Constraint multi-objective automated synthesis for CMOS operational amplifier

A multi-objective evolution algorithm (MOEA) is presented to automatically determine the parameters in Op-Amp synthesis where the cost functions (e.g., minimizing the power dissipation and the chip area) and the constraint functions (e.g., the user-defined specifications) can be modeled as polynomia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 98; s. 108 - 113
Hlavní autoři: Tao, Jili, Fan, Qinru, Chen, Xiaoming, Zhu, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 03.12.2012
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A multi-objective evolution algorithm (MOEA) is presented to automatically determine the parameters in Op-Amp synthesis where the cost functions (e.g., minimizing the power dissipation and the chip area) and the constraint functions (e.g., the user-defined specifications) can be modeled as polynomials of the design variables. The proposed algorithm is based on MOEA which does not use weighting coefficients in converting multiple objectives into single objective. A constraint handling strategy without penalty parameters is proposed to avoid the difficulty of penalty parameter selection. Moreover, an elitist maintaining scheme is utilized to keep the evenness of the Pareto front. Simulations over several benchmark functions validate the efficiency of the proposed algorithm for the evenness of population distribution and the convergence to the Pareto front. Numerical experiments of a Miller compensated two-stage Op-Amp show that the proposed MOEA is able to achieve better performance than NSGA-II+PCH, GA+SPF and GA+PCH.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2011.09.042