PolSAR image classification based on multi-scale stacked sparse autoencoder

Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale information, the classification performance of these methods are limited. Hence, this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 351; s. 167 - 179
Hlavní autoři: Zhang, Lu, Jiao, Licheng, Ma, Wenping, Duan, Yiping, Zhang, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.07.2019
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale information, the classification performance of these methods are limited. Hence, this paper proposes a multi-scale feature extraction method based on stacked sparse autoencoder (SSAE), named the multi-scale SSAE (MS-SSAE), to improve the classification performance. This method extracts the deep multi-scale features by a two-stage framework. In the first stage, the SSAE uses training data at different scales to extract the multi-scale features. Then, a 1-D average pooling strategy is proposed to reduce the feature dimensionality at the second stage. Therefore, the MS-SSAE can capture discriminative multi-scale features. The experimental results certify that the MS-SSAE can not only improve the classification accuracy, but also remain the details in the image.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2019.03.024