Improved YOLOX-X based UAV aerial photography object detection algorithm

•The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object inform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Image and vision computing Ročník 135; s. 104697
Hlavní autoři: Wang, Xin, He, Ning, Hong, Chen, Wang, Qi, Chen, Ming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0262-8856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object information and weakens the background information.•The optimization of loss function improved the training speed and prediction accuracy. Unmanned Aerial Vehicle (UAV) aerial photography object detection has high research significance in the fields of disaster rescue, ecological environmental protection, and military reconnaissance. The larger width of UAV photography introduces background interference into the detection task, whereas the relatively high imaging height of the UAV results in mostly small objects in the aerial images. YOLOX-X operated fast and achieved advanced results on MS COCO of natural scene images, so YOLOX-X was used as the baseline network in this paper. A UAV aerial photography object detection algorithm YOLOX_w with improved YOLOX-X is proposed to handle the characteristics of complex backgrounds and the large number of small objects in UAV aerial photography images. The model’s performance in detecting small objects is first improved by preprocessing the training set with the slicing aided hyper inference (SAHI) algorithm and by data augmentation. Then, a shallow feature map with rich spatial information is introduced into the path aggregation network (PAN), and a detection head is added to detect small objects. Next, the ultra-lightweight subspace attention module (ULSAM) is added to the PAN stage to highlight the target features and weaken the background features, which improves the detection accuracy of the network. Finally, the loss function of the bounding box regression is optimized to further improve network prediction accuracy. Experimental results on the VisDrone dataset demonstrate that the detection accuracy of the proposed YOLOX_w algorithm improved by 8% when compared with the baseline YOLOX-X. Moreover, migration experiments on the DIOR dataset verify the effectiveness and robustness of the improved method.
AbstractList •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object information and weakens the background information.•The optimization of loss function improved the training speed and prediction accuracy. Unmanned Aerial Vehicle (UAV) aerial photography object detection has high research significance in the fields of disaster rescue, ecological environmental protection, and military reconnaissance. The larger width of UAV photography introduces background interference into the detection task, whereas the relatively high imaging height of the UAV results in mostly small objects in the aerial images. YOLOX-X operated fast and achieved advanced results on MS COCO of natural scene images, so YOLOX-X was used as the baseline network in this paper. A UAV aerial photography object detection algorithm YOLOX_w with improved YOLOX-X is proposed to handle the characteristics of complex backgrounds and the large number of small objects in UAV aerial photography images. The model’s performance in detecting small objects is first improved by preprocessing the training set with the slicing aided hyper inference (SAHI) algorithm and by data augmentation. Then, a shallow feature map with rich spatial information is introduced into the path aggregation network (PAN), and a detection head is added to detect small objects. Next, the ultra-lightweight subspace attention module (ULSAM) is added to the PAN stage to highlight the target features and weaken the background features, which improves the detection accuracy of the network. Finally, the loss function of the bounding box regression is optimized to further improve network prediction accuracy. Experimental results on the VisDrone dataset demonstrate that the detection accuracy of the proposed YOLOX_w algorithm improved by 8% when compared with the baseline YOLOX-X. Moreover, migration experiments on the DIOR dataset verify the effectiveness and robustness of the improved method.
ArticleNumber 104697
Author Wang, Qi
Chen, Ming
He, Ning
Hong, Chen
Wang, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: wang_xin_nihao@163.com
  organization: College of Smart City, Beijing Union University, Beijing 100101, China
– sequence: 2
  givenname: Ning
  surname: He
  fullname: He, Ning
  email: xxthening@buu.edu.cn
  organization: College of Smart City, Beijing Union University, Beijing 100101, China
– sequence: 3
  givenname: Chen
  surname: Hong
  fullname: Hong, Chen
  email: hchchina@sina.com
  organization: College of Robotics, Beijing Union University, Beijing 100101, China
– sequence: 4
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: wangqi981124@163.com
  organization: College of Robotics, Beijing Union University, Beijing 100101, China
– sequence: 5
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  email: 53192877@qq.com
  organization: College of Robotics, Beijing Union University, Beijing 100101, China
BookMark eNqFkLFqwzAQhjWk0CTtG3TQCziVZEuWOxRCaJtAIEtT0knI0iWRcSwjmUDevg7O1KGdjjvu-7n7JmjU-AYQeqJkRgkVz9XMnfTZxRkjLO1HmSjyERoTJlgiJRf3aBJjRQjJSV6M0XJ1aoM_g8Xfm_Vml-xwqWPfbedfWENwusbt0Xf-EHR7vGBfVmA6bKHri_MN1vXBB9cdTw_obq_rCI-3OkXb97fPxTJZbz5Wi_k6MSkRXQIkpVKn1gKUJQUDJuUGONCcg9SysKawLOWyZFJSyKAoDBc8E5TtGWemTKfoZcg1wccYYK-M6_T1li5oVytK1NWDqtTgQV09qMFDD2e_4Db0a-HyH_Y6YNA_dnYQVDQOGgPWhd6Dst79HfADxIh-ew
CitedBy_id crossref_primary_10_1016_j_imavis_2023_104856
crossref_primary_10_1016_j_imavis_2024_105190
crossref_primary_10_1007_s11760_024_03337_4
crossref_primary_10_32604_cmes_2024_050140
crossref_primary_10_1007_s11760_025_03952_9
crossref_primary_10_1007_s10044_024_01337_1
crossref_primary_10_1038_s41598_024_80830_3
crossref_primary_10_32604_cmc_2025_060873
crossref_primary_10_3390_drones8050186
crossref_primary_10_1016_j_ijepes_2025_111019
crossref_primary_10_3390_drones8070316
crossref_primary_10_1016_j_knosys_2025_113253
crossref_primary_10_3390_rs17152708
crossref_primary_10_3390_s24175759
crossref_primary_10_3390_biomimetics10080499
crossref_primary_10_1007_s10586_025_05452_4
crossref_primary_10_1007_s00521_025_11446_5
crossref_primary_10_1007_s40747_024_01652_4
crossref_primary_10_1109_JSTARS_2024_3474689
crossref_primary_10_1109_TIM_2024_3381272
crossref_primary_10_1109_TIM_2025_3544321
crossref_primary_10_1007_s00371_024_03591_0
crossref_primary_10_1109_ACCESS_2025_3538608
crossref_primary_10_1016_j_imavis_2025_105485
crossref_primary_10_1016_j_dsp_2024_104789
crossref_primary_10_1016_j_ress_2024_110185
crossref_primary_10_1007_s00371_024_03689_5
crossref_primary_10_1016_j_aej_2025_09_001
crossref_primary_10_3390_agronomy14092041
crossref_primary_10_3390_s24144526
crossref_primary_10_1016_j_engappai_2025_110488
crossref_primary_10_3390_s25175556
crossref_primary_10_3390_electronics14081548
crossref_primary_10_3390_app14188470
crossref_primary_10_3390_electronics12163497
crossref_primary_10_1016_j_neucom_2024_129057
crossref_primary_10_1109_ACCESS_2024_3490610
crossref_primary_10_1002_rob_22592
crossref_primary_10_1016_j_compeleceng_2025_110413
crossref_primary_10_1007_s11761_024_00388_w
crossref_primary_10_3390_s24010134
crossref_primary_10_1371_journal_pone_0325527
crossref_primary_10_1016_j_patcog_2025_111717
crossref_primary_10_1109_JSEN_2024_3362982
crossref_primary_10_1007_s11042_024_19611_z
crossref_primary_10_1038_s41598_023_50306_x
crossref_primary_10_2174_0126662558333174241009112642
crossref_primary_10_1088_1361_6501_ad82ff
crossref_primary_10_1016_j_knosys_2025_113983
crossref_primary_10_1117_1_JEI_34_2_023026
Cites_doi 10.3390/rs12091432
10.1007/978-3-030-58583-9_34
10.1109/CVPR.2016.91
10.1109/ICAIIC51459.2021.9415217
10.1016/j.isprsjprs.2019.11.023
10.1109/CVPR.2014.81
10.1145/3446999.3447023
10.1007/978-3-319-10602-1_48
10.1109/ICIP.1994.413553
10.1109/ICPR48806.2021.9412847
10.1109/TPAMI.2015.2389824
10.1109/ICIP46576.2022.9897990
10.1109/IVCNZ.2018.8634752
10.1109/TGRS.2019.2899955
10.1109/ICCV.2015.169
10.1109/CVPR.2016.90
10.1145/2964284.2967274
10.1109/TMM.2021.3074273
10.1109/CVPR52729.2023.00721
10.5121/csit.2019.91713
10.1007/978-3-319-46448-0_2
10.1016/j.neucom.2021.03.016
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2023.104697
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_imavis_2023_104697
S0262885623000719
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-e0318a3ddeebb1ecec35ce5e175e8a89dc9d2358b2881e4e99c5654612f252cb3
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011531900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Sat Nov 29 07:22:09 EST 2025
Tue Nov 18 21:19:00 EST 2025
Tue Dec 03 03:44:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small objects
YOLOX
UAV aerial photography
Object detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-e0318a3ddeebb1ecec35ce5e175e8a89dc9d2358b2881e4e99c5654612f252cb3
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2023_104697
crossref_primary_10_1016_j_imavis_2023_104697
elsevier_sciencedirect_doi_10_1016_j_imavis_2023_104697
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References X. Yang, J. Yan, Q. Ming, W. Wang, X. Zhang, Q. Tian, Rethinking rotated object detection with gaussian wasserstein distance loss, in: International Conference on Machine Learning, PMLR, pp. 11830–11841.
Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, arXiv preprint arXiv:2107.08430 (2021).
A. Ajmal, C. Hollitt, M. Frean, H. Al-Sahaf, A comparison of rgb and hsv colour spaces for visual attention models, in: 2018 International conference on image and vision computing New Zealand (IVCNZ), IEEE, pp. 1–6.
B. Zoph, E.D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, Q.V. Le, Learning data augmentation strategies for object detection, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, Springer, pp. 566–583.
X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, Esrgan: Enhanced super-resolution generative adversarial networks, in: Proceedings of the European conference on computer vision (ECCV) workshops, pp. 0–0.
C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: Deconvolutional single shot detector, arXiv preprint arXiv:1701.06659 (2017).
J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1222–1230.
C. Yang, Z. Huang, N. Wang, Querydet: Cascaded sparse query for accelerating high-resolution small object detection, in: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 13668–13677.
F.C. Akyon, S.O. Altinuc, A. Temizel, Slicing aided hyper inference and fine-tuning for small object detection, arXiv preprint arXiv:2202.06934 (2022).
J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE international conference on computer vision, pp. 764–773.
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125.
X. Zhang, E. Izquierdo, K. Chandramouli, Dense and small object detection in uav vision based on cascade network, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in: European conference on computer vision, Springer, pp. 21–37.
H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412 (2017).
Deng, Wang, Liu, Liu, Jiang (b0155) 2021; 24
Y. Liu, Z. Ding, Y. Cao, M. Chang, Multi-scale feature fusion uav image object detection method based on dilated convolution and attention mechanism, in: 2020 The 8th International Conference on Information Technology: IoT and Smart City, pp. 125–132.
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122 (2015).
Hong, Li, Yang, Zhu, Zhao, Lu (b0040) 2021; 19
Li, Wan, Cheng, Meng, Han (b0290) 2020; 159
J. Yu, Y. Jiang, Z. Wang, Z. Cao, T. Huang, Unitbox: An advanced object detection network, in: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520.
Rabbi, Ray, Schubert, Chowdhury, Chao (b0050) 2020; 12
S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023–6032.
C. Guo, B. Fan, Q. Zhang, S. Xiang, C. Pan, Augfpn: Improving multi-scale feature learning for object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12595–12604.
G. Jocher, A. Chaurasia, J. Qiu, YOLOv8 by Ultralytics
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
A.S. Samyal, S. Hans, et al., Analysis and adaptation of yolov4 for object detection in aerial images, arXiv preprint arXiv:2203.10194 (2022).
J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271.
Y. Liu, H. Li, C. Hu, S. Luo, H. Shen, C.W. Chen, Catnet: context aggregation network for instance segmentation in remote sensing images, arXiv preprint arXiv:2111.11057 (2021).
P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in: Proceedings of 1st international conference on image processing, vol. 2, IEEE, pp. 168–172.
M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, arXiv preprint arXiv:1902.07296 (2019).
T. DeVries, G.W. Taylor, Improved regularization of convolutional neural networks with cutout, arXiv preprint arXiv:1708.04552 (2017).
C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv preprint arXiv:2207.02696 (2022).
He, Zhang, Ren, Sun (b0225) 2015; 37
B.M. Albaba, S. Ozer, Synet: An ensemble network for object detection in uav images, in: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp. 10227–10234.
J.-S. Lim, M. Astrid, H.-J. Yoon, S.-I. Lee, Small object detection using context and attention, in: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, pp. 181–186.
Z. Gevorgyan, Siou loss: More powerful learning for bounding box regression, arXiv preprint arXiv:2205.12740 (2022).
A. Van Etten, You only look twice: Rapid multi-scale object detection in satellite imagery, arXiv preprint arXiv:1805.09512 (2018).
Z. Li, F. Zhou, Fssd: feature fusion single shot multibox detector, arXiv preprint arXiv:1712.00960 (2017).
J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767 (2018).
C.-Y. Wang, H.-Y.M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, I.-H. Yeh, Cspnet: A new backbone that can enhance learning capability of cnn, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391.
Tian, Liu, Yang (b0030) 2021; 443
Jiang, Qu, Li, Li (b0005) 2021; 42
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788.
X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun, K.S. Fu, Towards more robust detection for small, cluttered and rotated objects, in: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, vol. 27, pp. 8232–8241.
2023.
Ren, He, Girshick, Sun (b0075) 2015; 28
Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063.
S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768.
Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection via multi-task generative adversarial network, in: Proceedings of the European Conference on Computer Vision (ECCV), pp. 206–221.
D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang, et al., Visdrone-det2019: The vision meets drone object detection in image challenge results, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, pp. 0–0.
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587.
2020.
R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448.
C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, J. Dong, Rrnet: A hybrid detector for object detection in drone-captured images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0.
A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020).
R. Saini, N.K. Jha, B. Das, S. Mittal, C.K. Mohan, Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1627–1636.
G. Jocher, YOLOv5 by Ultralytics
Yang, Yang, Yang, Ming, Wang, Tian, Yan (b0210) 2021; 34
Pang, Li, Shi, Xu, Feng (b0035) 2019; 57
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, in: European conference on computer vision, Springer, pp. 740–755.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
10.1016/j.imavis.2023.104697_b0125
10.1016/j.imavis.2023.104697_b0200
10.1016/j.imavis.2023.104697_b0245
Hong (10.1016/j.imavis.2023.104697_b0040) 2021; 19
10.1016/j.imavis.2023.104697_b0205
10.1016/j.imavis.2023.104697_b0085
10.1016/j.imavis.2023.104697_b0280
10.1016/j.imavis.2023.104697_b0160
10.1016/j.imavis.2023.104697_b0165
10.1016/j.imavis.2023.104697_b0045
Ren (10.1016/j.imavis.2023.104697_b0075) 2015; 28
10.1016/j.imavis.2023.104697_b0240
10.1016/j.imavis.2023.104697_b0120
10.1016/j.imavis.2023.104697_b0285
Yang (10.1016/j.imavis.2023.104697_b0210) 2021; 34
10.1016/j.imavis.2023.104697_b0090
10.1016/j.imavis.2023.104697_b0235
10.1016/j.imavis.2023.104697_b0115
10.1016/j.imavis.2023.104697_b0150
Jiang (10.1016/j.imavis.2023.104697_b0005) 2021; 42
10.1016/j.imavis.2023.104697_b0195
10.1016/j.imavis.2023.104697_b0270
Tian (10.1016/j.imavis.2023.104697_b0030) 2021; 443
10.1016/j.imavis.2023.104697_b0110
10.1016/j.imavis.2023.104697_b0275
10.1016/j.imavis.2023.104697_b0230
He (10.1016/j.imavis.2023.104697_b0225) 2015; 37
10.1016/j.imavis.2023.104697_b0080
10.1016/j.imavis.2023.104697_b0145
10.1016/j.imavis.2023.104697_b0025
10.1016/j.imavis.2023.104697_b0105
10.1016/j.imavis.2023.104697_b0260
10.1016/j.imavis.2023.104697_b0140
10.1016/j.imavis.2023.104697_b0060
10.1016/j.imavis.2023.104697_b0220
10.1016/j.imavis.2023.104697_b0100
10.1016/j.imavis.2023.104697_b0265
10.1016/j.imavis.2023.104697_b0020
10.1016/j.imavis.2023.104697_b0185
10.1016/j.imavis.2023.104697_b0065
10.1016/j.imavis.2023.104697_b0190
10.1016/j.imavis.2023.104697_b0070
Li (10.1016/j.imavis.2023.104697_b0290) 2020; 159
10.1016/j.imavis.2023.104697_b0015
10.1016/j.imavis.2023.104697_b0255
10.1016/j.imavis.2023.104697_b0135
10.1016/j.imavis.2023.104697_b0215
10.1016/j.imavis.2023.104697_b0095
10.1016/j.imavis.2023.104697_b0250
10.1016/j.imavis.2023.104697_b0170
Pang (10.1016/j.imavis.2023.104697_b0035) 2019; 57
10.1016/j.imavis.2023.104697_b0055
10.1016/j.imavis.2023.104697_b0130
10.1016/j.imavis.2023.104697_b0295
10.1016/j.imavis.2023.104697_b0010
10.1016/j.imavis.2023.104697_b0175
Rabbi (10.1016/j.imavis.2023.104697_b0050) 2020; 12
10.1016/j.imavis.2023.104697_b0180
Deng (10.1016/j.imavis.2023.104697_b0155) 2021; 24
References_xml – reference: D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang, et al., Visdrone-det2019: The vision meets drone object detection in image challenge results, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, pp. 0–0.
– reference: X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun, K.S. Fu, Towards more robust detection for small, cluttered and rotated objects, in: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, vol. 27, pp. 8232–8241.
– reference: R. Saini, N.K. Jha, B. Das, S. Mittal, C.K. Mohan, Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1627–1636.
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  ident: b0040
  article-title: Sspnet: Scale selection pyramid network for tiny person detection from uav images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 443
  start-page: 292
  year: 2021
  end-page: 301
  ident: b0030
  article-title: A dual neural network for object detection in uav images
  publication-title: Neurocomputing
– reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788.
– reference: G. Jocher, A. Chaurasia, J. Qiu, YOLOv8 by Ultralytics,
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0225
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Z. Gevorgyan, Siou loss: More powerful learning for bounding box regression, arXiv preprint arXiv:2205.12740 (2022).
– reference: , 2020.
– volume: 12
  start-page: 1432
  year: 2020
  ident: b0050
  article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network
  publication-title: Remote Sens.
– reference: P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in: Proceedings of 1st international conference on image processing, vol. 2, IEEE, pp. 168–172.
– reference: A.S. Samyal, S. Hans, et al., Analysis and adaptation of yolov4 for object detection in aerial images, arXiv preprint arXiv:2203.10194 (2022).
– reference: Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063.
– volume: 159
  start-page: 296
  year: 2020
  end-page: 307
  ident: b0290
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767 (2018).
– reference: , 2023.
– reference: Y. Liu, H. Li, C. Hu, S. Luo, H. Shen, C.W. Chen, Catnet: context aggregation network for instance segmentation in remote sensing images, arXiv preprint arXiv:2111.11057 (2021).
– reference: T. DeVries, G.W. Taylor, Improved regularization of convolutional neural networks with cutout, arXiv preprint arXiv:1708.04552 (2017).
– volume: 34
  start-page: 18381
  year: 2021
  end-page: 18394
  ident: b0210
  article-title: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: C. Guo, B. Fan, Q. Zhang, S. Xiang, C. Pan, Augfpn: Improving multi-scale feature learning for object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12595–12604.
– reference: M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, arXiv preprint arXiv:1902.07296 (2019).
– reference: Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection via multi-task generative adversarial network, in: Proceedings of the European Conference on Computer Vision (ECCV), pp. 206–221.
– reference: H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412 (2017).
– reference: J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271.
– reference: C.-Y. Wang, H.-Y.M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, I.-H. Yeh, Cspnet: A new backbone that can enhance learning capability of cnn, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391.
– reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587.
– reference: X. Yang, J. Yan, Q. Ming, W. Wang, X. Zhang, Q. Tian, Rethinking rotated object detection with gaussian wasserstein distance loss, in: International Conference on Machine Learning, PMLR, pp. 11830–11841.
– reference: W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in: European conference on computer vision, Springer, pp. 21–37.
– reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: Deconvolutional single shot detector, arXiv preprint arXiv:1701.06659 (2017).
– reference: S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768.
– reference: R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448.
– reference: F.C. Akyon, S.O. Altinuc, A. Temizel, Slicing aided hyper inference and fine-tuning for small object detection, arXiv preprint arXiv:2202.06934 (2022).
– reference: Z. Li, F. Zhou, Fssd: feature fusion single shot multibox detector, arXiv preprint arXiv:1712.00960 (2017).
– volume: 24
  start-page: 1968
  year: 2021
  end-page: 1979
  ident: b0155
  article-title: Extended feature pyramid network for small object detection
  publication-title: IEEE Trans. Multimed.
– reference: C. Yang, Z. Huang, N. Wang, Querydet: Cascaded sparse query for accelerating high-resolution small object detection, in: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 13668–13677.
– reference: A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020).
– reference: J.-S. Lim, M. Astrid, H.-J. Yoon, S.-I. Lee, Small object detection using context and attention, in: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, pp. 181–186.
– reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125.
– reference: Y. Liu, Z. Ding, Y. Cao, M. Chang, Multi-scale feature fusion uav image object detection method based on dilated convolution and attention mechanism, in: 2020 The 8th International Conference on Information Technology: IoT and Smart City, pp. 125–132.
– reference: T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, in: European conference on computer vision, Springer, pp. 740–755.
– reference: C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, J. Dong, Rrnet: A hybrid detector for object detection in drone-captured images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0.
– reference: A. Ajmal, C. Hollitt, M. Frean, H. Al-Sahaf, A comparison of rgb and hsv colour spaces for visual attention models, in: 2018 International conference on image and vision computing New Zealand (IVCNZ), IEEE, pp. 1–6.
– reference: B. Zoph, E.D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, Q.V. Le, Learning data augmentation strategies for object detection, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, Springer, pp. 566–583.
– reference: A. Van Etten, You only look twice: Rapid multi-scale object detection in satellite imagery, arXiv preprint arXiv:1805.09512 (2018).
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
– reference: C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv preprint arXiv:2207.02696 (2022).
– volume: 28
  year: 2015
  ident: b0075
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 5512
  year: 2019
  end-page: 5524
  ident: b0035
  article-title: R2-cnn: fast tiny object detection in large-scale remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: B.M. Albaba, S. Ozer, Synet: An ensemble network for object detection in uav images, in: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp. 10227–10234.
– reference: J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1222–1230.
– reference: S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023–6032.
– reference: J. Yu, Y. Jiang, Z. Wang, Z. Cao, T. Huang, Unitbox: An advanced object detection network, in: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520.
– reference: G. Jocher, YOLOv5 by Ultralytics,
– volume: 42
  start-page: 137
  year: 2021
  end-page: 151
  ident: b0005
  article-title: Survey of object detection in uav imagery based on deep learning
  publication-title: Acta Aeronaut. Astronaut. Sin.
– reference: X. Zhang, E. Izquierdo, K. Chandramouli, Dense and small object detection in uav vision based on cascade network, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0.
– reference: X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, Esrgan: Enhanced super-resolution generative adversarial networks, in: Proceedings of the European conference on computer vision (ECCV) workshops, pp. 0–0.
– reference: Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, arXiv preprint arXiv:2107.08430 (2021).
– reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122 (2015).
– reference: J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE international conference on computer vision, pp. 764–773.
– ident: 10.1016/j.imavis.2023.104697_b0295
– ident: 10.1016/j.imavis.2023.104697_b0025
– ident: 10.1016/j.imavis.2023.104697_b0115
– ident: 10.1016/j.imavis.2023.104697_b0140
– volume: 12
  start-page: 1432
  year: 2020
  ident: 10.1016/j.imavis.2023.104697_b0050
  article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network
  publication-title: Remote Sens.
  doi: 10.3390/rs12091432
– ident: 10.1016/j.imavis.2023.104697_b0130
– ident: 10.1016/j.imavis.2023.104697_b0170
  doi: 10.1007/978-3-030-58583-9_34
– ident: 10.1016/j.imavis.2023.104697_b0205
– ident: 10.1016/j.imavis.2023.104697_b0220
– volume: 34
  start-page: 18381
  year: 2021
  ident: 10.1016/j.imavis.2023.104697_b0210
  article-title: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  year: 2015
  ident: 10.1016/j.imavis.2023.104697_b0075
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.imavis.2023.104697_b0150
– ident: 10.1016/j.imavis.2023.104697_b0045
– ident: 10.1016/j.imavis.2023.104697_b0080
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.imavis.2023.104697_b0230
– ident: 10.1016/j.imavis.2023.104697_b0135
– ident: 10.1016/j.imavis.2023.104697_b0185
  doi: 10.1109/ICAIIC51459.2021.9415217
– ident: 10.1016/j.imavis.2023.104697_b0095
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.imavis.2023.104697_b0290
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: 10.1016/j.imavis.2023.104697_b0240
– ident: 10.1016/j.imavis.2023.104697_b0065
  doi: 10.1109/CVPR.2014.81
– ident: 10.1016/j.imavis.2023.104697_b0015
  doi: 10.1145/3446999.3447023
– ident: 10.1016/j.imavis.2023.104697_b0010
  doi: 10.1007/978-3-319-10602-1_48
– ident: 10.1016/j.imavis.2023.104697_b0275
– ident: 10.1016/j.imavis.2023.104697_b0145
– ident: 10.1016/j.imavis.2023.104697_b0285
– ident: 10.1016/j.imavis.2023.104697_b0060
  doi: 10.1109/ICIP.1994.413553
– ident: 10.1016/j.imavis.2023.104697_b0120
– ident: 10.1016/j.imavis.2023.104697_b0245
– ident: 10.1016/j.imavis.2023.104697_b0270
– ident: 10.1016/j.imavis.2023.104697_b0265
  doi: 10.1109/ICPR48806.2021.9412847
– ident: 10.1016/j.imavis.2023.104697_b0180
– ident: 10.1016/j.imavis.2023.104697_b0165
– volume: 37
  start-page: 1904
  year: 2015
  ident: 10.1016/j.imavis.2023.104697_b0225
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 10.1016/j.imavis.2023.104697_b0125
  doi: 10.1109/ICIP46576.2022.9897990
– volume: 42
  start-page: 137
  year: 2021
  ident: 10.1016/j.imavis.2023.104697_b0005
  article-title: Survey of object detection in uav imagery based on deep learning
  publication-title: Acta Aeronaut. Astronaut. Sin.
– ident: 10.1016/j.imavis.2023.104697_b0260
  doi: 10.1109/IVCNZ.2018.8634752
– ident: 10.1016/j.imavis.2023.104697_b0255
– ident: 10.1016/j.imavis.2023.104697_b0090
– ident: 10.1016/j.imavis.2023.104697_b0100
– ident: 10.1016/j.imavis.2023.104697_b0175
– ident: 10.1016/j.imavis.2023.104697_b0020
– volume: 57
  start-page: 5512
  year: 2019
  ident: 10.1016/j.imavis.2023.104697_b0035
  article-title: R2-cnn: fast tiny object detection in large-scale remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2899955
– ident: 10.1016/j.imavis.2023.104697_b0190
– ident: 10.1016/j.imavis.2023.104697_b0085
– ident: 10.1016/j.imavis.2023.104697_b0070
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.imavis.2023.104697_b0215
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.imavis.2023.104697_b0250
  doi: 10.1145/2964284.2967274
– ident: 10.1016/j.imavis.2023.104697_b0200
– ident: 10.1016/j.imavis.2023.104697_b0055
– volume: 24
  start-page: 1968
  year: 2021
  ident: 10.1016/j.imavis.2023.104697_b0155
  article-title: Extended feature pyramid network for small object detection
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3074273
– ident: 10.1016/j.imavis.2023.104697_b0280
  doi: 10.1109/CVPR52729.2023.00721
– ident: 10.1016/j.imavis.2023.104697_b0160
  doi: 10.5121/csit.2019.91713
– ident: 10.1016/j.imavis.2023.104697_b0110
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.imavis.2023.104697_b0195
– volume: 443
  start-page: 292
  year: 2021
  ident: 10.1016/j.imavis.2023.104697_b0030
  article-title: A dual neural network for object detection in uav images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.016
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.imavis.2023.104697_b0040
  article-title: Sspnet: Scale selection pyramid network for tiny person detection from uav images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: 10.1016/j.imavis.2023.104697_b0105
– ident: 10.1016/j.imavis.2023.104697_b0235
SSID ssj0007079
Score 2.6285033
Snippet •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104697
SubjectTerms Object detection
Small objects
UAV aerial photography
YOLOX
Title Improved YOLOX-X based UAV aerial photography object detection algorithm
URI https://dx.doi.org/10.1016/j.imavis.2023.104697
Volume 135
WOSCitedRecordID wos001011531900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007079
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44UHPgaIIUB-4C3KtDpJEz9W01CH0AZiQ-Epip0bzbSmVZuh_fnc-ZwsoogviZcoimK7ut_lfL7e_U6IN3BQlbQvh-UktmGcVpPQmAq_KxUZqNJEZwelazaRnpxkea4_-DZ3G9dOIG2a7OZGr_4r1PgMwabS2b-Au58UH-A9go5XhB2vfwQ8hwnQj_xy-v40D_OANqoqOJ9-Dkq3frCaL1vPVB0sDQViggpa8E3Dr74u13U7Xwzd1uMFpfZQjJ1r0V0m-nXbbXsuIM9GI697bZsBq9rtSzOf_3s4vy1A6wZ-rIcBCBX1yao-KrZVGeOMl5qgpc2YNLy3tMxMsmW1OYBwuV8viFlhnxZx_z1z5u4PfNifaGqaGQ9P5CDpu2JHkVKNxM70-Ch_12_ERP7HITb-KV3lpEvv217r557JwNs4eyQe-GOCnDK8j8UdaHbFQ39kkN4gb3bF_QGf5BMx67CXHnvpsJeIvWTs5QB7ydjLHnvZY_9UnL89Ojuchb5VRmjxzNeGQLa5jHCvAmPGYMFGiYUE0DmErMx0ZXVFRdEGJTeGGLS2CZWxjdWFSpQ10TMxapYNPBcSbDzJiIVJxRAro01cJrY02l6YsYU43RNRJ6bCeh55amdyVXQJg5cFC7cg4RYs3D0R9qNWzKPym_fTDoHC-4Ls4xWoNL8c-eKfR74Uo3Z9Da_EPfutrTfr116hvgNsZ4KV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+YOLOX-X+based+UAV+aerial+photography+object+detection+algorithm&rft.jtitle=Image+and+vision+computing&rft.au=Wang%2C+Xin&rft.au=He%2C+Ning&rft.au=Hong%2C+Chen&rft.au=Wang%2C+Qi&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.volume=135&rft_id=info:doi/10.1016%2Fj.imavis.2023.104697&rft.externalDocID=S0262885623000719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon