Integrating implicit and explicit linguistic phenomena via multi-task learning for offensive language detection

The analysis and detection of offensive content in textual information have become a great challenge for the Natural Language Processing community. Most of the research conducted so far on offensive language detection have addressed this task as a sole optimization objective. However, other linguist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 258; s. 109965
Hlavní autoři: Plaza-del-Arco, Flor Miriam, Molina-González, M. Dolores, Ureña-López, L. Alfonso, Martín-Valdivia, María-Teresa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 22.12.2022
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The analysis and detection of offensive content in textual information have become a great challenge for the Natural Language Processing community. Most of the research conducted so far on offensive language detection have addressed this task as a sole optimization objective. However, other linguistic phenomena that are arguably correlated with offensive language and therefore could be beneficial to recognize this type of problematic content on the Web, have not been explored in depth so far. Thus, the goal of this study is to investigate whether explicit and implicit concepts involved in the expression of offensive language help in the detection of this phenomenon and how to incorporate these concepts in a computational system. We propose a multi-task learning approach that includes such concepts according to the relevance shown by a feature selection method called mutual information. Our experiments show that some phenomena such as constructiveness, target group and person, figurative language (sarcasm and mockery), insults, improper language, and emotions combined together help to optimize the offensive language detection task, outperforming a state-of-the-art method (the transformer BETO) that we use as our baseline to compare the results. •Addressing offensive language detection for Spanish texts.•Studying implicit and explicit linguistic phenomena for offensive language.•Assessing the impact of including phenomena via multi-task learning.•Performance comparison of multi-task learning models with a well-known Transformer.•Analyzing the knowledge transfer of the explored phenomena.
AbstractList The analysis and detection of offensive content in textual information have become a great challenge for the Natural Language Processing community. Most of the research conducted so far on offensive language detection have addressed this task as a sole optimization objective. However, other linguistic phenomena that are arguably correlated with offensive language and therefore could be beneficial to recognize this type of problematic content on the Web, have not been explored in depth so far. Thus, the goal of this study is to investigate whether explicit and implicit concepts involved in the expression of offensive language help in the detection of this phenomenon and how to incorporate these concepts in a computational system. We propose a multi-task learning approach that includes such concepts according to the relevance shown by a feature selection method called mutual information. Our experiments show that some phenomena such as constructiveness, target group and person, figurative language (sarcasm and mockery), insults, improper language, and emotions combined together help to optimize the offensive language detection task, outperforming a state-of-the-art method (the transformer BETO) that we use as our baseline to compare the results. •Addressing offensive language detection for Spanish texts.•Studying implicit and explicit linguistic phenomena for offensive language.•Assessing the impact of including phenomena via multi-task learning.•Performance comparison of multi-task learning models with a well-known Transformer.•Analyzing the knowledge transfer of the explored phenomena.
ArticleNumber 109965
Author Plaza-del-Arco, Flor Miriam
Ureña-López, L. Alfonso
Martín-Valdivia, María-Teresa
Molina-González, M. Dolores
Author_xml – sequence: 1
  givenname: Flor Miriam
  surname: Plaza-del-Arco
  fullname: Plaza-del-Arco, Flor Miriam
  email: fmplaza@ujaen.es
– sequence: 2
  givenname: M. Dolores
  orcidid: 0000-0002-8348-7154
  surname: Molina-González
  fullname: Molina-González, M. Dolores
  email: mdmolina@ujaen.es
– sequence: 3
  givenname: L. Alfonso
  surname: Ureña-López
  fullname: Ureña-López, L. Alfonso
  email: laurena@ujaen.es
– sequence: 4
  givenname: María-Teresa
  surname: Martín-Valdivia
  fullname: Martín-Valdivia, María-Teresa
  email: maite@ujaen.es
BookMark eNqFkMtOAyEUhompiW31DVzwAlNhruDCxDRemjRx0z2hcKi0M9AAbezbO5Nx5UJXBA7fn_N_MzRx3gFC95QsKKH1w35xcD5e4iIned4_cV5XV2hKWZNnTUn4BE0Jr0jWkIreoFmMe0L6n5RNkV-5BLsgk3U7bLtja5VNWDqN4evn0vajk43JKnz8BOc7cBKfrcTdqU02SzIecAsyuCHC-IC9MeCiPQNuZY_KHWANCVSy3t2iayPbCHc_5xxtXl82y_ds_fG2Wj6vM1WQOmUajGR0q0tjlOKs0ExV2tAtVxS0bBgzXOe65hpKXmhQjBYFpaaqmKQgdTFH5Rirgo8xgBHHYDsZLoISMTgTezE6E4MzMTrrscdfWC9ADnunIG37H_w0wtD3OlsIIioLToG2oS8vtLd_B3wDrx6Rzw
CitedBy_id crossref_primary_10_1007_s00521_024_10753_7
crossref_primary_10_1016_j_saa_2025_125866
crossref_primary_10_1515_lpp_2023_0019
crossref_primary_10_1016_j_eswa_2025_126705
crossref_primary_10_1109_ACCESS_2023_3310244
crossref_primary_10_3390_axioms13010006
crossref_primary_10_1145_3576913
crossref_primary_10_1515_lpp_2023_0012
crossref_primary_10_3390_bdcc8090113
crossref_primary_10_1007_s13042_025_02715_9
crossref_primary_10_1016_j_knosys_2023_111023
crossref_primary_10_1016_j_knosys_2024_112298
Cites_doi 10.1103/PhysRevE.69.066138
10.1561/1500000011
10.1145/3232676
10.1007/s11192-020-03737-6
10.1080/02699939208411068
10.3390/app11083610
10.1016/j.eswa.2021.116398
10.1037/h0074772
10.1109/TKDE.2009.191
10.1023/A:1007379606734
10.1609/icwsm.v12i1.14991
10.1080/0952813X.2017.1409284
10.1371/journal.pone.0221152
10.1145/2872427.2883062
10.1145/3041021.3054211
10.1145/3369869
10.1109/ACCESS.2021.3103697
10.1016/j.eswa.2020.114120
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109965
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_109965
S0950705122010589
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-defa81bd4ffcc983d8c5df1b9c1eda788f9d2d69de493dec813311f558a1ead3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880093300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Tue Nov 18 21:50:34 EST 2025
Sat Nov 29 07:06:16 EST 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linguistic phenomena
Natural language processing
Spanish
Multi-task learning
Offensive language
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-defa81bd4ffcc983d8c5df1b9c1eda788f9d2d69de493dec813311f558a1ead3
ORCID 0000-0002-8348-7154
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_109965
crossref_citationtrail_10_1016_j_knosys_2022_109965
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109965
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Safi Samghabadi, Hatami, Shafaei, Kar, Solorio (b28) 2020
van Aken, Risch, Krestel, Löser (b31) 2018
R. Kumar, A.K. Ojha, S. Malmasi, M. Zampieri, Evaluating aggression identification in social media, in: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, 2020, pp. 1–5.
Kolhatkar, Thain, Sorensen, Dixon, Taboada (b43) 2020
Taulé, Ariza, Nofre, Amigó, Rosso (b5) 2021; 67
Kraskov, Stögbauer, Grassberger (b59) 2004; 69
Elmadany, Zhang, Abdul-Mageed, Hashemi (b29) 2020
Ruder (b49) 2019
Zampieri, Malmasi, Nakov, Rosenthal, Farra, Kumar (b12) 2019
Cañete, Chaperon, Fuentes, Ho, Kang, Pérez (b52) 2020
Devlin, Chang, Lee, Toutanova (b21) 2018
Plaza-del-Arco, Strapparava, Ureña-López, Martín-Valdivia (b53) 2020
Plaza-del-Arco, Molina-González, Ureña-López, Martín-Valdivia (b32) 2020; 20
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b58) 2019
Frenda, Cignarella, Basile, Bosco, Patti, Rosso (b33) 2022; 193
Plaza-del-Arco, Molina-González, Ureña-López, Martín-Valdivia (b2) 2021; 166
C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, Y. Chang, Abusive Language Detection in Online User Content, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 145–153.
Plaza-del-Arco, Montejo-Ráez, Ureña-López, Martín-Valdivia (b15) 2021
Ranasinghe, Zampieri (b22) 2020
Plaza-del-Arco, Halat, Padó, Klinger (b37) 2021
Wiegand, Ruppenhofer, Eder (b30) 2021
Plaza-del-Arco, Molina-González, Ureña-López, Martín-Valdivia (b35) 2021; 9
Poletto, Basile, Sanguinetti, Bosco, Patti (b9) 2020
Patrick (b39) 1901; 8
Sarkar, Zampieri, Ranasinghe, Ororbia (b23) 2021
Tontodimamma, Nissi, Sarra, Fontanella (b26) 2021; 126
Cardwell (b44) 1996
S. Lamprinidis, F. Bianchi, D. Hardt, D. Hovy, Universal joy a data set and results for classifying emotions across languages, in: Proceedings of the Eleventh Workshop on Computational Approaches To Subjectivity, Sentiment and Social Media Analysis, 2021, pp. 62–75.
Plaza-del-Arco, Casavantes, Escalante, Martín-Valdivia, Montejo-Ráez, Montes-y-Gómez, Jarquín-Vásquez, Villaseñor-Pineda (b14) 2021; 67
Warner, Hirschberg (b17) 2012
Pang, Lee (b47) 2008; 2
Rajamanickam, Mishra, Yannakoudakis, Shutova (b34) 2020
Rodríguez, Argueta, Chen (b41) 2019
Alorainy, Burnap, Liu, Javed, Williams (b40) 2018
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b57) 2017
Fortuna, Nunes (b24) 2018; 51
Martins, Gomes, Almeida, Novais, Henriques (b27) 2018
Davidson, Warmsley, Macy, Weber (b19) 2017
Malmasi, Zampieri (b20) 2018; 30
Sánchez-Junquera, Chulvi, Rosso, Ponzetto (b45) 2021; 11
Struß, Siegel, Ruppenhofer, Wiegand, Klenner (b11) 2019
Caruana (b50) 1997; 28
Awal, Cao, Lee, Mitrovic (b36) 2021
Kolhatkar, Taboada (b42) 2017
Zhang, Yang (b51) 2021
Pan, Yang (b48) 2010; 22
Ródriguez-Sánchez, de Albornoz, Plaza, Gonzalo, Rosso, Comet, Donoso (b16) 2021; 67
Caselli, Basile, Mitrović, Kartoziya, Granitzer (b46) 2020
Ekman (b38) 1992; 6
D. Chatzakou, N. Kourtellis, J. Blackburn, E. De Cristofaro, G. Stringhini, A. Vakali, Detecting aggressors and bullies on Twitter, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 767–768.
M. Wiegand, M. Siegel, J. Ruppenhofer, Overview of the GermEval 2018 Shared Task on the Identification of Offensive Language, in: Proceedings of GermEval 2018, 14th Conference on Natural Language Processing, KONVENS 2018, Vienna, Austria, 2018.
Nobata, Tetreault, Thomas, Mehdad, Chang (b18) 2016
Kogilavani, Malliga, Jaiabinaya, Malini, Manisha Kokila (b1) 2021
M. Wiegand, J. Ruppenhofer, T. Kleinbauer, Detection of abusive language: the problem of biased datasets, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 602–608.
Zampieri, Nakov, Rosenthal, Atanasova, Karadzhov, Mubarak, Derczynski, Pitenis, Çöltekin (b13) 2020
A.M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn, G. Stringhini, A. Vakali, M. Sirivianos, N. Kourtellis, Large scale crowdsourcing and characterization of twitter abusive behavior, in: Twelfth International AAAI Conference on Web and Social Media, 2018.
C. Zimmerman, M.-K. Stein, D. Hardt, R. Vatrapu, Emergence of things felt: Harnessing the semantic space of Facebook feeling tags, in: Thirty Sixth International Conference on Information Systems, Fort Worth, 2015.
Baziotis, Pelekis, Doulkeridis (b56) 2017
MacAvaney, Yao, Yang, Russell, Goharian, Frieder (b25) 2019; 14
Martins (10.1016/j.knosys.2022.109965_b27) 2018
Nobata (10.1016/j.knosys.2022.109965_b18) 2016
10.1016/j.knosys.2022.109965_b8
10.1016/j.knosys.2022.109965_b7
Baziotis (10.1016/j.knosys.2022.109965_b56) 2017
10.1016/j.knosys.2022.109965_b6
10.1016/j.knosys.2022.109965_b4
10.1016/j.knosys.2022.109965_b3
10.1016/j.knosys.2022.109965_b10
10.1016/j.knosys.2022.109965_b54
Poletto (10.1016/j.knosys.2022.109965_b9) 2020
Sánchez-Junquera (10.1016/j.knosys.2022.109965_b45) 2021; 11
Paszke (10.1016/j.knosys.2022.109965_b58) 2019
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b32) 2020; 20
Fortuna (10.1016/j.knosys.2022.109965_b24) 2018; 51
Rodríguez (10.1016/j.knosys.2022.109965_b41) 2019
10.1016/j.knosys.2022.109965_b55
Kolhatkar (10.1016/j.knosys.2022.109965_b42) 2017
Kolhatkar (10.1016/j.knosys.2022.109965_b43) 2020
Ranasinghe (10.1016/j.knosys.2022.109965_b22) 2020
Patrick (10.1016/j.knosys.2022.109965_b39) 1901; 8
Pang (10.1016/j.knosys.2022.109965_b47) 2008; 2
Elmadany (10.1016/j.knosys.2022.109965_b29) 2020
Safi Samghabadi (10.1016/j.knosys.2022.109965_b28) 2020
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b37) 2021
Ródriguez-Sánchez (10.1016/j.knosys.2022.109965_b16) 2021; 67
Caselli (10.1016/j.knosys.2022.109965_b46) 2020
Kogilavani (10.1016/j.knosys.2022.109965_b1) 2021
Devlin (10.1016/j.knosys.2022.109965_b21) 2018
Warner (10.1016/j.knosys.2022.109965_b17) 2012
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b53) 2020
Cañete (10.1016/j.knosys.2022.109965_b52) 2020
Vaswani (10.1016/j.knosys.2022.109965_b57) 2017
Tontodimamma (10.1016/j.knosys.2022.109965_b26) 2021; 126
Rajamanickam (10.1016/j.knosys.2022.109965_b34) 2020
Wiegand (10.1016/j.knosys.2022.109965_b30) 2021
Cardwell (10.1016/j.knosys.2022.109965_b44) 1996
Caruana (10.1016/j.knosys.2022.109965_b50) 1997; 28
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b15) 2021
Zampieri (10.1016/j.knosys.2022.109965_b12) 2019
Zhang (10.1016/j.knosys.2022.109965_b51) 2021
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b14) 2021; 67
Awal (10.1016/j.knosys.2022.109965_b36) 2021
Malmasi (10.1016/j.knosys.2022.109965_b20) 2018; 30
Ekman (10.1016/j.knosys.2022.109965_b38) 1992; 6
Alorainy (10.1016/j.knosys.2022.109965_b40) 2018
Taulé (10.1016/j.knosys.2022.109965_b5) 2021; 67
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b2) 2021; 166
Struß (10.1016/j.knosys.2022.109965_b11) 2019
Sarkar (10.1016/j.knosys.2022.109965_b23) 2021
Pan (10.1016/j.knosys.2022.109965_b48) 2010; 22
MacAvaney (10.1016/j.knosys.2022.109965_b25) 2019; 14
Zampieri (10.1016/j.knosys.2022.109965_b13) 2020
Frenda (10.1016/j.knosys.2022.109965_b33) 2022; 193
Davidson (10.1016/j.knosys.2022.109965_b19) 2017
Kraskov (10.1016/j.knosys.2022.109965_b59) 2004; 69
Ruder (10.1016/j.knosys.2022.109965_b49) 2019
van Aken (10.1016/j.knosys.2022.109965_b31) 2018
Plaza-del-Arco (10.1016/j.knosys.2022.109965_b35) 2021; 9
References_xml – start-page: 1
  year: 2020
  end-page: 47
  ident: b9
  article-title: Resources and benchmark corpora for hate speech detection: a systematic review
  publication-title: Lang. Res. Eval.
– reference: M. Wiegand, J. Ruppenhofer, T. Kleinbauer, Detection of abusive language: the problem of biased datasets, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 602–608.
– volume: 193
  year: 2022
  ident: b33
  article-title: The unbearable hurtfulness of sarcasm
  publication-title: Expert Syst. Appl.
– volume: 51
  year: 2018
  ident: b24
  article-title: A survey on automatic detection of hate speech in text
  publication-title: ACM Comput. Surv.
– start-page: 102
  year: 2020
  end-page: 108
  ident: b29
  article-title: Leveraging affective bidirectional transformers for offensive language detection
  publication-title: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection
– start-page: 747
  year: 2017
  end-page: 754
  ident: b56
  article-title: DataStories at SemEval-2017 task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis
  publication-title: Proceedings of the 11th International Workshop on Semantic Evaluation
– start-page: 6193
  year: 2020
  end-page: 6202
  ident: b46
  article-title: I feel offended, don’t be abusive! implicit/explicit messages in offensive and abusive language
  publication-title: Proceedings of the 12th Language Resources and Evaluation Conference
– volume: 67
  year: 2021
  ident: b5
  article-title: Overview of the DETOXIS task at IberLEF-2021: Detection of toxicity in comments in Spanish
  publication-title: Procesamiento Del Lenguaje Nat.
– start-page: 1425
  year: 2020
  end-page: 1447
  ident: b13
  article-title: SemEval-2020 task 12: Multilingual offensive language identification in social media (OffensEval 2020)
  publication-title: Proceedings of the Fourteenth Workshop on Semantic Evaluation
– start-page: 79
  year: 2020
  end-page: 88
  ident: b28
  article-title: Attending the emotions to detect online abusive language
  publication-title: Proceedings of the Fourth Workshop on Online Abuse and Harms
– start-page: 1792
  year: 2021
  end-page: 1798
  ident: b23
  article-title: FBERT: A neural transformer for identifying offensive content
  publication-title: Findings of the Association for Computational Linguistics: EMNLP 2021
– reference: A.M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn, G. Stringhini, A. Vakali, M. Sirivianos, N. Kourtellis, Large scale crowdsourcing and characterization of twitter abusive behavior, in: Twelfth International AAAI Conference on Web and Social Media, 2018.
– start-page: 576
  year: 2021
  end-page: 587
  ident: b30
  article-title: Implicitly abusive language – what does it actually look like and why are we not getting there?
  publication-title: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– start-page: 169
  year: 2019
  end-page: 174
  ident: b41
  article-title: Automatic detection of hate speech on facebook using sentiment and emotion analysis
  publication-title: 2019 International Conference on Artificial Intelligence in Information and Communication
– year: 2018
  ident: b21
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– start-page: 1492
  year: 2020
  end-page: 1498
  ident: b53
  article-title: EmoEvent: A multilingual emotion corpus based on different events
  publication-title: Proceedings of the 12th Language Resources and Evaluation Conference
– year: 2021
  ident: b1
  article-title: Characterization and mechanical properties of offensive language taxonomy and detection techniques
  publication-title: Mater. Today: Proc.
– reference: R. Kumar, A.K. Ojha, S. Malmasi, M. Zampieri, Evaluating aggression identification in social media, in: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, 2020, pp. 1–5.
– start-page: 8026
  year: 2019
  end-page: 8037
  ident: b58
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– start-page: 297
  year: 2021
  end-page: 318
  ident: b37
  article-title: Multi-task learning with sentiment, emotion, and target detection to recognize hate speech and offensive language
  publication-title: FIRE 2021 Working Notes
– reference: M. Wiegand, M. Siegel, J. Ruppenhofer, Overview of the GermEval 2018 Shared Task on the Identification of Offensive Language, in: Proceedings of GermEval 2018, 14th Conference on Natural Language Processing, KONVENS 2018, Vienna, Austria, 2018.
– volume: 11
  start-page: 3610
  year: 2021
  ident: b45
  article-title: How do you speak about immigrants? Taxonomy and StereoImmigrants dataset for identifying stereotypes about immigrants
  publication-title: Appl. Sci.
– reference: D. Chatzakou, N. Kourtellis, J. Blackburn, E. De Cristofaro, G. Stringhini, A. Vakali, Detecting aggressors and bullies on Twitter, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 767–768.
– start-page: 19
  year: 2012
  end-page: 26
  ident: b17
  article-title: Detecting hate speech on the world wide web
  publication-title: Proceedings of the Second Workshop on Language in Social Media
– year: 2021
  ident: b36
  article-title: Angrybert: Joint learning target and emotion for hate speech detection
– year: 2020
  ident: b43
  article-title: Classifying constructive comments
– volume: 67
  year: 2021
  ident: b16
  article-title: Overview of EXIST 2021: sEXism identification in social networks
  publication-title: Procesamiento Del Lenguaje Nat.
– year: 2020
  ident: b52
  article-title: Spanish pre-trained BERT model and evaluation data
  publication-title: PML4DC At ICLR 2020
– volume: 9
  start-page: 112478
  year: 2021
  end-page: 112489
  ident: b35
  article-title: A multi-task learning approach to hate speech detection leveraging sentiment analysis
  publication-title: IEEE Access
– start-page: 1096
  year: 2021
  end-page: 1108
  ident: b15
  article-title: OffendES: A new corpus in spanish for offensive language research
  publication-title: Proceedings of the International Conference on Recent Advances in Natural Language Processing
– start-page: 5838
  year: 2020
  end-page: 5844
  ident: b22
  article-title: Multilingual offensive language identification with cross-lingual embeddings
  publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: b50
  article-title: Multitask learning
  publication-title: Mach. Learn.
– year: 1996
  ident: b44
  article-title: Dictionary of Psychology
– volume: 126
  start-page: 157
  year: 2021
  end-page: 179
  ident: b26
  article-title: Thirty years of research into hate speech: topics of interest and their evolution
  publication-title: Scientometrics
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b57
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– year: 2019
  ident: b49
  article-title: Neural transfer learning for natural language processing
– reference: C. Zimmerman, M.-K. Stein, D. Hardt, R. Vatrapu, Emergence of things felt: Harnessing the semantic space of Facebook feeling tags, in: Thirty Sixth International Conference on Information Systems, Fort Worth, 2015.
– start-page: 33
  year: 2018
  end-page: 42
  ident: b31
  article-title: Challenges for toxic comment classification: An in-depth error analysis
  publication-title: Proceedings of the 2nd Workshop on Abusive Language Online
– volume: 6
  start-page: 169
  year: 1992
  end-page: 200
  ident: b38
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
– volume: 166
  year: 2021
  ident: b2
  article-title: Comparing pre-trained language models for spanish hate speech detection
  publication-title: Expert Syst. Appl.
– reference: S. Lamprinidis, F. Bianchi, D. Hardt, D. Hovy, Universal joy a data set and results for classifying emotions across languages, in: Proceedings of the Eleventh Workshop on Computational Approaches To Subjectivity, Sentiment and Social Media Analysis, 2021, pp. 62–75.
– start-page: 1
  year: 2021
  ident: b51
  article-title: A survey on multi-task learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 581
  year: 2018
  end-page: 586
  ident: b40
  article-title: Suspended accounts: A source of tweets with disgust and anger emotions for augmenting hate speech data sample
  publication-title: 2018 International Conference on Machine Learning and Cybernetics, Vol. 2
– volume: 67
  year: 2021
  ident: b14
  article-title: Overview of the MeOffendEs task on offensive text detection at IberLEF 2021
  publication-title: Procesamiento Del Lenguaje Nat.
– start-page: 354
  year: 2019
  end-page: 365
  ident: b11
  article-title: Overview of GermEval task 2, 2019 shared task on the identification of offensive language
  publication-title: Proceedings of the 15th Conference on Natural Language Processing
– volume: 8
  start-page: 113
  year: 1901
  end-page: 127
  ident: b39
  article-title: The psychology of profanity
  publication-title: Psychol. Rev.
– volume: 2
  start-page: 1
  year: 2008
  end-page: 135
  ident: b47
  article-title: Foundations and trends in information retrieval
  publication-title: Found. Trends Inf. Retrieval
– reference: C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, Y. Chang, Abusive Language Detection in Online User Content, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 145–153.
– start-page: 512
  year: 2017
  end-page: 515
  ident: b19
  article-title: Automated hate speech detection and the problem of offensive language
  publication-title: Proceedings of the Eleventh International Conference on Web and Social Media
– start-page: 145
  year: 2016
  end-page: 153
  ident: b18
  article-title: Abusive language detection in online user content
  publication-title: Proceedings of the 25th International Conference on World Wide Web
– volume: 69
  year: 2004
  ident: b59
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
– start-page: 75
  year: 2019
  end-page: 86
  ident: b12
  article-title: SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval)
  publication-title: Proceedings of the 13th International Workshop on Semantic Evaluation
– start-page: 11
  year: 2017
  end-page: 17
  ident: b42
  article-title: Constructive language in news comments
  publication-title: Proceedings of the First Workshop on Abusive Language Online
– start-page: 4270
  year: 2020
  end-page: 4279
  ident: b34
  article-title: Joint modelling of emotion and abusive language detection
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
– volume: 14
  start-page: 1
  year: 2019
  end-page: 16
  ident: b25
  article-title: Hate speech detection: Challenges and solutions
  publication-title: PLOS ONE
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b48
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 61
  year: 2018
  end-page: 66
  ident: b27
  article-title: Hate speech classification in social media using emotional analysis
  publication-title: 2018 7th Brazilian Conference on Intelligent Systems
– volume: 30
  start-page: 187
  year: 2018
  end-page: 202
  ident: b20
  article-title: Challenges in discriminating profanity from hate speech
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 20
  year: 2020
  ident: b32
  article-title: Detecting misogyny and xenophobia in spanish tweets using language technologies
  publication-title: ACM Trans. Internet Technol.
– year: 2021
  ident: 10.1016/j.knosys.2022.109965_b36
– start-page: 5838
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b22
  article-title: Multilingual offensive language identification with cross-lingual embeddings
– volume: 69
  year: 2004
  ident: 10.1016/j.knosys.2022.109965_b59
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066138
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 10.1016/j.knosys.2022.109965_b47
  article-title: Foundations and trends in information retrieval
  publication-title: Found. Trends Inf. Retrieval
  doi: 10.1561/1500000011
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b51
  article-title: A survey on multi-task learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 10.1016/j.knosys.2022.109965_b7
– ident: 10.1016/j.knosys.2022.109965_b55
– start-page: 8026
  year: 2019
  ident: 10.1016/j.knosys.2022.109965_b58
  article-title: Pytorch: An imperative style, high-performance deep learning library
– year: 2019
  ident: 10.1016/j.knosys.2022.109965_b49
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b9
  article-title: Resources and benchmark corpora for hate speech detection: a systematic review
  publication-title: Lang. Res. Eval.
– start-page: 145
  year: 2016
  ident: 10.1016/j.knosys.2022.109965_b18
  article-title: Abusive language detection in online user content
– start-page: 576
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b30
  article-title: Implicitly abusive language – what does it actually look like and why are we not getting there?
– start-page: 4270
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b34
  article-title: Joint modelling of emotion and abusive language detection
– volume: 67
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b16
  article-title: Overview of EXIST 2021: sEXism identification in social networks
  publication-title: Procesamiento Del Lenguaje Nat.
– volume: 67
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b5
  article-title: Overview of the DETOXIS task at IberLEF-2021: Detection of toxicity in comments in Spanish
  publication-title: Procesamiento Del Lenguaje Nat.
– volume: 51
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2022.109965_b24
  article-title: A survey on automatic detection of hate speech in text
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3232676
– volume: 67
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b14
  article-title: Overview of the MeOffendEs task on offensive text detection at IberLEF 2021
  publication-title: Procesamiento Del Lenguaje Nat.
– start-page: 33
  year: 2018
  ident: 10.1016/j.knosys.2022.109965_b31
  article-title: Challenges for toxic comment classification: An in-depth error analysis
– volume: 126
  start-page: 157
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b26
  article-title: Thirty years of research into hate speech: topics of interest and their evolution
  publication-title: Scientometrics
  doi: 10.1007/s11192-020-03737-6
– volume: 6
  start-page: 169
  issue: 3–4
  year: 1992
  ident: 10.1016/j.knosys.2022.109965_b38
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– volume: 11
  start-page: 3610
  issue: 8
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b45
  article-title: How do you speak about immigrants? Taxonomy and StereoImmigrants dataset for identifying stereotypes about immigrants
  publication-title: Appl. Sci.
  doi: 10.3390/app11083610
– start-page: 61
  year: 2018
  ident: 10.1016/j.knosys.2022.109965_b27
  article-title: Hate speech classification in social media using emotional analysis
– start-page: 297
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b37
  article-title: Multi-task learning with sentiment, emotion, and target detection to recognize hate speech and offensive language
– volume: 193
  year: 2022
  ident: 10.1016/j.knosys.2022.109965_b33
  article-title: The unbearable hurtfulness of sarcasm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116398
– ident: 10.1016/j.knosys.2022.109965_b10
– year: 2020
  ident: 10.1016/j.knosys.2022.109965_b43
– start-page: 79
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b28
  article-title: Attending the emotions to detect online abusive language
– volume: 8
  start-page: 113
  issue: 2
  year: 1901
  ident: 10.1016/j.knosys.2022.109965_b39
  article-title: The psychology of profanity
  publication-title: Psychol. Rev.
  doi: 10.1037/h0074772
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.knosys.2022.109965_b48
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– year: 2020
  ident: 10.1016/j.knosys.2022.109965_b52
  article-title: Spanish pre-trained BERT model and evaluation data
– start-page: 6193
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b46
  article-title: I feel offended, don’t be abusive! implicit/explicit messages in offensive and abusive language
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.knosys.2022.109965_b50
  article-title: Multitask learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– year: 2018
  ident: 10.1016/j.knosys.2022.109965_b21
– start-page: 19
  year: 2012
  ident: 10.1016/j.knosys.2022.109965_b17
  article-title: Detecting hate speech on the world wide web
– ident: 10.1016/j.knosys.2022.109965_b8
  doi: 10.1609/icwsm.v12i1.14991
– start-page: 75
  year: 2019
  ident: 10.1016/j.knosys.2022.109965_b12
  article-title: SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval)
– start-page: 169
  year: 2019
  ident: 10.1016/j.knosys.2022.109965_b41
  article-title: Automatic detection of hate speech on facebook using sentiment and emotion analysis
– start-page: 5998
  year: 2017
  ident: 10.1016/j.knosys.2022.109965_b57
  article-title: Attention is all you need
– start-page: 1425
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b13
  article-title: SemEval-2020 task 12: Multilingual offensive language identification in social media (OffensEval 2020)
– year: 2021
  ident: 10.1016/j.knosys.2022.109965_b1
  article-title: Characterization and mechanical properties of offensive language taxonomy and detection techniques
  publication-title: Mater. Today: Proc.
– start-page: 581
  year: 2018
  ident: 10.1016/j.knosys.2022.109965_b40
  article-title: Suspended accounts: A source of tweets with disgust and anger emotions for augmenting hate speech data sample
– start-page: 512
  year: 2017
  ident: 10.1016/j.knosys.2022.109965_b19
  article-title: Automated hate speech detection and the problem of offensive language
– volume: 30
  start-page: 187
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.109965_b20
  article-title: Challenges in discriminating profanity from hate speech
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2017.1409284
– start-page: 102
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b29
  article-title: Leveraging affective bidirectional transformers for offensive language detection
– volume: 14
  start-page: 1
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2022.109965_b25
  article-title: Hate speech detection: Challenges and solutions
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0221152
– ident: 10.1016/j.knosys.2022.109965_b3
  doi: 10.1145/2872427.2883062
– ident: 10.1016/j.knosys.2022.109965_b6
  doi: 10.1145/3041021.3054211
– start-page: 747
  year: 2017
  ident: 10.1016/j.knosys.2022.109965_b56
  article-title: DataStories at SemEval-2017 task 4: Deep LSTM with attention for message-level and topic-based sentiment analysis
– ident: 10.1016/j.knosys.2022.109965_b4
– volume: 20
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b32
  article-title: Detecting misogyny and xenophobia in spanish tweets using language technologies
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3369869
– start-page: 11
  year: 2017
  ident: 10.1016/j.knosys.2022.109965_b42
  article-title: Constructive language in news comments
– year: 1996
  ident: 10.1016/j.knosys.2022.109965_b44
– start-page: 354
  year: 2019
  ident: 10.1016/j.knosys.2022.109965_b11
  article-title: Overview of GermEval task 2, 2019 shared task on the identification of offensive language
– start-page: 1096
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b15
  article-title: OffendES: A new corpus in spanish for offensive language research
– start-page: 1492
  year: 2020
  ident: 10.1016/j.knosys.2022.109965_b53
  article-title: EmoEvent: A multilingual emotion corpus based on different events
– ident: 10.1016/j.knosys.2022.109965_b54
– start-page: 1792
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b23
  article-title: FBERT: A neural transformer for identifying offensive content
– volume: 9
  start-page: 112478
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b35
  article-title: A multi-task learning approach to hate speech detection leveraging sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3103697
– volume: 166
  year: 2021
  ident: 10.1016/j.knosys.2022.109965_b2
  article-title: Comparing pre-trained language models for spanish hate speech detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114120
SSID ssj0002218
Score 2.4301798
Snippet The analysis and detection of offensive content in textual information have become a great challenge for the Natural Language Processing community. Most of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109965
SubjectTerms Linguistic phenomena
Multi-task learning
Natural language processing
Offensive language
Spanish
Title Integrating implicit and explicit linguistic phenomena via multi-task learning for offensive language detection
URI https://dx.doi.org/10.1016/j.knosys.2022.109965
Volume 258
WOSCitedRecordID wos000880093300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCy4EL5amWAvKBW-Ron1n7GKCFQltVIqDcVt61LaVddqN0G0X9m_whxq_diCBeEpfVxvIjmvlijyffzCD0SsYsGYtYEDnOFEkKWRAWRZzovDBZEdCCysIUm8jOz-lsxi4Gg28-FmZVZXVN12u2-K-qhjZQtg6d_Qt1d5NCA7yD0uEJaofnHyn-xCWAMMEqhi8-tyxyuXYfdAT6jUnQPNQML52DgQ9Xc27ZhaTl11e-moRlWTZKOZ67d28OhWwNiavetG4_egcd0YejcGmiO6v9ouK3nAhZkcmyNC7aY13f42wOUvnaad5UESLvmvrW_IkfVtbHfTYCYx-695zHz0upe7wOOTk1L_HCdj0dDSeVAvk2vb992ZrZ3tbkC690DBp3kUq2mZOphKn5phMkMvVYov7KvB2d41ycAckCl9BW2g2eZnCjSAK2eQJENnv81mliHRuXo6u6AYGN9MI6_Raz1S1-yNP9SS-nV4s0wSCl7A7ajbKUwVa7Ozk5mn3oDIQoMm7n7uv5iE5DO9xe6-cW04YVNH2A7rvrC55Y2D1EA1k_Qnu-NAh2J8Vj1GygEHsUYkAh9ijEPQpxh0IMesE9CrFHIQYU4g6F2KMQdyh8gqbHR9M374mr7UFKuKS2gDXF4cYkEqXKktFY0DIVKixYGUrBM0oVE5EYMyETFgtZ0jCOw1ClKeUhbH7xU7RTN7XcRziTfBzwgqZlqRKhRGGoALDzRGmRxkFygGIvvrx0ee91-ZUq9wTHy9wKPddCz63QDxDpRi1s3pff9M-8ZnJnu1qbNAcw_XLks38eeYju9b-F52inXd7IF-huuWrn18uXDnXfAe4kxbk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+implicit+and+explicit+linguistic+phenomena+via+multi-task+learning+for+offensive+language+detection&rft.jtitle=Knowledge-based+systems&rft.au=Plaza-del-Arco%2C+Flor+Miriam&rft.au=Molina-Gonz%C3%A1lez%2C+M.+Dolores&rft.au=Ure%C3%B1a-L%C3%B3pez%2C+L.+Alfonso&rft.au=Mart%C3%ADn-Valdivia%2C+Mar%C3%ADa-Teresa&rft.date=2022-12-22&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=258&rft_id=info:doi/10.1016%2Fj.knosys.2022.109965&rft.externalDocID=S0950705122010589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon