PolSAR image classification based on multi-scale stacked sparse autoencoder

Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale information, the classification performance of these methods are limited. Hence, this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 351; s. 167 - 179
Hlavní autoři: Zhang, Lu, Jiao, Licheng, Ma, Wenping, Duan, Yiping, Zhang, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.07.2019
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale information, the classification performance of these methods are limited. Hence, this paper proposes a multi-scale feature extraction method based on stacked sparse autoencoder (SSAE), named the multi-scale SSAE (MS-SSAE), to improve the classification performance. This method extracts the deep multi-scale features by a two-stage framework. In the first stage, the SSAE uses training data at different scales to extract the multi-scale features. Then, a 1-D average pooling strategy is proposed to reduce the feature dimensionality at the second stage. Therefore, the MS-SSAE can capture discriminative multi-scale features. The experimental results certify that the MS-SSAE can not only improve the classification accuracy, but also remain the details in the image.
AbstractList Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale information, the classification performance of these methods are limited. Hence, this paper proposes a multi-scale feature extraction method based on stacked sparse autoencoder (SSAE), named the multi-scale SSAE (MS-SSAE), to improve the classification performance. This method extracts the deep multi-scale features by a two-stage framework. In the first stage, the SSAE uses training data at different scales to extract the multi-scale features. Then, a 1-D average pooling strategy is proposed to reduce the feature dimensionality at the second stage. Therefore, the MS-SSAE can capture discriminative multi-scale features. The experimental results certify that the MS-SSAE can not only improve the classification accuracy, but also remain the details in the image.
Author Ma, Wenping
Zhang, Lu
Duan, Yiping
Jiao, Licheng
Zhang, Dan
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0003-4764-368X
  surname: Zhang
  fullname: Zhang, Lu
  email: oleand_er@126.com
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, Shaanxi Province 710071, China
– sequence: 2
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, Shaanxi Province 710071, China
– sequence: 3
  givenname: Wenping
  surname: Ma
  fullname: Ma, Wenping
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, Shaanxi Province 710071, China
– sequence: 4
  givenname: Yiping
  surname: Duan
  fullname: Duan, Yiping
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Dan
  surname: Zhang
  fullname: Zhang, Dan
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, Shaanxi Province 710071, China
BookMark eNqFkE1LAzEQhoNUsFb_gYf9A7tmkt3sxoNQil9YULT3kEyykrrdLUkq-O_dWk8e9DTDwPMy73NKJv3QO0IugBZAQVyui97tcNgUjIIsKC8oK4_IFJqa5Q1rxIRMqWRVzjiwE3Ia45pSqIHJKXl8HrrX-UvmN_rNZdjpGH3rUSc_9JnR0dlsXDa7Lvk8ou5cFpPG9_EctzpEl-ldGlyPg3XhjBy3uovu_GfOyOr2ZrW4z5dPdw-L-TJHTkXKHbWiZVWLArQALqWxJQewXDe10BUglKCNsaaUlakaKrWVQiCWxtTIgM9IeYjFMMQYXKu2YXw_fCqgau9DrdXBh9r7UJSr0ceIXf3C0Kfvnilo3_0HXx9gN_b68C6oiH6s7awPDpOyg_874AttnoGd
CitedBy_id crossref_primary_10_1007_s11042_022_12431_z
crossref_primary_10_1007_s40747_021_00516_5
crossref_primary_10_3390_s23031180
crossref_primary_10_1049_rsn2_12389
crossref_primary_10_3390_s23042109
crossref_primary_10_1080_10106049_2022_2123961
crossref_primary_10_1080_23307706_2020_1759466
crossref_primary_10_1109_TGRS_2021_3130174
crossref_primary_10_3390_s20051533
crossref_primary_10_3390_s20102878
crossref_primary_10_1016_j_apacoust_2024_110151
crossref_primary_10_1016_j_asoc_2021_107194
crossref_primary_10_3390_pr12040816
crossref_primary_10_1007_s13042_021_01283_y
crossref_primary_10_1016_j_neucom_2020_04_158
crossref_primary_10_3390_rs14153737
crossref_primary_10_1186_s12859_022_04592_3
crossref_primary_10_1007_s11042_023_17269_7
crossref_primary_10_1016_j_asoc_2022_109965
crossref_primary_10_3390_rs14184656
crossref_primary_10_1007_s00500_023_09068_x
crossref_primary_10_3390_rs16224280
Cites_doi 10.1080/01431169408954244
10.1109/LGRS.2018.2829182
10.1109/JSTARS.2016.2553104
10.1109/TGRS.2013.2291940
10.1109/TGRS.2011.2160647
10.1109/JSTARS.2014.2329330
10.1109/TMI.2015.2458702
10.1109/JSTARS.2017.2698076
10.1126/science.1127647
10.1109/LGRS.2016.2618840
10.1109/TGRS.2016.2514504
10.1561/2200000006
10.1109/36.673687
10.1109/TIFS.2015.2446438
10.1109/LGRS.2016.2586109
10.1109/TGRS.2017.2743222
10.1109/36.214928
10.1109/TGRS.2003.813494
10.1109/TGRS.2013.2258675
10.1109/TGRS.2006.886176
10.1109/36.485127
10.1109/JSTARS.2016.2532922
10.1109/MCI.2010.938364
10.1109/LGRS.2008.2002263
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.03.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 179
ExternalDocumentID 10_1016_j_neucom_2019_03_024
S0925231219303649
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-e0d6f25fc61a61399bd4311d3a876a51c141abbdb495b5809ad966cc4bb7c213
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467803400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:11:51 EST 2025
Sat Nov 29 07:14:52 EST 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Feature learning
Multi-scale
Polsar classification
Stacked sparse autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e0d6f25fc61a61399bd4311d3a876a51c141abbdb495b5809ad966cc4bb7c213
ORCID 0000-0003-4764-368X
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2019_03_024
crossref_citationtrail_10_1016_j_neucom_2019_03_024
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_03_024
PublicationCentury 2000
PublicationDate 2019-07-25
PublicationDateYYYYMMDD 2019-07-25
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-25
  day: 25
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Kavukcuoglu, Farabet (bib0015) 2010
Wu, Ji, Yu, Su (bib0020) 2008; 5
Hou, Kou, Jiao (bib0022) 2016; 9
Huang, Huang (bib0030) 2014
Jun, Xiang (bib0018) 2016; 35
Liu, Zhu, Yang, Hou, Gou, Xiong, Jiao (bib0007) 2016; 9
Shang, Hirose (bib0003) 2014; 52
Liu, Yang, Gou, Zhu, Wang, Jiao (bib0005) 2016; 10
Arel, Rose, Karnowski (bib0014) 2010; 5
Bengio, Lamblin, Popovici, Larochelle (bib0012) 2007; 19
Chen, Lin, Zhao, Wang, Gu (bib0016) 2014; 7
Xie, Wang, Liu, Lin, Hou (bib0019) 2014
Alonso-Gonzalez, Lopez-Martinez, Salembier (bib0027) 2012; 50
Lee, Grunes, Kwok (bib0004) 1994; 15
Freeman, Durden (bib0008) 1998; 36
Fukuda, Hirosawa (bib0001) 2001; 1
Gao, Zhang (bib0017) 2015; 10
Azimi-Sadjadi, Ghaloum, Zoughi (bib0002) 1991; 31
Hinton, Salakhutdinov (bib0011) 2006; 313
Touzi (bib0009) 2007; 45
Sun, Zhang (bib0029) 2011
Liu, Jiao, Hou, Yang (bib0025) 2016; 54
Zhou, Cui (bib0028) 2009; 1
Uhlmann, Kiranyaz (bib0006) 2014; 52
Zhang, Wang (bib0032) 2017; 55
Xie, Jiao, Hou (bib0024) 2017; 10
Zhou, Wang (bib0026) 2017; 13
Cloude, Pottier (bib0010) 1996; 34
Chen, Chen, Lee (bib0031) 2003; 41
Bengio (bib0013) 2009; 2
Hu, Fan (bib0023) 2018; 15
Zhang, Ma, Zhang (bib0021) 2016; 13
Freeman (10.1016/j.neucom.2019.03.024_bib0008) 1998; 36
Arel (10.1016/j.neucom.2019.03.024_bib0014) 2010; 5
Zhou (10.1016/j.neucom.2019.03.024_bib0026) 2017; 13
Alonso-Gonzalez (10.1016/j.neucom.2019.03.024_bib0027) 2012; 50
Wu (10.1016/j.neucom.2019.03.024_bib0020) 2008; 5
Xie (10.1016/j.neucom.2019.03.024_bib0019) 2014
Hinton (10.1016/j.neucom.2019.03.024_bib0011) 2006; 313
LeCun (10.1016/j.neucom.2019.03.024_bib0015) 2010
Bengio (10.1016/j.neucom.2019.03.024_bib0013) 2009; 2
Uhlmann (10.1016/j.neucom.2019.03.024_bib0006) 2014; 52
Liu (10.1016/j.neucom.2019.03.024_bib0005) 2016; 10
Cloude (10.1016/j.neucom.2019.03.024_bib0010) 1996; 34
Jun (10.1016/j.neucom.2019.03.024_bib0018) 2016; 35
Huang (10.1016/j.neucom.2019.03.024_bib0030) 2014
Fukuda (10.1016/j.neucom.2019.03.024_bib0001) 2001; 1
Bengio (10.1016/j.neucom.2019.03.024_bib0012) 2007; 19
Azimi-Sadjadi (10.1016/j.neucom.2019.03.024_bib0002) 1991; 31
Gao (10.1016/j.neucom.2019.03.024_bib0017) 2015; 10
Hou (10.1016/j.neucom.2019.03.024_bib0022) 2016; 9
Chen (10.1016/j.neucom.2019.03.024_bib0016) 2014; 7
Hu (10.1016/j.neucom.2019.03.024_bib0023) 2018; 15
Liu (10.1016/j.neucom.2019.03.024_bib0007) 2016; 9
Sun (10.1016/j.neucom.2019.03.024_bib0029) 2011
Lee (10.1016/j.neucom.2019.03.024_bib0004) 1994; 15
Zhang (10.1016/j.neucom.2019.03.024_bib0021) 2016; 13
Shang (10.1016/j.neucom.2019.03.024_bib0003) 2014; 52
Zhang (10.1016/j.neucom.2019.03.024_bib0032) 2017; 55
Xie (10.1016/j.neucom.2019.03.024_bib0024) 2017; 10
Liu (10.1016/j.neucom.2019.03.024_bib0025) 2016; 54
Touzi (10.1016/j.neucom.2019.03.024_bib0009) 2007; 45
Chen (10.1016/j.neucom.2019.03.024_bib0031) 2003; 41
Zhou (10.1016/j.neucom.2019.03.024_bib0028) 2009; 1
References_xml – volume: 10
  start-page: 3604
  year: 2017
  end-page: 3615
  ident: bib0024
  article-title: POLSAR image classification via Wishart-AE model or Wishart-CAE model
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 1
  start-page: 187
  year: 2001
  end-page: 189
  ident: bib0001
  article-title: Support vector machine classification of land cover: application to polarimetric SAR data
  publication-title: Proceedings of the IGARSS. IEEE
– volume: 50
  start-page: 593
  year: 2012
  end-page: 605
  ident: bib0027
  article-title: Filtering and segmentation of polarimetric SAR data based on binary partition trees
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: bib0014
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 13
  start-page: 1935
  year: 2017
  end-page: 1939
  ident: bib0026
  article-title: Polarimetric SAR image classification using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 55
  start-page: 7177
  year: 2017
  end-page: 7188
  ident: bib0032
  article-title: Complex-valued convolutional neural network and its application in polarimetric SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 2299
  year: 1994
  end-page: 2311
  ident: bib0004
  article-title: Classification of multilook polarimetric SAR imagery based on complex wishart distribution
  publication-title: Int. J. Remote Sens.
– volume: 9
  start-page: 3072
  year: 2016
  end-page: 3081
  ident: bib0022
  article-title: Classification of polarimetric SAR images using multilayer autoencoders and superpixels
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 13
  start-page: 1359
  year: 2016
  end-page: 1363
  ident: bib0021
  article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  ident: bib0012
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 73
  year: 2007
  end-page: 84
  ident: bib0009
  article-title: Target scattering decomposition in terms of roll-invariant target param- eters
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib0029
  article-title: An IHS fusion method integrated by the nonsubsampled contourlet transform to fuse the airborne X-band InSAR and P-band full PolSAR images
  publication-title: 2011 International Symposium on Image and Data Fusion (ISIDF)
– volume: 52
  start-page: 2197
  year: 2014
  end-page: 2216
  ident: bib0006
  article-title: Integrating color features in polarimetric SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 498
  year: 1996
  end-page: 518
  ident: bib0010
  article-title: A review of target decomposition theorems in radar polarimetry
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bib0016
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: bib0018
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 1
  start-page: 1
  year: 2009
  end-page: 4
  ident: bib0028
  article-title: A new edge detection method of polarimetric SAR images using the curvelet transform and the Duda operator
  publication-title: Proceedings of the IET International Radar Conference
– start-page: 253
  year: 2010
  end-page: 256
  ident: bib0015
  article-title: Convolutional networks and applications in vision
  publication-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS)
– volume: 31
  start-page: 511
  year: 1991
  end-page: 515
  ident: bib0002
  article-title: Terrain classification in SAR images using principal components analysis and neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 3001
  year: 2016
  end-page: 3015
  ident: bib0007
  article-title: Semisupervised feature extraction with neighborhood constraints for polarimetric SAR classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 15
  start-page: 1050
  year: 2018
  end-page: 1054
  ident: bib0023
  article-title: Classification of PolSAR images based on adaptive nonlocal stacked sparse autoencoder
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0005
  article-title: Polarimetric SAR feature extraction with neighborhood preservation-based deep learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 5
  start-page: 668
  year: 2008
  end-page: 672
  ident: bib0020
  article-title: Region-based classification of polarimetric SAR images using Wishart MRF
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0013
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends
– start-page: 4572
  year: 2014
  end-page: 4575
  ident: bib0030
  article-title: Saliency detection based on distance between patches in polarimetric SAR images
  publication-title: IEEE International Conference on Geoscience and Remote Sensing Symposium
– volume: 54
  start-page: 3292
  year: 2016
  end-page: 3308
  ident: bib0025
  article-title: Pol-SAR image classification based on Wishart DBN and local spatial information
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2818
  year: 2014
  end-page: 2821
  ident: bib0019
  article-title: Multilayer feature learning for polarimetric synthetic radar data classification
  publication-title: IEEE International Conference on Geoscience and Remote Sensing Symposium
– volume: 41
  start-page: 2089
  year: 2003
  end-page: 2100
  ident: bib0031
  article-title: The use of fully polarimetric information for the fuzzy neural classification of SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 36
  start-page: 963
  year: 1998
  end-page: 973
  ident: bib0008
  article-title: A three-component scattering model for polari- metric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0011
  article-title: Reducing the dimensionalityality of data with neural networks
  publication-title: Science
– volume: 52
  start-page: 5693
  year: 2014
  end-page: 5703
  ident: bib0003
  article-title: Quaternion neural-network-based PolSAR land classification in Poincare-sphere-parameter space
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 2108
  year: 2015
  end-page: 2118
  ident: bib0017
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forens. Secur.
– volume: 15
  start-page: 2299
  year: 1994
  ident: 10.1016/j.neucom.2019.03.024_bib0004
  article-title: Classification of multilook polarimetric SAR imagery based on complex wishart distribution
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954244
– volume: 15
  start-page: 1050
  year: 2018
  ident: 10.1016/j.neucom.2019.03.024_bib0023
  article-title: Classification of PolSAR images based on adaptive nonlocal stacked sparse autoencoder
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2829182
– volume: 9
  start-page: 3072
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0022
  article-title: Classification of polarimetric SAR images using multilayer autoencoders and superpixels
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2553104
– volume: 52
  start-page: 5693
  year: 2014
  ident: 10.1016/j.neucom.2019.03.024_bib0003
  article-title: Quaternion neural-network-based PolSAR land classification in Poincare-sphere-parameter space
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2291940
– volume: 50
  start-page: 593
  year: 2012
  ident: 10.1016/j.neucom.2019.03.024_bib0027
  article-title: Filtering and segmentation of polarimetric SAR data based on binary partition trees
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2160647
– volume: 7
  start-page: 2094
  year: 2014
  ident: 10.1016/j.neucom.2019.03.024_bib0016
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 35
  start-page: 119
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0018
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– start-page: 1
  year: 2011
  ident: 10.1016/j.neucom.2019.03.024_bib0029
  article-title: An IHS fusion method integrated by the nonsubsampled contourlet transform to fuse the airborne X-band InSAR and P-band full PolSAR images
– start-page: 253
  year: 2010
  ident: 10.1016/j.neucom.2019.03.024_bib0015
  article-title: Convolutional networks and applications in vision
– volume: 10
  start-page: 3604
  year: 2017
  ident: 10.1016/j.neucom.2019.03.024_bib0024
  article-title: POLSAR image classification via Wishart-AE model or Wishart-CAE model
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2698076
– start-page: 4572
  year: 2014
  ident: 10.1016/j.neucom.2019.03.024_bib0030
  article-title: Saliency detection based on distance between patches in polarimetric SAR images
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.neucom.2019.03.024_bib0011
  article-title: Reducing the dimensionalityality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 13
  start-page: 1935
  year: 2017
  ident: 10.1016/j.neucom.2019.03.024_bib0026
  article-title: Polarimetric SAR image classification using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2618840
– volume: 1
  start-page: 187
  year: 2001
  ident: 10.1016/j.neucom.2019.03.024_bib0001
  article-title: Support vector machine classification of land cover: application to polarimetric SAR data
– volume: 54
  start-page: 3292
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0025
  article-title: Pol-SAR image classification based on Wishart DBN and local spatial information
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2514504
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2019.03.024_bib0013
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.neucom.2019.03.024_bib0012
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.neucom.2019.03.024_bib0028
  article-title: A new edge detection method of polarimetric SAR images using the curvelet transform and the Duda operator
– volume: 36
  start-page: 963
  year: 1998
  ident: 10.1016/j.neucom.2019.03.024_bib0008
  article-title: A three-component scattering model for polari- metric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673687
– volume: 10
  start-page: 2108
  year: 2015
  ident: 10.1016/j.neucom.2019.03.024_bib0017
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forens. Secur.
  doi: 10.1109/TIFS.2015.2446438
– volume: 13
  start-page: 1359
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0021
  article-title: Stacked sparse autoencoder in PolSAR data classification using local spatial information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2586109
– volume: 55
  start-page: 7177
  year: 2017
  ident: 10.1016/j.neucom.2019.03.024_bib0032
  article-title: Complex-valued convolutional neural network and its application in polarimetric SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2743222
– volume: 31
  start-page: 511
  year: 1991
  ident: 10.1016/j.neucom.2019.03.024_bib0002
  article-title: Terrain classification in SAR images using principal components analysis and neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.214928
– volume: 41
  start-page: 2089
  year: 2003
  ident: 10.1016/j.neucom.2019.03.024_bib0031
  article-title: The use of fully polarimetric information for the fuzzy neural classification of SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.813494
– volume: 52
  start-page: 2197
  year: 2014
  ident: 10.1016/j.neucom.2019.03.024_bib0006
  article-title: Integrating color features in polarimetric SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2258675
– volume: 45
  start-page: 73
  year: 2007
  ident: 10.1016/j.neucom.2019.03.024_bib0009
  article-title: Target scattering decomposition in terms of roll-invariant target param- eters
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.886176
– start-page: 2818
  year: 2014
  ident: 10.1016/j.neucom.2019.03.024_bib0019
  article-title: Multilayer feature learning for polarimetric synthetic radar data classification
– volume: 10
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0005
  article-title: Polarimetric SAR feature extraction with neighborhood preservation-based deep learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 34
  start-page: 498
  year: 1996
  ident: 10.1016/j.neucom.2019.03.024_bib0010
  article-title: A review of target decomposition theorems in radar polarimetry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.485127
– volume: 9
  start-page: 3001
  year: 2016
  ident: 10.1016/j.neucom.2019.03.024_bib0007
  article-title: Semisupervised feature extraction with neighborhood constraints for polarimetric SAR classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2532922
– volume: 5
  start-page: 13
  year: 2010
  ident: 10.1016/j.neucom.2019.03.024_bib0014
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.938364
– volume: 5
  start-page: 668
  year: 2008
  ident: 10.1016/j.neucom.2019.03.024_bib0020
  article-title: Region-based classification of polarimetric SAR images using Wishart MRF
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.2002263
SSID ssj0017129
Score 2.391176
Snippet Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 167
SubjectTerms Deep learning
Feature learning
Multi-scale
Polsar classification
Stacked sparse autoencoder
Title PolSAR image classification based on multi-scale stacked sparse autoencoder
URI https://dx.doi.org/10.1016/j.neucom.2019.03.024
Volume 351
WOSCitedRecordID wos000467803400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9swFBZppodeupdON3ToLajEdmRLxzCd0mUYhk4o6cnIsgIOGSck8TCH_vh5T0_2pE3pBr0YIyxb6H1-m97C2GtkjArIKRQsU4w00KIAySCcHM0yO5SKYnO-nGSnp2o61We93rc2F-ZykdW1urrSq_9KahgDYmPq7F-Qu3spDMA9EB2uQHa4_hHhz5aL8_HnQXWB0TgWlWOMBiI6o8wq8XzAxxGKDRAIK8wa-JXLAfCW9cYNTLNdYnXLMsTtztv6Tg3IOt8DIngXxhdYZKFERHXehM7_fNJ0sTmVWZL1D_gIctK7wH14n6tX1c3g24b8sV-rbjR4JHwSlKDsZXKT7aXKkL8xlgKUSWK9jritymKfx77LjpNQgJYYakTNOoJsjqjxzB7bJw_E_E3tGowBwkX50rWUnv1DQe1zXAquBHRXPIXVt9hBnEmt-uxg_OF4-rE7hcqimGo1hqW3qZc-PnD_Wz9XbXbUlcl9djfYGXxM-HjAeq5-yO61PTx4YOmP2CeCC_dw4d_DhXu4cLjZgQsPcOEEF74Dl8ds8u54cvRehAYbwoKluBVuWKazWM5sGhlQ67QuStAnozIxICONjGw0ikxRlAVY0YVUQ21KsI6tHRVFZuMoecL69bJ2TxmXOgU7Q6MyDwZtogzIBSldGmeptMqaQ5a0W5PbUHwee6As8jbKcJ7Thua4ofkwyWFDD5noZq2o-Mpvns_aXc-DAkmKYQ5A-eXMZ_888zm7c_MPvGD97bpxL9lte7mtNutXAVHXoJeVHQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PolSAR+image+classification+based+on+multi-scale+stacked+sparse+autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Lu&rft.au=Jiao%2C+Licheng&rft.au=Ma%2C+Wenping&rft.au=Duan%2C+Yiping&rft.date=2019-07-25&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=351&rft.spage=167&rft.epage=179&rft_id=info:doi/10.1016%2Fj.neucom.2019.03.024&rft.externalDocID=S0925231219303649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon