue characterization
  publication-title: Comput. Math. Methods Med.
– year: 1988
  ident: bib0031
  article-title: Statistical Field Theory
– volume: 45
  start-page: 4158
  year: 2007
  end-page: 4171
  ident: bib0033
  article-title: Clustering-based hyperspectral band selection using information measures
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 40
  start-page: 1207
  year: 2007
  end-page: 1221
  ident: bib0036
  article-title: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model
  publication-title: Pattern Recognit.
– volume: 23
  start-page: 762
  year: 2012
  end-page: 774
  ident: bib0014
  article-title: Variational learning for finite Dirichlet mixture models and applications
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 37
  start-page: 1073
  year: 2004
  end-page: 1075
  ident: bib0004
  article-title: Speaker identification using hybrid Karhunen–Loeve transform and Gaussian mixture model approach
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 153
  year: 2014
  end-page: 157
  ident: bib0010
  article-title: Hyperspectral image classification using Gaussian mixture models and Markov random fields
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 42
  start-page: 2649
  year: 2009
  end-page: 2658
  ident: bib0037
  article-title: Robust supervised classification with mixture models: learning from data with uncertain labels
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  ident: bib0029
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
– start-page: 5935
  year: 2012
  end-page: 5938
  ident: bib0023
  article-title: MCMC estimation of finite generalized Gamma mixture model
  publication-title: Proc. IGARSS 2012
– volume: 45
  start-page: 3950
  year: 2012
  end-page: 3961
  ident: bib0026
  article-title: A robust EM clustering algorithm for Gaussian mixture models
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 1187
  year: 1962
  end-page: 1192
  ident: bib0017
  article-title: A generalization of the Gamma distribution
  publication-title: Ann. Math. Statist.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0025
  article-title: Maximum likelihood from incomplete data via EM algorithm
  publication-title: J. Royal Statist. Soc., Ser. B
– start-page: 1673
  year: 2016
  end-page: 1677
  ident: bib0038
  article-title: Improving accuracy of Gaussian mixture model classifiers with additional discriminative training
  publication-title: 2016 International Joint Conference on Neural Networks (IJCNN)
– volume: 47
  start-page: 3143
  year: 2014
  end-page: 3157
  ident: bib0012
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 103
  year: 2012
  end-page: 116
  ident: bib0015
  article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation
  publication-title: IEEE Trans. Med. Imag.
– year: 2014
  ident: bib0034
  article-title: A gamma mixture model for IVUS imaging
– volume: 34
  start-page: 441
  year: 1992
  end-page: 453
  ident: bib0040
  article-title: Modeling lake-chemistry distributions: approximate Bayesian methods for estimating a finite-mixture model
  publication-title: Technometrics
– volume: 13
  start-page: 1533
  year: 2004
  end-page: 1543
  ident: bib0013
  article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 131
  year: 2008
  end-page: 146
  ident: bib0027
  article-title: The variational approximation for Bayesian inference
  publication-title: IEEE Signal Process. Mag.
– volume: 85
  start-page: 617
  year: 1990
  end-page: 624
  ident: bib0041
  article-title: Density estimation with confidence sets exemplified by superclusters and voids in the galaxies
  publication-title: J. Am. Statist. Ass.
– volume: 59
  start-page: 5842
  year: 2011
  end-page: 5858
  ident: bib0007
  article-title: Statistical compressed sensing of Gaussian mixture models
  publication-title: IEEE Trans. Signal Process.
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  ident: bib0002
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 1101
  year: 2013
  end-page: 1124
  ident: bib0016
  article-title: Multilayer graph cuts based unsupervised color-texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging
  publication-title: Pattern Recognit.
– year: 2004
  ident: bib0032
  article-title: Convex Optimization
– volume: 54
  start-page: 134
  year: 1993
  end-page: 141
  ident: bib0039
  article-title: A population and family study n-acetyltransferase using caffeine urinary metabolites
  publication-title: Clin. Pharm. Therp.
– volume: 33
  start-page: 2160
  year: 2011
  end-page: 2173
  ident: bib0011
  article-title: Bayesian estimation of Beta mixture models with variational inference
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 40
  start-page: 3027
  year: 2007
  end-page: 3034
  ident: bib0005
  article-title: Speaker identification security improvement by means of speech watermarking
  publication-title: Pattern Recognit.
– volume: 44
  start-page: 392
  year: 1995
  end-page: 397
  ident: bib0019
  article-title: The generalized Gamma distribution: its hazard rate and stress-strenght model
  publication-title: IEEE Trans. Rel.
– year: 2006
  ident: bib0028
  article-title: Pattern Recognition and Machine Learning
– volume: 9
  start-page: 139
  year: 2005
  end-page: 141
  ident: bib0020
  article-title: Bit-error rate of binary digital modulation schemes in generalized Gamma fading channels
  publication-title: IEEE Commun. Lett.
– volume: 19
  start-page: 733
  year: 2012
  end-page: 736
  ident: bib0009
  article-title: Gaussian mixture model on tensor field for visual tracking
  publication-title: IEEE Signal Process. Lett.
– volume: 44
  start-page: 295
  year: 2011
  end-page: 306
  ident: bib0030
  article-title: A variational Bayesian methodology for hidden Markov models utilizing Student’s-t mixtures
  publication-title: Pattern Recognit.
– volume: 12
  start-page: 258
  year: 2005
  end-page: 261
  ident: bib0021
  article-title: Statistical modeling of speech signals based on generalized Gamma distribution
  publication-title: IEEE Signal Process. Lett.
– volume: 5
  start-page: 386
  year: 2011
  end-page: 397
  ident: bib0022
  article-title: On the empirical-statistical modeling of SAR images with generalized Gamma distribution
  publication-title: IEEE J. Sel. Topics Signal Process.
– start-page: 120
  year: 1994
  end-page: 127
  ident: bib0035
  article-title: Supervised learning from incomplete data via an EM approach
  publication-title: Advances in Neural Information Processing Systems
– volume: 72
  start-page: 548
  year: 2017
  end-page: 562
  ident: bib0008
  article-title: Semantic action recognition by learning a pose lexicon
  publication-title: Pattern Recognit.
– volume: 6
  start-page: 169
  year: 1991
  end-page: 180
  ident: bib0018
  article-title: Specification tests based on the heterogeneous generalized Gamma model of duration: with an application to Kennan’s strike data
  publication-title: J. Appl. Econom.
– volume: 55
  start-page: 3645
  year: 2007
  end-page: 3658
  ident: bib0006
  article-title: Blind separation of independent sources using Gaussian mixture model
  publication-title: IEEE Trans. Signal Process.
– volume: 34
  start-page: 441
  issue: 4
  year: 1992
  ident: 10.1016/j.patcog.2018.10.025_bib0040
  article-title: Modeling lake-chemistry distributions: approximate Bayesian methods for estimating a finite-mixture model
  publication-title: Technometrics
  doi: 10.1080/00401706.1992.10484955
– volume: 23
  start-page: 762
  issue: 5
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0014
  article-title: Variational learning for finite Dirichlet mixture models and applications
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2190298
– year: 2004
  ident: 10.1016/j.patcog.2018.10.025_bib0032
– volume: 2012
  start-page: 481923(1
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0024
  article-title: A generalized Gamma mixture model for ultrasonic tissue characterization
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/481923
– volume: 37
  start-page: 1073
  issue: 5
  year: 2004
  ident: 10.1016/j.patcog.2018.10.025_bib0004
  article-title: Speaker identification using hybrid Karhunen–Loeve transform and Gaussian mixture model approach
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.08.013
– volume: 85
  start-page: 617
  issue: 411
  year: 1990
  ident: 10.1016/j.patcog.2018.10.025_bib0041
  article-title: Density estimation with confidence sets exemplified by superclusters and voids in the galaxies
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1990.10474918
– volume: 72
  start-page: 548
  year: 2017
  ident: 10.1016/j.patcog.2018.10.025_bib0008
  article-title: Semantic action recognition by learning a pose lexicon
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.035
– volume: 13
  start-page: 1533
  issue: 11
  year: 2004
  ident: 10.1016/j.patcog.2018.10.025_bib0013
  article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.834664
– volume: 19
  start-page: 733
  issue: 11
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0009
  article-title: Gaussian mixture model on tensor field for visual tracking
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2209874
– volume: 9
  start-page: 139
  issue: 2
  year: 2005
  ident: 10.1016/j.patcog.2018.10.025_bib0020
  article-title: Bit-error rate of binary digital modulation schemes in generalized Gamma fading channels
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2005.02027
– volume: 55
  start-page: 3645
  issue: 7
  year: 2007
  ident: 10.1016/j.patcog.2018.10.025_bib0006
  article-title: Blind separation of independent sources using Gaussian mixture model
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.894234
– year: 2004
  ident: 10.1016/j.patcog.2018.10.025_bib0001
– volume: 45
  start-page: 3950
  issue: 11
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0026
  article-title: A robust EM clustering algorithm for Gaussian mixture models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.04.031
– volume: 47
  start-page: 3143
  issue: 9
  year: 2014
  ident: 10.1016/j.patcog.2018.10.025_bib0012
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.002
– volume: 46
  start-page: 1101
  issue: 4
  year: 2013
  ident: 10.1016/j.patcog.2018.10.025_bib0016
  article-title: Multilayer graph cuts based unsupervised color-texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.09.024
– volume: 54
  start-page: 134
  issue: 2
  year: 1993
  ident: 10.1016/j.patcog.2018.10.025_bib0039
  article-title: A population and family study n-acetyltransferase using caffeine urinary metabolites
  publication-title: Clin. Pharm. Therp.
  doi: 10.1038/clpt.1993.124
– volume: 44
  start-page: 392
  issue: 3
  year: 1995
  ident: 10.1016/j.patcog.2018.10.025_bib0019
  article-title: The generalized Gamma distribution: its hazard rate and stress-strenght model
  publication-title: IEEE Trans. Rel.
  doi: 10.1109/24.406571
– volume: 24
  start-page: 381
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2018.10.025_bib0002
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990138
– volume: 45
  start-page: 4158
  issue: 12
  year: 2007
  ident: 10.1016/j.patcog.2018.10.025_bib0033
  article-title: Clustering-based hyperspectral band selection using information measures
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.904951
– start-page: 1673
  year: 2016
  ident: 10.1016/j.patcog.2018.10.025_bib0038
  article-title: Improving accuracy of Gaussian mixture model classifiers with additional discriminative training
– volume: 25
  start-page: 131
  issue: 6
  year: 2008
  ident: 10.1016/j.patcog.2018.10.025_bib0027
  article-title: The variational approximation for Bayesian inference
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.929620
– volume: 11
  start-page: 153
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2018.10.025_bib0010
  article-title: Hyperspectral image classification using Gaussian mixture models and Markov random fields
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2250905
– volume: 6
  start-page: 169
  issue: 2
  year: 1991
  ident: 10.1016/j.patcog.2018.10.025_bib0018
  article-title: Specification tests based on the heterogeneous generalized Gamma model of duration: with an application to Kennan’s strike data
  publication-title: J. Appl. Econom.
  doi: 10.1002/jae.3950060206
– volume: 33
  start-page: 2160
  issue: 11
  year: 2011
  ident: 10.1016/j.patcog.2018.10.025_bib0011
  article-title: Bayesian estimation of Beta mixture models with variational inference
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.63
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  ident: 10.1016/j.patcog.2018.10.025_bib0029
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 31
  start-page: 103
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0015
  article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2011.2165342
– volume: 47
  start-page: 2011
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2018.10.025_bib0003
  article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.09.036
– volume: 5
  start-page: 386
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2018.10.025_bib0022
  article-title: On the empirical-statistical modeling of SAR images with generalized Gamma distribution
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2011.2138675
– volume: 12
  start-page: 258
  issue: 3
  year: 2005
  ident: 10.1016/j.patcog.2018.10.025_bib0021
  article-title: Statistical modeling of speech signals based on generalized Gamma distribution
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2004.840869
– volume: 44
  start-page: 295
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2018.10.025_bib0030
  article-title: A variational Bayesian methodology for hidden Markov models utilizing Student’s-t mixtures
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.001
– year: 2014
  ident: 10.1016/j.patcog.2018.10.025_bib0034
– year: 2006
  ident: 10.1016/j.patcog.2018.10.025_bib0028
– volume: 40
  start-page: 1207
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2018.10.025_bib0036
  article-title: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.09.012
– volume: 59
  start-page: 5842
  issue: 12
  year: 2011
  ident: 10.1016/j.patcog.2018.10.025_bib0007
  article-title: Statistical compressed sensing of Gaussian mixture models
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2168521
– start-page: 5935
  year: 2012
  ident: 10.1016/j.patcog.2018.10.025_bib0023
  article-title: MCMC estimation of finite generalized Gamma mixture model
– volume: 42
  start-page: 2649
  issue: 11
  year: 2009
  ident: 10.1016/j.patcog.2018.10.025_bib0037
  article-title: Robust supervised classification with mixture models: learning from data with uncertain labels
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.03.027
– volume: 40
  start-page: 3027
  issue: 11
  year: 2007
  ident: 10.1016/j.patcog.2018.10.025_bib0005
  article-title: Speaker identification security improvement by means of speech watermarking
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.02.016
– volume: 33
  start-page: 1187
  issue: 3
  year: 1962
  ident: 10.1016/j.patcog.2018.10.025_bib0017
  article-title: A generalization of the Gamma distribution
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177704481
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.patcog.2018.10.025_bib0025
  article-title: Maximum likelihood from incomplete data via EM algorithm
  publication-title: J. Royal Statist. Soc., Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 1988
  ident: 10.1016/j.patcog.2018.10.025_bib0031
– start-page: 120
  year: 1994
  ident: 10.1016/j.patcog.2018.10.025_bib0035
  article-title: Supervised learning from incomplete data via an EM approach
SSID ssj0017142
Score 2.4685698
Snippet •We propose a VEM algorithm for the inference of the generalized Gamma mixture model (GMM) with all the closed-form update equations.•The help function is used...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Extended factorized approximation
Finite mixture models
Generalized Gamma distribution
Maximum likelihood estimation
Variational expectation-maximization (VEM)
Title Bayesian estimation of generalized Gamma mixture model based on variational EM algorithm
URI https://dx.doi.org/10.1016/j.patcog.2018.10.025
Volume 87
WOSCitedRecordID wos000453338200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVap4de2nRD0w089GYokCXKpI5p4DRdEuSQAr4J3OQoiCTDsQO3X9_hJitNkSaHXgSDIOllnmfekLMg9LFUGki2ObkXUkVExaAHhSIRV3msCdF0LIVtNkGPj9l0mp_40KFL206ANg1br_P5fxU1jIGwTersPcTdbQoD8BqEDk8QOzzvJPhP_Ke2mZGmfkbdMcKZqy9d_QKG-ZnXNR_W1dpeH9hmOENjzpS5OrgC7zmcEE6Ohvxi1i6q5Vndp7EntiqnyYTx4Ueby_zv1cpd41ebEWffmlm0f8bbDjF23rdVt7I7uz7wiPWHESb_KURjBQWbjqI0idO-gvUW1WtI15nFG9vE9Ye7ocfdkcL57hzsUTszEXhs1wThuSTp62Wz_zBnXZBhiF87L9wuhdkFhgrY5SHaSij4UgO0tfdlMv3aXTzREXEF5v33CNmWNiTw5qf5O5vpMZTTbfTEuxZ4z0HiGXqgm-foaWjbgb0Wf4GmASF4gxDclriHEGwRgj1CsEUItgjBMLeHEDw5wh1CXqIfB5PT_cPIN9iIJHiKy0iPuKl-pGQmMyZoybKMMwEMnCsqYz0eiySPRayEzo3fQEqW6FhxIPWJFPBXTl-hQdM2-jXCMJLQkgiSjlOSMS0SQZnSJeeGUopsB6Xhhyqkrz5vmqBcFLeJaQdF3aq5q77yj_k0yKDwDNIxwwKAdevKN_d8p7fo8Qb_79BguVjp9-iRvFpWl4sPHlW_ASGxlVk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+estimation+of+generalized+Gamma+mixture+model+based+on+variational+EM+algorithm&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Chi&rft.au=Li%2C+Heng-Chao&rft.au=Fu%2C+Kun&rft.au=Zhang%2C+Fan&rft.date=2019-03-01&rft.issn=0031-3203&rft.volume=87&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1016%2Fj.patcog.2018.10.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2018_10_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon