A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network
•A method for predicting buffer overflow vulnerabilities in multiple types of software is proposed.•A software vulnerability feature set called GSVFset is proposed.•A vulnerability feature update mechanism based on self-attentive graph neural network is designed. Buffer overflow vulnerabilities are...
Saved in:
| Published in: | Information and software technology Vol. 160; p. 107246 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2023
|
| Subjects: | |
| ISSN: | 0950-5849, 1873-6025 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A method for predicting buffer overflow vulnerabilities in multiple types of software is proposed.•A software vulnerability feature set called GSVFset is proposed.•A vulnerability feature update mechanism based on self-attentive graph neural network is designed.
Buffer overflow vulnerabilities are one of the most common and dangerous software vulnerabilities; however, the complexity of software code makes predicting buffer overflow vulnerabilities in software challenging.
To accurately predict multiple types of software buffer overflow vulnerabilities, this paper proposes a multitype software buffer overflow vulnerability prediction method called MSVAGraph that is based on the graph structure of software and a self-attentive graph neural network.
First, by analyzing software buffer overflow type vulnerabilities, a vulnerability feature set GSVFset extraction method based on graph structure is proposed to act as the software's basic unit. Second, a self-attentive pooling mechanism is used to design a vulnerability feature update mechanism based on a self-attentive graph neural network to transform the graph structure of the vulnerability feature set GSVFset into a feature vector representation. Finally, based on the updated GSVFset feature vector, a time-recursive-based neural network is designed to construct a prediction method for multitype software buffer overflow vulnerabilities.
The method proposed in this paper validates executable programs of four types of buffer overflow vulnerabilities in the Juliet dataset using precision, accuracy, recall and F1 value as evaluation metrics. The prediction results have higher values after introducing the self-attentive pooling mechanism.
The proposed MSVAGraph achieves high precision, accuracy, recall and F1 value, and can better preserve the network topology and node content information of graphs in the software's graph structure. |
|---|---|
| AbstractList | •A method for predicting buffer overflow vulnerabilities in multiple types of software is proposed.•A software vulnerability feature set called GSVFset is proposed.•A vulnerability feature update mechanism based on self-attentive graph neural network is designed.
Buffer overflow vulnerabilities are one of the most common and dangerous software vulnerabilities; however, the complexity of software code makes predicting buffer overflow vulnerabilities in software challenging.
To accurately predict multiple types of software buffer overflow vulnerabilities, this paper proposes a multitype software buffer overflow vulnerability prediction method called MSVAGraph that is based on the graph structure of software and a self-attentive graph neural network.
First, by analyzing software buffer overflow type vulnerabilities, a vulnerability feature set GSVFset extraction method based on graph structure is proposed to act as the software's basic unit. Second, a self-attentive pooling mechanism is used to design a vulnerability feature update mechanism based on a self-attentive graph neural network to transform the graph structure of the vulnerability feature set GSVFset into a feature vector representation. Finally, based on the updated GSVFset feature vector, a time-recursive-based neural network is designed to construct a prediction method for multitype software buffer overflow vulnerabilities.
The method proposed in this paper validates executable programs of four types of buffer overflow vulnerabilities in the Juliet dataset using precision, accuracy, recall and F1 value as evaluation metrics. The prediction results have higher values after introducing the self-attentive pooling mechanism.
The proposed MSVAGraph achieves high precision, accuracy, recall and F1 value, and can better preserve the network topology and node content information of graphs in the software's graph structure. |
| ArticleNumber | 107246 |
| Author | He, Hongyan Gong, Xiang Liu, Yongshan Zhang, Bing Liu, Xinqian Zheng, Zhangqi |
| Author_xml | – sequence: 1 givenname: Zhangqi surname: Zheng fullname: Zheng, Zhangqi organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei China – sequence: 2 givenname: Yongshan surname: Liu fullname: Liu, Yongshan email: 451499304@qq.com organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei China – sequence: 3 givenname: Bing orcidid: 0000-0002-9867-8439 surname: Zhang fullname: Zhang, Bing organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei China – sequence: 4 givenname: Xinqian surname: Liu fullname: Liu, Xinqian organization: School of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China – sequence: 5 givenname: Hongyan surname: He fullname: He, Hongyan organization: School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei China – sequence: 6 givenname: Xiang surname: Gong fullname: Gong, Xiang organization: Hebei University of Environmental Engineering, Qinhuangdao 066102,China |
| BookMark | eNqFkMtKAzEYhYMoWC9v4CIvMDWZmWYSF0IRbyC4cR8yyR-bOk1KkmnxNXxiU6oILnR1-C_nwPlO0KEPHhC6oGRKCWWXy6nzNgU7rUndlFVXt-wATSjvmoqRenaIJkTMSDXjrThGJyktCaEdacgEfczxahyyy-9rwCUib1UE3I_WQsRhA9EOYYs34-Ahqt4N5RGvIxinswseryAvgsG9SmBwmdVPxmtU6wVOOY46j2VW3uzOMNhK5Qw-u833k4cxqqFI3ob4doaOrBoSnH_pKXq5u325eaienu8fb-ZPlW4Iy5WxnOuaUcF1J3rbMc4NJVbwmemNbepOgxbGKsGga1UjhCHUsLYhhgnLSXOKrvaxOoaUIlipXVa7VjkqN0hK5A6uXMo9XLmDK_dwi7n9ZV5Ht1Lx_T_b9d4GpdfGQZRJO_C68IygszTB_R3wCeSQnQw |
| CitedBy_id | crossref_primary_10_1145_3699711 crossref_primary_10_1007_s11227_025_07605_z |
| Cites_doi | 10.26599/TST.2019.9010068 10.1109/TSE.2021.3087402 10.1002/tee.23467 10.18653/v1/N18-1202 10.1109/ACCESS.2020.3034766 10.1109/TII.2019.2942800 10.1016/j.ins.2020.11.053 10.1145/2507288.2507312 10.1016/j.jnca.2021.103009 10.1109/TIFS.2020.3047756 10.1007/s11859-019-1380-z 10.1109/JPROC.2020.2993293 10.1109/ACCESS.2020.3016774 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.infsof.2023.107246 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1873-6025 |
| ExternalDocumentID | 10_1016_j_infsof_2023_107246 S0950584923001003 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TWZ UHS UNMZH WH7 WUQ XFK ZY4 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-df88c26198c79bf7688d10f985dbdf327cec9dfa96e74a399d01d6430d69f803 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000997597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-5849 |
| IngestDate | Tue Nov 18 21:54:59 EST 2025 Sat Nov 29 07:04:41 EST 2025 Fri Feb 23 02:38:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Software graph structure Graph neural networks Multitype buffer overflow vulnerability Self-attentive |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-df88c26198c79bf7688d10f985dbdf327cec9dfa96e74a399d01d6430d69f803 |
| ORCID | 0000-0002-9867-8439 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_infsof_2023_107246 crossref_primary_10_1016_j_infsof_2023_107246 elsevier_sciencedirect_doi_10_1016_j_infsof_2023_107246 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information and software technology |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Peerzada, Kumar (bib0023) 2021 Li (bib0058) 2012 Zhang, Xu (bib0057) 2021 Zeng, Lin, Pan, Tai, Zhang (bib0024) 2020; 8 Croft, Xie, Babar (bib0007) 2022 Graves (bib0056) 2012 T.N. Kipf, and M. Welling, “Semi-supervised classification with graph convolutional networks,” 10.48550/arXiv.1609.02907. 2016. Williams, Barranco, Naim, Dey, Hossain, Akbar (bib0017) 2020; 92 Huang, Wang, Yang, Su, Nie, Xin (bib0014) 2019; 56 M. Peters, M. Neumann, M. Lyyer, M. Gardner, and L. Zettlemoyer, “Deep contextualized word representations,” 2018. Wang, Liu, Tan (bib0025) 2016 Yan, Li, Wu, Zhou (bib0009) 2021; 16 Zhou, Chen, Liu, Ackah-Arthur, Chen, Zhang, Zeng (bib0035) 2019; 24 Ren, Zheng, Liu, Wei, Yan (bib0003) 2019 Scarselli, M, Tsoi, Hagenbuchner, Monfardini (bib0036) 2009 Bilgin, Ersoy, Soykan, Tomur, Çomak, Karaçay (bib0016) 2020; 8 Liu, Dibaei, Tai, Chen, Zhang, Xiang (bib0028) 2020; 16 Luo, Bo, Kun, Lou (bib0020) 2020 Han (bib0002) 2008 . Tang, Meng, Wang, Ren, Wang, Yang, Can (bib0018) 2021 Yamaguchi, Golde, Arp, Rieck (bib0045) 2014 Hu, Chen, Zhang, Liu, Bao, Ackah-Arthur, Zhang (bib0034) 2020; 25 Li, Zou, Xu, Ou, Jin, Wang, Deng, Zhong (bib0027) 2018 Ghaffarian, Shahriari (bib0038) 2021; 553 Mikolov, Corrado, Kai, Dean (bib0055) 2013 Tamura, Yamada (bib0019) 2021 Wang, Ye, Tang, Tan, Huang, Fang, Feng, Bian, Wang (bib0043) 2020; 16 Pennington, Socher, Manning (bib0052) 2014 Lin, Wu, Wu, Liu, Zeng, Tan (bib0012) 2019 Wu, Yin, Du, Jia, Dong (bib0010) 2020 Lin, Wen, Han, Zhang, Y (bib0029) 2020; 108 Cao, Sun, Bo, Wei, Li (bib0040) 2021; 136 Li, Yang, Wang (bib0001) 2017 Thomas, Reps (bib0044) 1998 Han, Wu, Xin (bib0013) 2016 Mikolov, Corrado, Kai, Dean (bib0051) 2013 Zhang (bib0008) 2019 Korpi, Koskinen (bib0048) 2007 Hanif, Nasir, Razak, Firdaus, Anuar (bib0006) 2021 Cui, Hao, Jiao, Fei, Yun (bib0033) 2021; 16 Z. Li, D. Zou, S. Xu, Z. Chen, and H. Jin, “VulDeeLocator: a deep learning-based fine-grained vulnerability detector,” 2020. Pavitdeep, Singh, Satwinder, Singh, Jatinder, and Kaur, “Tool for generating code metrics for C# source code using abstract syntax tree technique,” Software Engineering Notes Acm Sigsoft, 2013. Yang, Cheng, Zeng, Lang, Zhu, Shi (bib0021) 2021 Zhou, Liu, Siow, Du, Liu (bib0039) 2019 Rozi, Ban S. Ozawa, Kim, Takahashi, Inoue (bib0041) 2021 Lee, Lee, Kang (bib0050) 2019 Li, Gu, Sun, Lin, Yue, Guo, Hu, Wang, Zhang (bib0030) 2021; 1558 Choi, Jeong, Oh, Choo (bib0026) 2017 Krinke, Breu (bib0047) 2004 Zhou J., Cui G., Zhang Z., et al. “Graph neural networks: a review of methods and applications,”, 10.48550/arXiv.1812.08434[P]. 2018. Vaswani, Shazeer, Parmar, Uszkoreit. L. Jones, Gomez, Kaiser, Polosuknin (bib0054) 2017 Zeng, Nie, Chen, Li, Du, Shi (bib0032) 2020 Hin, Kan, Chen, Babar (bib0022) 2022 Zheng, Jiang, Su (bib0042) 2021 Zhang, Liu, Wang, Ruan, Fang (bib0015) 2019 Chakraborty, Krishna, Ding, Ray (bib0031) 2022; 48 Pereira (bib0011) 2020 Graves (10.1016/j.infsof.2023.107246_bib0056) 2012 Croft (10.1016/j.infsof.2023.107246_bib0007) 2022 Liu (10.1016/j.infsof.2023.107246_bib0028) 2020; 16 Wu (10.1016/j.infsof.2023.107246_bib0010) 2020 Thomas (10.1016/j.infsof.2023.107246_bib0044) 1998 Rozi (10.1016/j.infsof.2023.107246_bib0041) 2021 Pereira (10.1016/j.infsof.2023.107246_bib0011) 2020 Luo (10.1016/j.infsof.2023.107246_bib0020) 2020 10.1016/j.infsof.2023.107246_bib0053 Yang (10.1016/j.infsof.2023.107246_bib0021) 2021 Hanif (10.1016/j.infsof.2023.107246_bib0006) 2021 Han (10.1016/j.infsof.2023.107246_bib0002) 2008 Zhang (10.1016/j.infsof.2023.107246_bib0057) 2021 Williams (10.1016/j.infsof.2023.107246_bib0017) 2020; 92 Pennington (10.1016/j.infsof.2023.107246_bib0052) 2014 Lin (10.1016/j.infsof.2023.107246_bib0029) 2020; 108 Li (10.1016/j.infsof.2023.107246_bib0001) 2017 Zhang (10.1016/j.infsof.2023.107246_bib0015) 2019 Korpi (10.1016/j.infsof.2023.107246_bib0048) 2007 Peerzada (10.1016/j.infsof.2023.107246_bib0023) 2021 Hin (10.1016/j.infsof.2023.107246_bib0022) 2022 10.1016/j.infsof.2023.107246_bib0046 10.1016/j.infsof.2023.107246_bib0005 Hu (10.1016/j.infsof.2023.107246_bib0034) 2020; 25 10.1016/j.infsof.2023.107246_bib0049 10.1016/j.infsof.2023.107246_bib0004 Ghaffarian (10.1016/j.infsof.2023.107246_bib0038) 2021; 553 Wang (10.1016/j.infsof.2023.107246_bib0025) 2016 Ren (10.1016/j.infsof.2023.107246_bib0003) 2019 Bilgin (10.1016/j.infsof.2023.107246_bib0016) 2020; 8 Yan (10.1016/j.infsof.2023.107246_bib0009) 2021; 16 Chakraborty (10.1016/j.infsof.2023.107246_bib0031) 2022; 48 Cui (10.1016/j.infsof.2023.107246_bib0033) 2021; 16 Yamaguchi (10.1016/j.infsof.2023.107246_bib0045) 2014 Krinke (10.1016/j.infsof.2023.107246_bib0047) 2004 10.1016/j.infsof.2023.107246_bib0037 Tamura (10.1016/j.infsof.2023.107246_bib0019) 2021 Zeng (10.1016/j.infsof.2023.107246_bib0024) 2020; 8 Zhou (10.1016/j.infsof.2023.107246_bib0035) 2019; 24 Tang (10.1016/j.infsof.2023.107246_bib0018) 2021 Scarselli (10.1016/j.infsof.2023.107246_bib0036) 2009 Mikolov (10.1016/j.infsof.2023.107246_bib0051) 2013 Huang (10.1016/j.infsof.2023.107246_bib0014) 2019; 56 Li (10.1016/j.infsof.2023.107246_bib0027) 2018 Zheng (10.1016/j.infsof.2023.107246_bib0042) 2021 Lin (10.1016/j.infsof.2023.107246_bib0012) 2019 Han (10.1016/j.infsof.2023.107246_bib0013) 2016 Wang (10.1016/j.infsof.2023.107246_bib0043) 2020; 16 Vaswani (10.1016/j.infsof.2023.107246_bib0054) 2017 Zeng (10.1016/j.infsof.2023.107246_bib0032) 2020 Choi (10.1016/j.infsof.2023.107246_bib0026) 2017 Cao (10.1016/j.infsof.2023.107246_bib0040) 2021; 136 Zhang (10.1016/j.infsof.2023.107246_bib0008) 2019 Mikolov (10.1016/j.infsof.2023.107246_bib0055) 2013 Li (10.1016/j.infsof.2023.107246_bib0030) 2021; 1558 Lee (10.1016/j.infsof.2023.107246_bib0050) 2019 Li (10.1016/j.infsof.2023.107246_bib0058) 2012 Zhou (10.1016/j.infsof.2023.107246_bib0039) 2019 |
| References_xml | – reference: Zhou J., Cui G., Zhang Z., et al. “Graph neural networks: a review of methods and applications,”, 10.48550/arXiv.1812.08434[P]. 2018. – start-page: 38 year: 2020 end-page: 45 ident: bib0010 article-title: Graph-based vulnerability detection via extracting features from sliced code publication-title: Proceedings of 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion – volume: 16 start-page: 1943 year: 2020 end-page: 1958 ident: bib0043 article-title: Combining graph-based learning with automated data collection for code vulnerability detection publication-title: IEEE Trans. Inf. Forensics Security – volume: 108 start-page: 1825 year: 2020 end-page: 1848 ident: bib0029 article-title: Software vulnerability detection using deep neural networks: a survey publication-title: Proc. IEEE – year: 2019 ident: bib0012 article-title: A survey of the key technology of software vulnerability mining publication-title: Proceedings of 2018 International Symposium on Power Electronics and Control Engineering – reference: T.N. Kipf, and M. Welling, “Semi-supervised classification with graph convolutional networks,” 10.48550/arXiv.1609.02907. 2016. – year: 2009 ident: bib0036 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – volume: 8 start-page: 197158 year: 2020 end-page: 197172 ident: bib0024 article-title: Software vulnerability analysis and discovery using deep learning techniques: a survey publication-title: IEEE Access – volume: 92 start-page: 1 year: 2020 end-page: 43 ident: bib0017 article-title: A vulnerability analysis and prediction framework publication-title: Comput. Security – volume: 25 start-page: 604 year: 2020 end-page: 613 ident: bib0034 article-title: A memory-related vulnerability detection approach based on vulnerability features publication-title: Tsinghua Sci. Technol. – start-page: 1546 year: 2017 end-page: 1553 ident: bib0026 article-title: End-to-End prediction of buffer overruns from raw source code via neural memory networks publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – year: 2008 ident: bib0002 article-title: Vulnerability exploitation of buffer overflow in windows environment publication-title: Comput. Dev. Appl. – volume: 1558 start-page: 342 year: 2021 end-page: 351 ident: bib0030 article-title: A review of data representation methods for vulnerability mining using deep learning publication-title: Commun. Comput. Inf. Sci. – start-page: 224 year: 2021 end-page: 236 ident: bib0021 article-title: Asteria: deep learning-based AST-encoding for cross-platform binary code similarity detection publication-title: Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks – start-page: 1 year: 2021 end-page: 4 ident: bib0023 article-title: Analyzing software vulnerabilities using machine learning publication-title: Proceedings of the 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) – reference: Pavitdeep, Singh, Satwinder, Singh, Jatinder, and Kaur, “Tool for generating code metrics for C# source code using abstract syntax tree technique,” Software Engineering Notes Acm Sigsoft, 2013. – volume: 136 start-page: 1 year: 2021 end-page: 11 ident: bib0040 article-title: BGNN4VD: constructing bidirectional graph neural-network for vulnerability detection publication-title: Inf. Softw. Technol. – year: 2017 ident: bib0054 article-title: Attention is all you need publication-title: Proceedings of the 31st Conference on Neural Information Processing Systems – year: 2019 ident: bib0050 article-title: Self-attentive graph pooling publication-title: Proceedings of the 36 International Conference on Machine Learning – start-page: 114 year: 2016 end-page: 123 ident: bib0013 article-title: A return-value-unchecked vulnerability detection method based on property graph publication-title: Proceedings of 2016 International Conference on Intelligent and Interactive Systems and Applications – year: 2004 ident: bib0047 article-title: Control-flow-graph-based aspect mining publication-title: Workshop On Aspect Reverse Engineering – volume: 16 start-page: 1635 year: 2021 end-page: 1641 ident: bib0009 article-title: DFlow: a data flow analysis tool for C/C++ publication-title: IEEJ Trans. Electr. Electron. Eng. – year: 2022 ident: bib0007 article-title: Data preparation for software vulnerability prediction: a systematic literature review publication-title: IEEE Trans. Softw. En. – volume: 56 start-page: 2299 year: 2019 end-page: 2314 ident: bib0014 article-title: Automatic software vulnerability discovery and exploit under the limited resource conditions publication-title: J. Comput. Res. Dev. – year: 2017 ident: bib0001 article-title: Study of the buffer overflow vulnerability prevention of software systems publication-title: Chinese High Technology Letters – start-page: 669 year: 2021 end-page: 680 ident: bib0041 article-title: JStrack: enriching malicious JavaScript detection based on AST graph analysis and attentive mechanism publication-title: Proceedings of the 28th International Conference on Neural Information Processing – start-page: 1 year: 2021 end-page: 8 ident: bib0018 article-title: A comparative study of neural network techniques for automatic software vulnerability detection publication-title: Proceedings of 2020 International Symposium on Theoretical Aspects of Software Engineering – start-page: 1 year: 2018 end-page: 15 ident: bib0027 article-title: VulDeePecker: a deep learning-based system for vulnerability detection publication-title: Proceedings of 2018 Network and Distributed Systems Security (NDSS) Symposium – start-page: 701 year: 1998 end-page: 726 ident: bib0044 article-title: Program Analysis Via Graph Reachability – start-page: 1 year: 2013 end-page: 12 ident: bib0051 article-title: Efficient Estimation of word representation in vector space publication-title: Proceedings of 2013 International Conference on Learning – reference: M. Peters, M. Neumann, M. Lyyer, M. Gardner, and L. Zettlemoyer, “Deep contextualized word representations,” 2018. – volume: 24 start-page: 149 year: 2019 end-page: 160 ident: bib0035 article-title: A method for software vulnerability detection based on improved control flow graph publication-title: Wuhan Univ. J. Nat. Sci. – start-page: 1532 year: 2014 end-page: 1543 ident: bib0052 article-title: Glove: global vectors for word representation publication-title: Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing – start-page: 1664 year: 2020 end-page: 1671 ident: bib0032 article-title: An efficient vulnerability extrapolation using similarity of graph kernel of PDGs publication-title: Proceedings of 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications – year: 2012 ident: bib0056 article-title: Long Short-Term Memory – start-page: 1 year: 2019 end-page: 13 ident: bib0003 article-title: A Buffer Overflow Prediction Approach Based on Software Metrics and Machine Learning – start-page: 596 year: 2022 end-page: 607 ident: bib0022 article-title: LineVD: statement-level vulnerability detection using graph neural networks publication-title: Proceedings of 2022 IEEE/ACM 19th International Conference on Mining Software Repositories – year: 2021 ident: bib0006 article-title: The rise of software vulnerability: taxonomy of software vulnerabilities detection and machine learning approaches publication-title: J. Netw. Comput. Appl. – start-page: 590 year: 2014 end-page: 604 ident: bib0045 article-title: Modeling and discovering vulnerabilities with code property graphs publication-title: Proceedings of 2014 IEEE Symposium on Security and Privacy – volume: 553 start-page: 189 year: 2021 end-page: 207 ident: bib0038 article-title: Neural software vulnerability analysis using rich intermediate graph representations of programs publication-title: Inf. Sci. (Ny) – year: 2007 ident: bib0048 article-title: Supporting Impact Analysis By Program Dependence Graph Based Forward Slicing – year: 2021 ident: bib0057 article-title: Performance comparisons of Bi-LSTM and Bi-GRU networks in Chinese word segmentation publication-title: Proceedings of the 5th International Conference on Deep Learning Technologies – start-page: 46 year: 2019 end-page: 53 ident: bib0015 article-title: AutoDE: automated vulnerability discovery and exploitation publication-title: Proceedings of 2019 IEEE Fourth International Conference on Data Science in Cyberspace – volume: 48 start-page: 3280 year: 2022 end-page: 3296 ident: bib0031 article-title: Deep learning based vulnerability detection: are we there yet? publication-title: IEEE Trans. Softw. Eng. – start-page: 1 year: 2020 end-page: 6 ident: bib0020 article-title: Study on software vulnerability features and Its Identification Method publication-title: Math. Probl. Eng. – reference: Z. Li, D. Zou, S. Xu, Z. Chen, and H. Jin, “VulDeeLocator: a deep learning-based fine-grained vulnerability detector,” 2020. – start-page: 1 year: 2019 end-page: 71 ident: bib0008 article-title: A Detection Approach For Buffer Overflow Vulnerability Based On Data Control Flow Graph – reference: . – volume: 16 start-page: 2004 year: 2021 end-page: 2017 ident: bib0033 article-title: VulDetector: detecting vulnerabilities using weighted feature graph comparison publication-title: IEEE Trans. Inf. Forensics Security – start-page: 457 year: 2021 end-page: 467 ident: bib0042 article-title: VulSPG: vulnerability detection based on slice property graph representation learning publication-title: Proceedings of the32nd International Symposium on Software Reliability Engineering – year: 2012 ident: bib0058 article-title: Statistical Learning Method [M] – volume: 8 start-page: 150672 year: 2020 end-page: 150684 ident: bib0016 article-title: Vulnerability prediction from source code using machine learning publication-title: IEEE Access – start-page: 123 year: 2020 end-page: 126 ident: bib0011 article-title: Techniques and tools for advanced software vulnerability detection publication-title: Proceedings of 2020 IEEE International Symposium on Software Reliability Engineering Workshops – start-page: 10197 year: 2019 end-page: 10207 ident: bib0039 article-title: Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks publication-title: Proceedings of the 33rd Neural Information Processing Systems. Neural Information Processing Systems – volume: 16 start-page: 2154 year: 2020 end-page: 2163 ident: bib0028 article-title: Cyber vulnerability intelligence for internet of things binary publication-title: IEEE Trans. Ind. Inf. – start-page: 297 year: 2016 end-page: 308 ident: bib0025 article-title: Automatically learning semantic features for defect prediction publication-title: Proceedings of 2016 IEEE/ACM 38th International Conference on Software Engineering – start-page: 161 year: 2021 end-page: 178 ident: bib0019 article-title: A Method of Vulnerability Analysis Based On Deep Learning For Open Source Software – year: 2013 ident: bib0055 article-title: BERT: pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of 2013 International Conference on Learning Representations – start-page: 46 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0015 article-title: AutoDE: automated vulnerability discovery and exploitation – start-page: 596 year: 2022 ident: 10.1016/j.infsof.2023.107246_bib0022 article-title: LineVD: statement-level vulnerability detection using graph neural networks – volume: 25 start-page: 604 issue: 5 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0034 article-title: A memory-related vulnerability detection approach based on vulnerability features publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2019.9010068 – volume: 92 start-page: 1 issue: 101751 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0017 article-title: A vulnerability analysis and prediction framework publication-title: Comput. Security – start-page: 590 year: 2014 ident: 10.1016/j.infsof.2023.107246_bib0045 article-title: Modeling and discovering vulnerabilities with code property graphs – year: 2004 ident: 10.1016/j.infsof.2023.107246_bib0047 article-title: Control-flow-graph-based aspect mining – year: 2007 ident: 10.1016/j.infsof.2023.107246_bib0048 – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0018 article-title: A comparative study of neural network techniques for automatic software vulnerability detection – start-page: 224 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0021 article-title: Asteria: deep learning-based AST-encoding for cross-platform binary code similarity detection – year: 2022 ident: 10.1016/j.infsof.2023.107246_bib0007 article-title: Data preparation for software vulnerability prediction: a systematic literature review publication-title: IEEE Trans. Softw. En. – volume: 56 start-page: 2299 issue: 11 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0014 article-title: Automatic software vulnerability discovery and exploit under the limited resource conditions publication-title: J. Comput. Res. Dev. – year: 2013 ident: 10.1016/j.infsof.2023.107246_bib0055 article-title: BERT: pre-training of deep bidirectional transformers for language understanding – ident: 10.1016/j.infsof.2023.107246_bib0049 – year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0012 article-title: A survey of the key technology of software vulnerability mining – start-page: 1 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0003 – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0023 article-title: Analyzing software vulnerabilities using machine learning – start-page: 123 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0011 article-title: Techniques and tools for advanced software vulnerability detection – volume: 48 start-page: 3280 issue: 9 year: 2022 ident: 10.1016/j.infsof.2023.107246_bib0031 article-title: Deep learning based vulnerability detection: are we there yet? publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2021.3087402 – volume: 16 start-page: 1943 issue: 99 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0043 article-title: Combining graph-based learning with automated data collection for code vulnerability detection publication-title: IEEE Trans. Inf. Forensics Security – start-page: 161 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0019 – year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0050 article-title: Self-attentive graph pooling – volume: 16 start-page: 1635 issue: 12 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0009 article-title: DFlow: a data flow analysis tool for C/C++ publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23467 – ident: 10.1016/j.infsof.2023.107246_bib0053 doi: 10.18653/v1/N18-1202 – start-page: 114 year: 2016 ident: 10.1016/j.infsof.2023.107246_bib0013 article-title: A return-value-unchecked vulnerability detection method based on property graph – start-page: 701 year: 1998 ident: 10.1016/j.infsof.2023.107246_bib0044 – volume: 8 start-page: 197158 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0024 article-title: Software vulnerability analysis and discovery using deep learning techniques: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034766 – start-page: 1 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0020 article-title: Study on software vulnerability features and Its Identification Method publication-title: Math. Probl. Eng. – volume: 16 start-page: 2154 issue: 3 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0028 article-title: Cyber vulnerability intelligence for internet of things binary publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2942800 – year: 2017 ident: 10.1016/j.infsof.2023.107246_bib0001 article-title: Study of the buffer overflow vulnerability prevention of software systems – ident: 10.1016/j.infsof.2023.107246_bib0037 – volume: 553 start-page: 189 issue: 5 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0038 article-title: Neural software vulnerability analysis using rich intermediate graph representations of programs publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2020.11.053 – start-page: 297 year: 2016 ident: 10.1016/j.infsof.2023.107246_bib0025 article-title: Automatically learning semantic features for defect prediction – start-page: 38 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0010 article-title: Graph-based vulnerability detection via extracting features from sliced code – ident: 10.1016/j.infsof.2023.107246_bib0046 doi: 10.1145/2507288.2507312 – volume: 1558 start-page: 342 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0030 article-title: A review of data representation methods for vulnerability mining using deep learning publication-title: Commun. Comput. Inf. Sci. – year: 2008 ident: 10.1016/j.infsof.2023.107246_bib0002 article-title: Vulnerability exploitation of buffer overflow in windows environment publication-title: Comput. Dev. Appl. – ident: 10.1016/j.infsof.2023.107246_bib0005 – year: 2012 ident: 10.1016/j.infsof.2023.107246_bib0056 – year: 2012 ident: 10.1016/j.infsof.2023.107246_bib0058 – year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0006 article-title: The rise of software vulnerability: taxonomy of software vulnerabilities detection and machine learning approaches publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103009 – year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0057 article-title: Performance comparisons of Bi-LSTM and Bi-GRU networks in Chinese word segmentation – volume: 136 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0040 article-title: BGNN4VD: constructing bidirectional graph neural-network for vulnerability detection publication-title: Inf. Softw. Technol. – start-page: 1664 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0032 article-title: An efficient vulnerability extrapolation using similarity of graph kernel of PDGs – start-page: 457 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0042 article-title: VulSPG: vulnerability detection based on slice property graph representation learning – volume: 16 start-page: 2004 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0033 article-title: VulDetector: detecting vulnerabilities using weighted feature graph comparison publication-title: IEEE Trans. Inf. Forensics Security doi: 10.1109/TIFS.2020.3047756 – start-page: 1 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0008 – start-page: 1546 year: 2017 ident: 10.1016/j.infsof.2023.107246_bib0026 article-title: End-to-End prediction of buffer overruns from raw source code via neural memory networks – volume: 24 start-page: 149 issue: 2 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0035 article-title: A method for software vulnerability detection based on improved control flow graph publication-title: Wuhan Univ. J. Nat. Sci. doi: 10.1007/s11859-019-1380-z – start-page: 10197 year: 2019 ident: 10.1016/j.infsof.2023.107246_bib0039 article-title: Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks – year: 2017 ident: 10.1016/j.infsof.2023.107246_bib0054 article-title: Attention is all you need – start-page: 1 year: 2013 ident: 10.1016/j.infsof.2023.107246_bib0051 article-title: Efficient Estimation of word representation in vector space – start-page: 1 year: 2018 ident: 10.1016/j.infsof.2023.107246_bib0027 article-title: VulDeePecker: a deep learning-based system for vulnerability detection – ident: 10.1016/j.infsof.2023.107246_bib0004 – volume: 108 start-page: 1825 issue: 10 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0029 article-title: Software vulnerability detection using deep neural networks: a survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.2993293 – year: 2009 ident: 10.1016/j.infsof.2023.107246_bib0036 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – start-page: 669 year: 2021 ident: 10.1016/j.infsof.2023.107246_bib0041 article-title: JStrack: enriching malicious JavaScript detection based on AST graph analysis and attentive mechanism – start-page: 1532 year: 2014 ident: 10.1016/j.infsof.2023.107246_bib0052 article-title: Glove: global vectors for word representation – volume: 8 start-page: 150672 issue: 99 year: 2020 ident: 10.1016/j.infsof.2023.107246_bib0016 article-title: Vulnerability prediction from source code using machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016774 |
| SSID | ssj0017030 |
| Score | 2.3888206 |
| Snippet | •A method for predicting buffer overflow vulnerabilities in multiple types of software is proposed.•A software vulnerability feature set called GSVFset is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107246 |
| SubjectTerms | Graph neural networks Multitype buffer overflow vulnerability Self-attentive Software graph structure |
| Title | A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network |
| URI | https://dx.doi.org/10.1016/j.infsof.2023.107246 |
| Volume | 160 |
| WOSCitedRecordID | wos000997597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6025 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017030 issn: 0950-5849 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELaqXYR4QZxiueQH3iqjNElj57GgRYDQCokKVbxEjg-2qyjd3R67_A3-Cf-QscdOthRxSbxEreMj7fdlPDMejwl5pnRtzchKlmVaslzkGRMS3seiUDwvVF4X3qH_8R0_OhKzWfl-MPgW98JsGt624vKyPP2vUEMZgO22zv4F3F2nUACfAXS4Auxw_SPgJxgk6H2rSxCyFy62q167c1CGLl7TNouL4WbduHTTPjL2i0sUoOd4ZjieKD10k5t2Cwmy78Pnth5iwtm47AC3TWOZS9LZ-iAkrOSyZAL2LcaYX1WAw_anVYyC7npf7fj4Px0bFETeqX0272KH5ms_cSzaz8vjntyd6_tFnI37urN5exbfg-DiSLMuwC743Xb23gQHZsJAfUKBa1B8C54xYNd4S77jgQU7cwW6LU6cgQO_9bkbGAp5mv-QmttP9h_ccG40MNnAhHX5ZfdTPi5BkO5P3hzO3nZLV06EYoJHfLy4X9MHFe6O9XN96IqOM71FbgbjhE6QVLfJwLR3yPW4N-Iu-TqhHbdoRI4it2jkFt3iFu25RZFb1HOLwnfZ9-FpQztuUaCGu73FrVAJuUUDt-6R6avD6cvXLBzqwRRYpyumrRDKme1C8bK2YO0KPUpsKca61jZLuTKq1FaWheG5BPVZJyMNanOii9KKJLtP9tpFax4QOuapHkmeQSuZKzC_YDqRKhFcS2ULUx-QLP6zlQoJ7925K00VIxtPKsSjcnhUiMcBYV2rU0z48pv6PIJWBaUVldEKePbLlg__ueUjcqN_TR6TPQDHPCHX1GY1X54_DYT8DrMGyGU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multitype+software+buffer+overflow+vulnerability+prediction+method+based+on+a+software+graph+structure+and+a+self-attentive+graph+neural+network&rft.jtitle=Information+and+software+technology&rft.au=Zheng%2C+Zhangqi&rft.au=Liu%2C+Yongshan&rft.au=Zhang%2C+Bing&rft.au=Liu%2C+Xinqian&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=160&rft_id=info:doi/10.1016%2Fj.infsof.2023.107246&rft.externalDocID=S0950584923001003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon |