Stochastic human motion prediction using a quantized conditional diffusion model
Human motion prediction is a fundamental task in computer vision, aiming to forecast future human poses based on observed motion sequences. Existing deterministic methods generate a single future motion sequence, neglecting the inherent stochasticity and diversity of human behaviors. To address this...
Gespeichert in:
| Veröffentlicht in: | Knowledge-based systems Jg. 309; S. 112823 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
30.01.2025
|
| Schlagworte: | |
| ISSN: | 0950-7051 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Human motion prediction is a fundamental task in computer vision, aiming to forecast future human poses based on observed motion sequences. Existing deterministic methods generate a single future motion sequence, neglecting the inherent stochasticity and diversity of human behaviors. To address this limitation, we propose a novel two-stage stochastic human motion prediction framework, termed the Quantized Conditional Diffusion Model (QCDM), which combines a Discrete Motion Quantization Module and a Conditional Motion Generation Module. Specifically, we first design a discrete motion quantization module that leverages Graph Convolutional Networks (GCNs) and one-dimensional temporal convolutions to encode motion sequences into continuous latent representations. These representations are then quantized into discrete latent variables using a learnable codebook. A decoder reconstructs the motion sequence from these discrete variables, preserving key motion patterns while eliminating redundancies. Next, we develop a conditional motion generation module that integrates GCNs and Transformers for denoising spatio-temporal features. The diffusion process iteratively refines noisy motion data by reversing a gradual noising procedure, modeling the distribution of plausible future motions. Action category information and observed historical motion segments are incorporated as conditions into the denoising process, enabling controllable generation of specific motions. Additionally, we introduce a diversity enhancement strategy by penalizing overly similar samples. This encourages the model to explore a wider range of plausible motions and thereby improving the diversity and richness of the prediction results. Extensive experiments demonstrate that the QCDM framework outperforms state-of-the-art methods in stochastic human motion prediction tasks, offering both accuracy and diversity in generated motion sequences.
•Combines motion quantization with conditional diffusion model for motion prediction.•Utilizes GCNs and temporal convolutions for efficient motion feature extraction.•Integrates action category info for controllable, diverse motion generation.•Implements diversity enhancement to reduce similarity in prediction samples. |
|---|---|
| AbstractList | Human motion prediction is a fundamental task in computer vision, aiming to forecast future human poses based on observed motion sequences. Existing deterministic methods generate a single future motion sequence, neglecting the inherent stochasticity and diversity of human behaviors. To address this limitation, we propose a novel two-stage stochastic human motion prediction framework, termed the Quantized Conditional Diffusion Model (QCDM), which combines a Discrete Motion Quantization Module and a Conditional Motion Generation Module. Specifically, we first design a discrete motion quantization module that leverages Graph Convolutional Networks (GCNs) and one-dimensional temporal convolutions to encode motion sequences into continuous latent representations. These representations are then quantized into discrete latent variables using a learnable codebook. A decoder reconstructs the motion sequence from these discrete variables, preserving key motion patterns while eliminating redundancies. Next, we develop a conditional motion generation module that integrates GCNs and Transformers for denoising spatio-temporal features. The diffusion process iteratively refines noisy motion data by reversing a gradual noising procedure, modeling the distribution of plausible future motions. Action category information and observed historical motion segments are incorporated as conditions into the denoising process, enabling controllable generation of specific motions. Additionally, we introduce a diversity enhancement strategy by penalizing overly similar samples. This encourages the model to explore a wider range of plausible motions and thereby improving the diversity and richness of the prediction results. Extensive experiments demonstrate that the QCDM framework outperforms state-of-the-art methods in stochastic human motion prediction tasks, offering both accuracy and diversity in generated motion sequences.
•Combines motion quantization with conditional diffusion model for motion prediction.•Utilizes GCNs and temporal convolutions for efficient motion feature extraction.•Integrates action category info for controllable, diverse motion generation.•Implements diversity enhancement to reduce similarity in prediction samples. |
| ArticleNumber | 112823 |
| Author | Li, Heqing Huang, Biaozhang Li, Xinde Hu, Chuanfei |
| Author_xml | – sequence: 1 givenname: Biaozhang orcidid: 0009-0009-8628-5839 surname: Huang fullname: Huang, Biaozhang organization: Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, 210096, China – sequence: 2 givenname: Xinde surname: Li fullname: Li, Xinde email: xindeli@seu.edu.cn organization: Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, 210096, China – sequence: 3 givenname: Chuanfei surname: Hu fullname: Hu, Chuanfei organization: Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, 210096, China – sequence: 4 givenname: Heqing surname: Li fullname: Li, Heqing organization: Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, 210096, China |
| BookMark | eNqFkE1LAzEQhnOoYFv9Bx72D-yar-6HB0GKX1BQUM8hnUxs6japm1Sov95d68mDnmZg5nmZeSZk5INHQs4YLRhl5fm6ePMh7mPBKZcFY7zmYkTGtJnRvKIzdkwmMa4ppZyzekwen1KAlY7JQbbabbTPNiG54LNth8bBd7uLzr9mOnvfaZ_cJ5oMgjdumOk2M87afiMMpMH2hBxZ3UY8_alT8nJz_Ty_yxcPt_fzq0UOgpYpR1ouRW2EBGnRLhlIJrBhFWrZWN0ALoGVNXJugDHNZSnMzJrKSl4JBlCJKbk45EIXYuzQKnBJDzelTrtWMaoGH2qtDj7U4EMdfPSw_AVvO7fR3f4_7PKAYf_Yh8NORXDooTfVISRlgvs74AuI04NM |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129140 |
| Cites_doi | 10.1109/ICCV51070.2023.01816 10.1109/TCSVT.2023.3239322 10.1109/CVPR52688.2022.00799 10.1145/3550454.3555435 10.1109/CVPRW.2018.00191 10.1109/LRA.2024.3401116 10.1109/TPAMI.2013.248 10.1109/TII.2022.3182780 10.1109/CVPR52688.2022.00635 10.1109/CVPR52729.2023.01415 10.1109/CVPR42600.2020.00527 10.1016/j.knosys.2022.108304 10.1109/CVPR52688.2022.01043 10.1007/s11263-009-0273-6 10.1109/ICCV.2017.361 10.1109/ICCV51070.2023.00875 10.1016/j.patcog.2021.107868 10.1109/ICCV48922.2021.01114 10.1109/ICCV48922.2021.01118 10.1109/JSEN.2023.3266609 10.1007/978-3-030-01228-1_17 10.1109/ICCV.2019.00723 10.1109/CVPR46437.2021.01268 10.1109/ICCV51070.2023.00220 10.1214/aoms/1177704261 10.1145/3386569.3392422 10.1016/j.knosys.2023.111283 10.1007/978-3-030-58545-7_20 10.1109/TFUZZ.2021.3079495 10.1109/CVPR.2017.525 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2024.112823 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2024_112823 S0950705124014576 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-e06b38d34c4fefb1c413e917ea49fa9cebc168e22dc11a2463d5fd7f42731cc73 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 01:33:43 EST 2025 Tue Nov 18 22:36:15 EST 2025 Sat Feb 01 16:08:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional diffusion model Human motion prediction Vector quantized variational autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e06b38d34c4fefb1c413e917ea49fa9cebc168e22dc11a2463d5fd7f42731cc73 |
| ORCID | 0009-0009-8628-5839 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2024_112823 crossref_primary_10_1016_j_knosys_2024_112823 elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112823 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-30 |
| PublicationDateYYYYMMDD | 2025-01-30 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-or, A.H. Bermano, Human Motion Diffusion Model, in: The Eleventh International Conference on Learning Representations, 2022. M. Hassan, D. Ceylan, R. Villegas, J. Saito, J. Yang, Y. Zhou, M.J. Black, Stochastic Scene-Aware Motion Prediction, in: IEEE International Conference on Computer Vision, ICCV, 2021. Dong, Li, Dezert, Zhou, Zhu, Cao, Khyam, Ge (b7) 2022; 19 Y. Yuan, K. Kitani, DLOW: Diversifying Latent Flows for Diverse Human Motion Prediction, in: European Conference on Computer Vision, ECCV, 2020, pp. 265–281. J. Zhang, Y. Zhang, X. Cun, Y. Zhang, H. Zhao, H. Lu, X. Shen, Y. Shan, Generating human motion from textual descriptions with discrete representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14730–14740. Li, Chen, Zhao, Zhang, Wang, Tian (b59) 2020 Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (b42) 2021 S. Aliakbarian, F.S. Saleh, M. Salzmann, L. Petersson, S. Gould, A stochastic conditioning scheme for diverse human motion prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5223–5232. Liu, Lyu, Wu, Chen, Hao, Ji (b16) 2021; vol. 35 Arjovsky, Bottou (b20) 2017 Tang, Zhang, Ding, Gu, Yin (b62) 2023 Tian, Zheng, Liang (b58) 2024 Sigal, Balan, Black (b51) 2010 Mao, Liu, Salzmann, Li (b3) 2019 A. Hernandez, J. Gall, F. Moreno-Noguer, Human motion prediction via spatio-temporal inpainting, in: The IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9622–9631. Wang, Yu, Zhao, Zhang, Zhou, Yuan, Chen (b17) 2020; vol. 34 Liu, Zhou, Mao, Bao, Li, Shi, Chen, Shen, Huang (b30) 2024; 284 Dong, Li, Dezert, Zhou, Zuo, Ge (b1) 2023 Ionescu, Papava, Olaru, Sminchisescu (b50) 2014; 36 L.-H. Chen, J. Zhang, Y. Li, Y. Pang, X. Xia, T. Liu, HumanMAC: Masked Motion Completion for Human Motion Prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2023, pp. 9544–9555. Wei, Sun, Li, Lu, Li, Sun, Hu (b26) 2023 Dhariwal, Jun, Payne, Kim, Radford, Sutskever (b44) 2020 Ling, Zinno, Cheng, Van De Panne (b19) 2020; 39 Kingma, Welling (b33) 2014; 1050 G. Barquero, S. Escalera, C. Palmero, Belfusion: Latent diffusion for behavior-driven human motion prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2317–2327. Y.J. Ma, J.P. Inala, D. Jayaraman, O. Bastani, Likelihood-based diverse sampling for trajectory forecasting, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13279–13288. V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814. H. Ma, J. Li, R. Hosseini, M. Tomizuka, C. Choi, Multi-objective diverse human motion prediction with knowledge distillation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8161–8171. Fragkiadaki, Levine, Felsen, Malik (b54) 2015 Li, Zhang, Lee, Lee (b55) 2018 X. Yan, A. Rastogi, R. Villegas, K. Sunkavalli, E. Shechtman, S. Hadap, E. Yumer, H. Lee, Mt-vae: Learning motion transformations to generate multimodal human dynamics, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 265–281. Martinez, Black, Romero (b52) 2017 P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12873–12883. Sheng, Li (b8) 2021; 114 Zhang, Cai, Pan, Hong, Guo, Yang, Liu (b25) 2024 Van Den Oord, Vinyals (b28) 2017; vol. 30 Fu, Yang, Dang, Liu, Yin (b6) 2023 T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, 2017. S. Aliakbarian, F. Saleh, L. Petersson, S. Gould, M. Salzmann, Contextually plausible and diverse 3d human motion prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11333–11342. Dang, Nie, Long, Zhang, Li (b60) 2021 Williams, Ringer, Ash, MacLeod, Dougherty, Hughes (b41) 2020; 33 Dieleman, Van Den Oord, Simonyan (b45) 2018; vol. 31 J. Walker, K. Marino, A. Gupta, M. Hebert, The pose knows: Video forecasting by generating pose futures, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3332–3341. Ao, Gao, Lou, Chen, Liu (b43) 2022; 41 Zhong, Hu, Zhang, Ye, Xia (b5) 2022 Goodfellow, Bengio, Courville (b34) 2016 S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, B. Guo, Vector quantized diffusion model for text-to-image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10696–10706. Ho, Jain, Abbeel (b23) 2020 E. Barsoum, J. Kender, Z. Liu, Hp-gan: Probabilistic 3d human motion prediction via gan, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 1418–1427. S. Gurumurthy, R.K. Sarvadevabhatla, R.V. Babu, Deligan: Generative Adversarial Networks for Diverse and Limited Data, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 166–174. I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, in: International Conference on Learning Representations, 2018. Guo, Zuo, Wang, Cheng (b38) 2022 Aksan, Cao, Kaufmann, Hilliges (b4) 2021 Ahn, Mascaro, Lee (b37) 2023 S. Chen, P. Sun, Y. Song, P. Luo, Diffusiondet: Diffusion model for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 19830–19843. Wu, Wu, Shen, Du, Telikani, Fahmideh, Liang (b9) 2022; 241 T. Salzmann, M. Pavone, M. Ryll, Motron: Multimodal probabilistic human motion forecasting, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 6457–6466. Zuo, Li, Dong, Dezert, Ge (b2) 2023; 23 Dong, Li, Dezert, Zhou, Zhu, Wei, Ge (b10) 2021; 29 Ma, Nie, Long, Zhang, Li (b61) 2022 Hachigian (b48) 1963; 34 Kundu, Gor, Babu (b31) 2019; vol. 33 Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b35) 2015 Ho (10.1016/j.knosys.2024.112823_b23) 2020 10.1016/j.knosys.2024.112823_b39 Zhang (10.1016/j.knosys.2024.112823_b25) 2024 Dong (10.1016/j.knosys.2024.112823_b7) 2022; 19 10.1016/j.knosys.2024.112823_b36 Dong (10.1016/j.knosys.2024.112823_b1) 2023 Ramesh (10.1016/j.knosys.2024.112823_b42) 2021 Arjovsky (10.1016/j.knosys.2024.112823_b20) 2017 10.1016/j.knosys.2024.112823_b32 Tian (10.1016/j.knosys.2024.112823_b58) 2024 Sheng (10.1016/j.knosys.2024.112823_b8) 2021; 114 Ao (10.1016/j.knosys.2024.112823_b43) 2022; 41 Hachigian (10.1016/j.knosys.2024.112823_b48) 1963; 34 Tang (10.1016/j.knosys.2024.112823_b62) 2023 10.1016/j.knosys.2024.112823_b27 10.1016/j.knosys.2024.112823_b29 10.1016/j.knosys.2024.112823_b24 Sigal (10.1016/j.knosys.2024.112823_b51) 2010 Zhong (10.1016/j.knosys.2024.112823_b5) 2022 Sohl-Dickstein (10.1016/j.knosys.2024.112823_b35) 2015 10.1016/j.knosys.2024.112823_b63 10.1016/j.knosys.2024.112823_b21 Fu (10.1016/j.knosys.2024.112823_b6) 2023 10.1016/j.knosys.2024.112823_b22 Fragkiadaki (10.1016/j.knosys.2024.112823_b54) 2015 Kingma (10.1016/j.knosys.2024.112823_b33) 2014; 1050 Ionescu (10.1016/j.knosys.2024.112823_b50) 2014; 36 Martinez (10.1016/j.knosys.2024.112823_b52) 2017 Li (10.1016/j.knosys.2024.112823_b55) 2018 Mao (10.1016/j.knosys.2024.112823_b3) 2019 10.1016/j.knosys.2024.112823_b18 Li (10.1016/j.knosys.2024.112823_b59) 2020 Dang (10.1016/j.knosys.2024.112823_b60) 2021 10.1016/j.knosys.2024.112823_b12 Kundu (10.1016/j.knosys.2024.112823_b31) 2019; vol. 33 10.1016/j.knosys.2024.112823_b56 10.1016/j.knosys.2024.112823_b13 10.1016/j.knosys.2024.112823_b57 Dong (10.1016/j.knosys.2024.112823_b10) 2021; 29 10.1016/j.knosys.2024.112823_b14 10.1016/j.knosys.2024.112823_b15 Dieleman (10.1016/j.knosys.2024.112823_b45) 2018; vol. 31 10.1016/j.knosys.2024.112823_b53 Ling (10.1016/j.knosys.2024.112823_b19) 2020; 39 10.1016/j.knosys.2024.112823_b11 Wei (10.1016/j.knosys.2024.112823_b26) 2023 Van Den Oord (10.1016/j.knosys.2024.112823_b28) 2017; vol. 30 Goodfellow (10.1016/j.knosys.2024.112823_b34) 2016 Liu (10.1016/j.knosys.2024.112823_b16) 2021; vol. 35 Aksan (10.1016/j.knosys.2024.112823_b4) 2021 Liu (10.1016/j.knosys.2024.112823_b30) 2024; 284 Zuo (10.1016/j.knosys.2024.112823_b2) 2023; 23 10.1016/j.knosys.2024.112823_b49 Ma (10.1016/j.knosys.2024.112823_b61) 2022 Williams (10.1016/j.knosys.2024.112823_b41) 2020; 33 10.1016/j.knosys.2024.112823_b46 10.1016/j.knosys.2024.112823_b47 Guo (10.1016/j.knosys.2024.112823_b38) 2022 Wu (10.1016/j.knosys.2024.112823_b9) 2022; 241 Dhariwal (10.1016/j.knosys.2024.112823_b44) 2020 10.1016/j.knosys.2024.112823_b40 Wang (10.1016/j.knosys.2024.112823_b17) 2020; vol. 34 Ahn (10.1016/j.knosys.2024.112823_b37) 2023 |
| References_xml | – volume: 36 start-page: 1325 year: 2014 end-page: 1339 ident: b50 article-title: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: E. Barsoum, J. Kender, Z. Liu, Hp-gan: Probabilistic 3d human motion prediction via gan, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 1418–1427. – reference: P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12873–12883. – volume: vol. 35 start-page: 2225 year: 2021 end-page: 2232 ident: b16 article-title: Aggregated multi-gans for controlled 3d human motion prediction publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2024 ident: b58 article-title: TransFusion: A practical and effective transformer-based diffusion model for 3d human motion prediction publication-title: IEEE Robot. Autom. Lett. – year: 2010 ident: b51 article-title: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion publication-title: Int. J. Comput. Vis. (IJCV) – reference: M. Hassan, D. Ceylan, R. Villegas, J. Saito, J. Yang, Y. Zhou, M.J. Black, Stochastic Scene-Aware Motion Prediction, in: IEEE International Conference on Computer Vision, ICCV, 2021. – reference: G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-or, A.H. Bermano, Human Motion Diffusion Model, in: The Eleventh International Conference on Learning Representations, 2022. – volume: 23 start-page: 12309 year: 2023 end-page: 12319 ident: b2 article-title: Combination of different-granularity beliefs for sensor-based human activity recognition publication-title: IEEE Sens. J. – year: 2022 ident: b61 article-title: Progressively generating better initial guesses towards next stages for high-quality human motion prediction publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition – volume: vol. 30 year: 2017 ident: b28 article-title: Neural discrete representation learning publication-title: Advances in Neural Information Processing Systems – reference: X. Yan, A. Rastogi, R. Villegas, K. Sunkavalli, E. Shechtman, S. Hadap, E. Yumer, H. Lee, Mt-vae: Learning motion transformations to generate multimodal human dynamics, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 265–281. – reference: I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, in: International Conference on Learning Representations, 2018. – reference: A. Hernandez, J. Gall, F. Moreno-Noguer, Human motion prediction via spatio-temporal inpainting, in: The IEEE International Conference on Computer Vision, ICCV, 2019, pp. 9622–9631. – volume: vol. 34 start-page: 12281 year: 2020 end-page: 12288 ident: b17 article-title: Learning diverse stochastic human-action generators by learning smooth latent transitions publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 4346 year: 2015 end-page: 4354 ident: b54 article-title: Recurrent network models for human dynamics publication-title: Proceedings of the 2015 IEEE International Conference on Computer Vision – year: 2023 ident: b1 article-title: Graph-structure-based multigranular belief fusion for human activity recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: vol. 33 start-page: 8553 year: 2019 end-page: 8560 ident: b31 article-title: Bihmp-gan: Bidirectional 3d human motion prediction gan publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – reference: S. Aliakbarian, F. Saleh, L. Petersson, S. Gould, M. Salzmann, Contextually plausible and diverse 3d human motion prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11333–11342. – start-page: 6840 year: 2020 end-page: 6851 ident: b23 article-title: Denoising diffusion probabilistic models publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 233 year: 1963 end-page: 237 ident: b48 article-title: Collapsed Markov chains and the Chapman-Kolmogorov equation publication-title: Ann. Math. Stat. – start-page: 4317 year: 2019 end-page: 4326 ident: b3 article-title: Learning trajectory dependencies for human motion prediction publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 29 start-page: 3607 year: 2021 end-page: 3619 ident: b10 article-title: Evidential reasoning with hesitant fuzzy belief structures for human activity recognition publication-title: IEEE Trans. Fuzzy Syst. – reference: T. Salzmann, M. Pavone, M. Ryll, Motron: Multimodal probabilistic human motion forecasting, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 6457–6466. – volume: 1050 start-page: 1 year: 2014 ident: b33 article-title: Auto-encoding variational Bayes publication-title: Stat – reference: T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, 2017. – start-page: 6447 year: 2022 end-page: 6456 ident: b5 article-title: Spatio-temporal gating-adjacency GCN for human motion prediction publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition – start-page: 2256 year: 2015 end-page: 2265 ident: b35 article-title: Deep unsupervised learning using nonequilibrium thermodynamics publication-title: International Conference on Machine Learning – year: 2023 ident: b26 article-title: Human joint kinematics diffusion-refinement for stochastic motion prediction publication-title: Association for the Advancement of Artificial Intelligence – year: 2023 ident: b6 article-title: Learning constrained dynamic correlations in spatiotemporal graphs for motion prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 start-page: 5530 year: 2022 end-page: 5542 ident: b7 article-title: Multisource weighted domain adaptation with evidential reasoning for activity recognition publication-title: IEEE Trans. Ind. Inform. – volume: 114 year: 2021 ident: b8 article-title: Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network publication-title: Pattern Recognit. – reference: S. Chen, P. Sun, Y. Song, P. Luo, Diffusiondet: Diffusion model for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 19830–19843. – year: 2016 ident: b34 article-title: Deep Learning – reference: G. Barquero, S. Escalera, C. Palmero, Belfusion: Latent diffusion for behavior-driven human motion prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2317–2327. – reference: J. Zhang, Y. Zhang, X. Cun, Y. Zhang, H. Zhao, H. Lu, X. Shen, Y. Shan, Generating human motion from textual descriptions with discrete representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14730–14740. – start-page: 2275 year: 2018 end-page: 2284 ident: b55 article-title: Convolutional sequence to sequence model for human dynamics publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814. – volume: vol. 31 year: 2018 ident: b45 article-title: The challenge of realistic music generation: modelling raw audio at scale publication-title: Advances in Neural Information Processing Systems – year: 2024 ident: b25 article-title: Motiondiffuse: Text-driven human motion generation with diffusion model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: b44 article-title: Jukebox: A generative model for music – reference: S. Aliakbarian, F.S. Saleh, M. Salzmann, L. Petersson, S. Gould, A stochastic conditioning scheme for diverse human motion prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5223–5232. – volume: 39 year: 2020 ident: b19 article-title: Character controllers using motion vaes publication-title: ACM Trans. Graph. – volume: 33 start-page: 4524 year: 2020 end-page: 4535 ident: b41 article-title: Hierarchical quantized autoencoders publication-title: Adv. Neural Inf. Process. Syst. – start-page: 214 year: 2020 end-page: 223 ident: b59 article-title: Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: Y. Yuan, K. Kitani, DLOW: Diversifying Latent Flows for Diverse Human Motion Prediction, in: European Conference on Computer Vision, ECCV, 2020, pp. 265–281. – start-page: 580 year: 2022 end-page: 597 ident: b38 article-title: Tm2t: Stochastic and tokenized modeling for the reciprocal generation of 3d human motions and texts publication-title: European Conference on Computer Vision – reference: J. Walker, K. Marino, A. Gupta, M. Hebert, The pose knows: Video forecasting by generating pose futures, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3332–3341. – volume: 41 start-page: 1 year: 2022 end-page: 19 ident: b43 article-title: Rhythmic gesticulator: Rhythm-aware co-speech gesture synthesis with hierarchical neural embeddings publication-title: ACM Trans. Graph. – year: 2023 ident: b62 article-title: Collaborative multi-dynamic pattern modeling for human motion prediction publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: S. Gurumurthy, R.K. Sarvadevabhatla, R.V. Babu, Deligan: Generative Adversarial Networks for Diverse and Limited Data, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 166–174. – reference: Y.J. Ma, J.P. Inala, D. Jayaraman, O. Bastani, Likelihood-based diverse sampling for trajectory forecasting, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13279–13288. – volume: 241 year: 2022 ident: b9 article-title: Distributed agent-based deep reinforcement learning for large scale traffic signal control publication-title: Knowl.-Based Syst. – reference: H. Ma, J. Li, R. Hosseini, M. Tomizuka, C. Choi, Multi-objective diverse human motion prediction with knowledge distillation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8161–8171. – volume: 284 year: 2024 ident: b30 article-title: Global disentangled graph convolutional neural network based on a graph topological metric publication-title: Knowl.-Based Syst. – start-page: 11467 year: 2021 end-page: 11476 ident: b60 article-title: MSR-gcn: Multi-scale residual graph convolution networks for human motion prediction publication-title: Proceedings of the International Conference on Computer Vision – reference: L.-H. Chen, J. Zhang, Y. Li, Y. Pang, X. Xia, T. Liu, HumanMAC: Masked Motion Completion for Human Motion Prediction, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2023, pp. 9544–9555. – start-page: 8821 year: 2021 end-page: 8831 ident: b42 article-title: Zero-shot text-to-image generation publication-title: International Conference on Machine Learning – reference: S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, B. Guo, Vector quantized diffusion model for text-to-image synthesis, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10696–10706. – start-page: 565 year: 2021 end-page: 574 ident: b4 article-title: A spatio-temporal transformer for 3d human motion prediction publication-title: Proceedings of the 2021 International Conference on 3D Vision – year: 2017 ident: b20 article-title: Towards principled methods for training generative adversarial networks – start-page: 9837 year: 2023 end-page: 9843 ident: b37 article-title: Can we use diffusion probabilistic models for 3d motion prediction? publication-title: 2023 IEEE International Conference on Robotics and Automation – start-page: 2891 year: 2017 end-page: 2900 ident: b52 article-title: On human motion prediction using recurrent neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: vol. 35 start-page: 2225 year: 2021 ident: 10.1016/j.knosys.2024.112823_b16 article-title: Aggregated multi-gans for controlled 3d human motion prediction – ident: 10.1016/j.knosys.2024.112823_b22 doi: 10.1109/ICCV51070.2023.01816 – year: 2023 ident: 10.1016/j.knosys.2024.112823_b62 article-title: Collaborative multi-dynamic pattern modeling for human motion prediction publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2023.3239322 – ident: 10.1016/j.knosys.2024.112823_b57 doi: 10.1109/CVPR52688.2022.00799 – start-page: 6840 year: 2020 ident: 10.1016/j.knosys.2024.112823_b23 article-title: Denoising diffusion probabilistic models – year: 2023 ident: 10.1016/j.knosys.2024.112823_b6 article-title: Learning constrained dynamic correlations in spatiotemporal graphs for motion prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: vol. 30 year: 2017 ident: 10.1016/j.knosys.2024.112823_b28 article-title: Neural discrete representation learning – volume: 41 start-page: 1 issue: 6 year: 2022 ident: 10.1016/j.knosys.2024.112823_b43 article-title: Rhythmic gesticulator: Rhythm-aware co-speech gesture synthesis with hierarchical neural embeddings publication-title: ACM Trans. Graph. doi: 10.1145/3550454.3555435 – start-page: 214 year: 2020 ident: 10.1016/j.knosys.2024.112823_b59 article-title: Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction – start-page: 4346 year: 2015 ident: 10.1016/j.knosys.2024.112823_b54 article-title: Recurrent network models for human dynamics – year: 2022 ident: 10.1016/j.knosys.2024.112823_b61 article-title: Progressively generating better initial guesses towards next stages for high-quality human motion prediction – ident: 10.1016/j.knosys.2024.112823_b24 – ident: 10.1016/j.knosys.2024.112823_b15 doi: 10.1109/CVPRW.2018.00191 – year: 2017 ident: 10.1016/j.knosys.2024.112823_b20 – year: 2024 ident: 10.1016/j.knosys.2024.112823_b58 article-title: TransFusion: A practical and effective transformer-based diffusion model for 3d human motion prediction publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3401116 – volume: 36 start-page: 1325 issue: 7 year: 2014 ident: 10.1016/j.knosys.2024.112823_b50 article-title: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.248 – year: 2020 ident: 10.1016/j.knosys.2024.112823_b44 – volume: 19 start-page: 5530 issue: 4 year: 2022 ident: 10.1016/j.knosys.2024.112823_b7 article-title: Multisource weighted domain adaptation with evidential reasoning for activity recognition publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3182780 – start-page: 2891 year: 2017 ident: 10.1016/j.knosys.2024.112823_b52 article-title: On human motion prediction using recurrent neural networks – year: 2016 ident: 10.1016/j.knosys.2024.112823_b34 – start-page: 9837 year: 2023 ident: 10.1016/j.knosys.2024.112823_b37 article-title: Can we use diffusion probabilistic models for 3d motion prediction? – ident: 10.1016/j.knosys.2024.112823_b63 doi: 10.1109/CVPR52688.2022.00635 – start-page: 6447 year: 2022 ident: 10.1016/j.knosys.2024.112823_b5 article-title: Spatio-temporal gating-adjacency GCN for human motion prediction – ident: 10.1016/j.knosys.2024.112823_b39 doi: 10.1109/CVPR52729.2023.01415 – ident: 10.1016/j.knosys.2024.112823_b12 doi: 10.1109/CVPR42600.2020.00527 – volume: 33 start-page: 4524 year: 2020 ident: 10.1016/j.knosys.2024.112823_b41 article-title: Hierarchical quantized autoencoders publication-title: Adv. Neural Inf. Process. Syst. – volume: 241 year: 2022 ident: 10.1016/j.knosys.2024.112823_b9 article-title: Distributed agent-based deep reinforcement learning for large scale traffic signal control publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108304 – start-page: 580 year: 2022 ident: 10.1016/j.knosys.2024.112823_b38 article-title: Tm2t: Stochastic and tokenized modeling for the reciprocal generation of 3d human motions and texts – start-page: 4317 year: 2019 ident: 10.1016/j.knosys.2024.112823_b3 article-title: Learning trajectory dependencies for human motion prediction – ident: 10.1016/j.knosys.2024.112823_b47 doi: 10.1109/CVPR52688.2022.01043 – start-page: 2275 year: 2018 ident: 10.1016/j.knosys.2024.112823_b55 article-title: Convolutional sequence to sequence model for human dynamics – start-page: 565 year: 2021 ident: 10.1016/j.knosys.2024.112823_b4 article-title: A spatio-temporal transformer for 3d human motion prediction – year: 2010 ident: 10.1016/j.knosys.2024.112823_b51 article-title: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion publication-title: Int. J. Comput. Vis. (IJCV) doi: 10.1007/s11263-009-0273-6 – ident: 10.1016/j.knosys.2024.112823_b29 – start-page: 2256 year: 2015 ident: 10.1016/j.knosys.2024.112823_b35 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – ident: 10.1016/j.knosys.2024.112823_b32 doi: 10.1109/ICCV.2017.361 – ident: 10.1016/j.knosys.2024.112823_b36 doi: 10.1109/ICCV51070.2023.00875 – volume: 114 year: 2021 ident: 10.1016/j.knosys.2024.112823_b8 article-title: Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107868 – ident: 10.1016/j.knosys.2024.112823_b11 doi: 10.1109/ICCV48922.2021.01114 – ident: 10.1016/j.knosys.2024.112823_b13 doi: 10.1109/ICCV48922.2021.01118 – volume: 23 start-page: 12309 issue: 11 year: 2023 ident: 10.1016/j.knosys.2024.112823_b2 article-title: Combination of different-granularity beliefs for sensor-based human activity recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3266609 – start-page: 8821 year: 2021 ident: 10.1016/j.knosys.2024.112823_b42 article-title: Zero-shot text-to-image generation – volume: vol. 31 year: 2018 ident: 10.1016/j.knosys.2024.112823_b45 article-title: The challenge of realistic music generation: modelling raw audio at scale – ident: 10.1016/j.knosys.2024.112823_b14 doi: 10.1007/978-3-030-01228-1_17 – ident: 10.1016/j.knosys.2024.112823_b18 doi: 10.1109/ICCV.2019.00723 – year: 2023 ident: 10.1016/j.knosys.2024.112823_b26 article-title: Human joint kinematics diffusion-refinement for stochastic motion prediction – volume: vol. 33 start-page: 8553 year: 2019 ident: 10.1016/j.knosys.2024.112823_b31 article-title: Bihmp-gan: Bidirectional 3d human motion prediction gan – ident: 10.1016/j.knosys.2024.112823_b40 doi: 10.1109/CVPR46437.2021.01268 – ident: 10.1016/j.knosys.2024.112823_b53 – ident: 10.1016/j.knosys.2024.112823_b49 – ident: 10.1016/j.knosys.2024.112823_b21 doi: 10.1109/ICCV51070.2023.00220 – volume: 34 start-page: 233 issue: 1 year: 1963 ident: 10.1016/j.knosys.2024.112823_b48 article-title: Collapsed Markov chains and the Chapman-Kolmogorov equation publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704261 – volume: 39 issue: 4 year: 2020 ident: 10.1016/j.knosys.2024.112823_b19 article-title: Character controllers using motion vaes publication-title: ACM Trans. Graph. doi: 10.1145/3386569.3392422 – volume: vol. 34 start-page: 12281 year: 2020 ident: 10.1016/j.knosys.2024.112823_b17 article-title: Learning diverse stochastic human-action generators by learning smooth latent transitions – volume: 284 year: 2024 ident: 10.1016/j.knosys.2024.112823_b30 article-title: Global disentangled graph convolutional neural network based on a graph topological metric publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111283 – ident: 10.1016/j.knosys.2024.112823_b27 doi: 10.1007/978-3-030-58545-7_20 – year: 2023 ident: 10.1016/j.knosys.2024.112823_b1 article-title: Graph-structure-based multigranular belief fusion for human activity recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 1050 start-page: 1 year: 2014 ident: 10.1016/j.knosys.2024.112823_b33 article-title: Auto-encoding variational Bayes publication-title: Stat – volume: 29 start-page: 3607 issue: 12 year: 2021 ident: 10.1016/j.knosys.2024.112823_b10 article-title: Evidential reasoning with hesitant fuzzy belief structures for human activity recognition publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2021.3079495 – year: 2024 ident: 10.1016/j.knosys.2024.112823_b25 article-title: Motiondiffuse: Text-driven human motion generation with diffusion model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 11467 year: 2021 ident: 10.1016/j.knosys.2024.112823_b60 article-title: MSR-gcn: Multi-scale residual graph convolution networks for human motion prediction – ident: 10.1016/j.knosys.2024.112823_b46 – ident: 10.1016/j.knosys.2024.112823_b56 doi: 10.1109/CVPR.2017.525 |
| SSID | ssj0002218 |
| Score | 2.4270732 |
| Snippet | Human motion prediction is a fundamental task in computer vision, aiming to forecast future human poses based on observed motion sequences. Existing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112823 |
| SubjectTerms | Conditional diffusion model Human motion prediction Vector quantized variational autoencoder |
| Title | Stochastic human motion prediction using a quantized conditional diffusion model |
| URI | https://dx.doi.org/10.1016/j.knosys.2024.112823 |
| Volume | 309 |
| WOSCitedRecordID | wos001385489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002218 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbahUMvfUBRoQ_50KvRxnbW9pFWVLSVEFJB2lvktR0RirKUzVaIX8_4lSwF0XLoJYoi23nMl_F4PDMfQh-VY7wsWUlAKwrCtXREFjWcFZYBPCToTRvIJsThoZxO1VEKCVoEOgHRtvLqSl38V1HDNRC2T519hLj7QeECnIPQ4Qhih-M_Cf5HNzen2pdfTgR8kajHVwOwTSQGXwYHgfYZlW3XXDuf2ea3rqNb0HOmLL0TLdLkrJqv37MHjvjZz6Y60IsBG8n7_KnR82vviu7jfULQwNTXZhwax-1-6FO75nbDA_crT6nJI0F98F_eXMmuxTER41RINmlZNlYrehKsPBnzjO-o8OhNONv92c7hJWAFT_nu0Px2xew_ZrI-vjCHrp1VcZTKj1LFUZ6iNSpKJUdobe_r_vRbP29TGrzB_dPnRMsQDXj3ae43ZFaMk-OX6HlaVeC9iIZX6IlrN9CLzNiBkwLfREcDOHAAB47gwAM4cAAH1rgHB14BB-7BgQM4XqOTL_vHnw9I4tQgBhaHHXHjyYxJy7jhtatnhYGf0cGS3Wmuaq2Mm5liIh2l1hSFpnzCbFlbUXMwcwtjBNtCo3beujcIG1iplmDb0NLOuFXOJzFrW9RWaSmoVtuI5Q9UmVRw3vOenFcPiWcbkb7XRSy48pf2In_7KhmN0RisAFAP9tx55J3eomcD2t-hUXe5dO_RuvndNYvLDwlNN6H-kg4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+human+motion+prediction+using+a+quantized+conditional+diffusion+model&rft.jtitle=Knowledge-based+systems&rft.au=Huang%2C+Biaozhang&rft.au=Li%2C+Xinde&rft.au=Hu%2C+Chuanfei&rft.au=Li%2C+Heqing&rft.date=2025-01-30&rft.issn=0950-7051&rft.volume=309&rft.spage=112823&rft_id=info:doi/10.1016%2Fj.knosys.2024.112823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2024_112823 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |