Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter

Electrooculogram (EOG) artifacts are the most important form of interferences in electroencephalogram (EEG) based brain computer interfaces (BCIs). In traditional methods for EOG artifacts removal, either an additional EOG recording in real time or multi-channel (more than three channels) EEG record...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 214; S. 1053 - 1060
Hauptverfasser: Yang, Banghua, Duan, Kaiwen, Zhang, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 19.11.2016
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Electrooculogram (EOG) artifacts are the most important form of interferences in electroencephalogram (EEG) based brain computer interfaces (BCIs). In traditional methods for EOG artifacts removal, either an additional EOG recording in real time or multi-channel (more than three channels) EEG recording is required. To address these limitations of existing methods, a method using a cascade of sparse autoencoder (SAE) and recursive least squares (RLS) adaptive filter is proposed to remove the EOG artifacts from EEG. The proposed approach consists of offline stage and online stage. The high-order statistical moments information in the EOG artifacts can be learned automatically by using only EOG signals during offline stage and so an SAE model is obtained. In the online stage, the learned SAE model is firstly used to identify and extract preliminary EOG artifacts from a given raw EEG signal. Then an RLS adaptive filter uses the identified EOG artifacts as reference signal to remove interference without parallel EOG recordings. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of an additional EOG recording in removal process, (ii) few number of EEG channels being used in removal process, and (iii) time-saving. The performance of the proposed method is evaluated by EEG classification accuracy and time consumption. Compared with traditional methods, the proposed method is proven to be more effective and faster. Moreover, experiment results also show good generalization ability in cross-subject testing scenarios. •The proposed method does not need an additional EOG recording, which is portable for online using.•The proposed method is suitable for any number of EEG channels.•Compared with traditional methods, the proposed method is more time saving and effective.
AbstractList Electrooculogram (EOG) artifacts are the most important form of interferences in electroencephalogram (EEG) based brain computer interfaces (BCIs). In traditional methods for EOG artifacts removal, either an additional EOG recording in real time or multi-channel (more than three channels) EEG recording is required. To address these limitations of existing methods, a method using a cascade of sparse autoencoder (SAE) and recursive least squares (RLS) adaptive filter is proposed to remove the EOG artifacts from EEG. The proposed approach consists of offline stage and online stage. The high-order statistical moments information in the EOG artifacts can be learned automatically by using only EOG signals during offline stage and so an SAE model is obtained. In the online stage, the learned SAE model is firstly used to identify and extract preliminary EOG artifacts from a given raw EEG signal. Then an RLS adaptive filter uses the identified EOG artifacts as reference signal to remove interference without parallel EOG recordings. Compared with the exiting methods, the proposed method has the following advantages: (i) nonuse of an additional EOG recording in removal process, (ii) few number of EEG channels being used in removal process, and (iii) time-saving. The performance of the proposed method is evaluated by EEG classification accuracy and time consumption. Compared with traditional methods, the proposed method is proven to be more effective and faster. Moreover, experiment results also show good generalization ability in cross-subject testing scenarios. •The proposed method does not need an additional EOG recording, which is portable for online using.•The proposed method is suitable for any number of EEG channels.•Compared with traditional methods, the proposed method is more time saving and effective.
Author Yang, Banghua
Duan, Kaiwen
Zhang, Tao
Author_xml – sequence: 1
  givenname: Banghua
  surname: Yang
  fullname: Yang, Banghua
– sequence: 2
  givenname: Kaiwen
  surname: Duan
  fullname: Duan, Kaiwen
– sequence: 3
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
BookMark eNqFkF9LwzAUxYNMcJt-Ax_yBVqT9L8Pgow6hcFA9DncJreS0TYzSQd-e1vmkw8KBy73cs-B81uRxWAHJOSWs5gznt8d4gFHZftYTFvMZhUXZMnLQkSlKPMFWbJKZJFIuLgiK-8PjPGCi2pJ_Cv29gQdtS2t91sKLpgWVPC0dbandb2lozfDBwWqwCvQOH_6IziPFMZgcVBWo6MwaOpQjc6bE9IOwQfqP0dw6CloOIb53JouoLsmly10Hm9-5pq8P9Vvm-dot9--bB53kUpYHiKNJW-yViQqrXQCTapbneRFlfKqzETeCKUgzzNskqZpNEtFCoWoplaYNCmkPFmT9JyrnPXeYSuPzvTgviRncgYnD_IMTs7gJJtVTLb7XzZlAgRjh-DAdP-ZH85mnIqdDDrplZkYoTYTnSC1NX8HfAOLwpAp
CitedBy_id crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1109_JBHI_2021_3131186
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1007_s11277_021_09305_2
crossref_primary_10_1007_s40430_022_03950_9
crossref_primary_10_1016_j_dsp_2023_104319
crossref_primary_10_1088_1742_6596_2325_1_012038
crossref_primary_10_1007_s00034_024_02936_3
crossref_primary_10_1109_TNSRE_2022_3164126
crossref_primary_10_1109_JSEN_2025_3578066
crossref_primary_10_1049_iet_spr_2018_5111
crossref_primary_10_1016_j_bspc_2020_102094
crossref_primary_10_3389_fninf_2022_1025847
crossref_primary_10_3390_electronics13224576
crossref_primary_10_1155_2018_4853741
crossref_primary_10_1016_j_csi_2024_103897
crossref_primary_10_1016_j_artmed_2020_101861
crossref_primary_10_1109_JSEN_2023_3276481
crossref_primary_10_1016_j_bbe_2019_03_002
crossref_primary_10_1016_j_neucom_2017_01_073
crossref_primary_10_1088_1741_2552_abb5bd
Cites_doi 10.1109/TNNLS.2015.2411671
10.1016/j.neucom.2014.10.038
10.1631/FITEE.1400299
10.1111/j.1469-8986.1991.tb03397.x
10.1016/j.neucom.2014.05.029
10.1016/j.neucom.2015.05.082
10.1016/j.neucom.2014.09.040
10.1016/j.neucom.2013.03.070
10.1109/TFUZZ.2012.2210555
10.1109/IWECA.2014.6845678
10.1016/j.jfranklin.2014.10.022
10.21437/Interspeech.2013-130
10.1016/j.neucom.2012.04.016
10.1109/TNSRE.2007.906956
10.1016/S1388-2457(00)00541-1
10.1007/BF02344717
10.1016/j.neucom.2014.01.062
10.1016/j.neucom.2013.11.009
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.06.067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 1060
ExternalDocumentID 10_1016_j_neucom_2016_06_067
S0925231216307548
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-de81b5f23c49d3ab4dfd36794198526b2cca665eb3bbbd0424a729129e3b4a413
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386741300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:45:47 EST 2025
Sat Nov 29 07:50:49 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrooculogram (EOG)
Recursive least squares (RLS) adaptive filtering
Brain computer interfaces (BCIs)
Electroencephalogram (EEG)
Sparse autoencoder (SAE)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-de81b5f23c49d3ab4dfd36794198526b2cca665eb3bbbd0424a729129e3b4a413
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_neucom_2016_06_067
crossref_citationtrail_10_1016_j_neucom_2016_06_067
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_06_067
PublicationCentury 2000
PublicationDate 2016-11-19
PublicationDateYYYYMMDD 2016-11-19
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nguyen, Musson, Li (bib24) 2012; 97
Albalawi, Song (bib2) 2012
Qiu, Ding, Gao (bib21) 2015; 99
Kenemans, Molenaar, Verbaten (bib3) 1991; 28
Vincent, Larochelle, Lajoie (bib6) 2010; 11
Huang, Sun (bib11) 2015; 174
He, Wilson, Russell (bib8) 2004; 42
Zhang, Xi, Zhang (bib12) 2015; 168
Qiu, Wei, Karimi (bib20) 2015; 352
Kumar, Dewal, Anand (bib17) 2014; 133
Ahirwal, Kumar, Singh (bib26) 2014; 144
Wang, Gao, Qiu (bib19) 2016; 27
Y.L, Zhou, Li (bib25) 2015; 188
Leeb, Brunner, Müller-Putz (bib15) 2008
Cruz, Feng, Chi (bib1) 2015; 149
Leeb, Lee, Keinrath (bib14) 2007; 15
Yang, He, Lin (bib7) 2015; 16
Mi, Xu (bib9) 2014; 137
Hagemann, Naumann (bib23) 2001; 112
Qiu, Feng, Gao (bib22) 2013; 21
Hu, Wang, Wu (bib18) 2015; 151
Makeig, Bell, Jung (bib4) 1996
Ng (bib10) 2011; 72
Lu, Yu, Matsuda (bib5) 2013
Fang, Chen, Zheng (bib16) 2015; 151
B.H. Yang, L.F. He, Removal of ocular artifacts from EEG signals using ICA-RLS in BCI, in: IEEE Workshop on Electronics, Computer and Applications, 2014. IEEE, 2014, pp. 544–547. 〈http://dx.doi.org/10.1109/IWECA.2014.6845678〉.
Mi (10.1016/j.neucom.2016.06.067_bib9) 2014; 137
Leeb (10.1016/j.neucom.2016.06.067_bib14) 2007; 15
Kumar (10.1016/j.neucom.2016.06.067_bib17) 2014; 133
Leeb (10.1016/j.neucom.2016.06.067_bib15) 2008
Huang (10.1016/j.neucom.2016.06.067_bib11) 2015; 174
Zhang (10.1016/j.neucom.2016.06.067_bib12) 2015; 168
Fang (10.1016/j.neucom.2016.06.067_bib16) 2015; 151
Vincent (10.1016/j.neucom.2016.06.067_bib6) 2010; 11
Hu (10.1016/j.neucom.2016.06.067_bib18) 2015; 151
Hagemann (10.1016/j.neucom.2016.06.067_bib23) 2001; 112
Y.L (10.1016/j.neucom.2016.06.067_bib25) 2015; 188
Ng (10.1016/j.neucom.2016.06.067_bib10) 2011; 72
Qiu (10.1016/j.neucom.2016.06.067_bib22) 2013; 21
Lu (10.1016/j.neucom.2016.06.067_bib5) 2013
Cruz (10.1016/j.neucom.2016.06.067_bib1) 2015; 149
Nguyen (10.1016/j.neucom.2016.06.067_bib24) 2012; 97
10.1016/j.neucom.2016.06.067_bib13
Yang (10.1016/j.neucom.2016.06.067_bib7) 2015; 16
Albalawi (10.1016/j.neucom.2016.06.067_bib2) 2012
Wang (10.1016/j.neucom.2016.06.067_bib19) 2016; 27
Kenemans (10.1016/j.neucom.2016.06.067_bib3) 1991; 28
He (10.1016/j.neucom.2016.06.067_bib8) 2004; 42
Qiu (10.1016/j.neucom.2016.06.067_bib21) 2015; 99
Ahirwal (10.1016/j.neucom.2016.06.067_bib26) 2014; 144
Makeig (10.1016/j.neucom.2016.06.067_bib4) 1996
Qiu (10.1016/j.neucom.2016.06.067_bib20) 2015; 352
References_xml – volume: 99
  year: 2015
  ident: bib21
  article-title: Fuzzy-model-based reliable static output feedback h-infinity control of nonlinear hyperbolic PDE systems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 352
  start-page: 189
  year: 2015
  end-page: 215
  ident: bib20
  article-title: New approach to delay-dependent H∞ control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions
  publication-title: J. Frankl. I
– year: 2008
  ident: bib15
  article-title: BCI Competition 2008–Graz Data Set B
– volume: 72
  start-page: 1
  year: 2011
  end-page: 19
  ident: bib10
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture Notes
– volume: 15
  start-page: 473
  year: 2007
  end-page: 482
  ident: bib14
  article-title: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 16
  start-page: 486
  year: 2015
  end-page: 496
  ident: bib7
  article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface
  publication-title: Front. Inf. Technol. Electron. Eng.
– start-page: 436
  year: 2013
  end-page: 440
  ident: bib5
  article-title: Speech enhancement based on deep denoising autoencoder
  publication-title: Interspeech
– volume: 188
  start-page: 50
  year: 2015
  end-page: 62
  ident: bib25
  article-title: Computational aesthetics of photos quality assessment based on improved artificial neural network combined with autoencoder technique
  publication-title: Neurocomputing.
– volume: 112
  start-page: 215
  year: 2001
  end-page: 231
  ident: bib23
  article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG
  publication-title: Clin. Neurophysiol.
– start-page: 1
  year: 2012
  end-page: 4
  ident: bib2
  article-title: A study of kernel CSP-based motor imagery brain computer interface classification
  publication-title: Signal Process. Med. Biol. Symp. IEEE.
– start-page: 145
  year: 1996
  end-page: 151
  ident: bib4
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv. Neural. Inform. Process. Syst.
– volume: 151
  start-page: 1477
  year: 2015
  end-page: 1485
  ident: bib16
  article-title: Extracting features from phase space of EEG signals in brain–computer interfaces
  publication-title: Neurocomputing
– volume: 21
  start-page: 245
  year: 2013
  end-page: 261
  ident: bib22
  article-title: Static-output-feedback control of continuous-time T-S fuzzy affine systems via piecewise lyapunov functions
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib6
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 149
  start-page: 93
  year: 2015
  end-page: 99
  ident: bib1
  article-title: Adaptive time-window length based on online performance measurement in SSVEP-based BCIs
  publication-title: Neurocomputing.
– volume: 137
  start-page: 157
  year: 2014
  end-page: 164
  ident: bib9
  article-title: A comparative study and improvement of two ICA using reference signal methods
  publication-title: Neurocomputing
– volume: 42
  start-page: 407
  year: 2004
  end-page: 412
  ident: bib8
  article-title: Removal of ocular artifacts from electro-encephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
– reference: B.H. Yang, L.F. He, Removal of ocular artifacts from EEG signals using ICA-RLS in BCI, in: IEEE Workshop on Electronics, Computer and Applications, 2014. IEEE, 2014, pp. 544–547. 〈http://dx.doi.org/10.1109/IWECA.2014.6845678〉.
– volume: 133
  start-page: 271
  year: 2014
  end-page: 279
  ident: bib17
  article-title: Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
  publication-title: Neurocomputing
– volume: 97
  start-page: 374
  year: 2012
  end-page: 389
  ident: bib24
  article-title: EOG artifact removal using a wavelet neural network
  publication-title: Neurocomputing
– volume: 144
  start-page: 282
  year: 2014
  end-page: 294
  ident: bib26
  article-title: Improved range selection method for evolutionary algorithm based adaptive filtering of EEG/ERP signals
  publication-title: Neurocomputing
– volume: 28
  start-page: 114
  year: 1991
  end-page: 121
  ident: bib3
  article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data
  publication-title: Psychophysiology
– volume: 27
  start-page: 416
  year: 2016
  end-page: 425
  ident: bib19
  article-title: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 174
  start-page: 60
  year: 2015
  end-page: 71
  ident: bib11
  article-title: Building feature space of extreme learning machine with sparse denoising stacked-autoencoder
  publication-title: Neurocomputing
– volume: 168
  start-page: 454
  year: 2015
  end-page: 463
  ident: bib12
  article-title: Deep learning driven blockwise moving object detection with binary scene modeling
  publication-title: Neurocomputing
– volume: 151
  start-page: 278
  year: 2015
  end-page: 287
  ident: bib18
  article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system
  publication-title: Neurocomputing
– volume: 27
  start-page: 416
  year: 2016
  ident: 10.1016/j.neucom.2016.06.067_bib19
  article-title: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2411671
– start-page: 145
  year: 1996
  ident: 10.1016/j.neucom.2016.06.067_bib4
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv. Neural. Inform. Process. Syst.
– volume: 151
  start-page: 1477
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib16
  article-title: Extracting features from phase space of EEG signals in brain–computer interfaces
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.038
– start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.06.067_bib2
  article-title: A study of kernel CSP-based motor imagery brain computer interface classification
  publication-title: Signal Process. Med. Biol. Symp. IEEE.
– volume: 174
  start-page: 60
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib11
  article-title: Building feature space of extreme learning machine with sparse denoising stacked-autoencoder
  publication-title: Neurocomputing
– volume: 16
  start-page: 486
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib7
  article-title: Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1400299
– volume: 28
  start-page: 114
  issue: 1
  year: 1991
  ident: 10.1016/j.neucom.2016.06.067_bib3
  article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1991.tb03397.x
– volume: 144
  start-page: 282
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2016.06.067_bib26
  article-title: Improved range selection method for evolutionary algorithm based adaptive filtering of EEG/ERP signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.029
– volume: 188
  start-page: 50
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib25
  article-title: Computational aesthetics of photos quality assessment based on improved artificial neural network combined with autoencoder technique
  publication-title: Neurocomputing.
– volume: 168
  start-page: 454
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib12
  article-title: Deep learning driven blockwise moving object detection with binary scene modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.082
– year: 2008
  ident: 10.1016/j.neucom.2016.06.067_bib15
– volume: 151
  start-page: 278
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib18
  article-title: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.040
– volume: 11
  start-page: 3371
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2016.06.067_bib6
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 137
  start-page: 157
  year: 2014
  ident: 10.1016/j.neucom.2016.06.067_bib9
  article-title: A comparative study and improvement of two ICA using reference signal methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.070
– volume: 21
  start-page: 245
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2016.06.067_bib22
  article-title: Static-output-feedback control of continuous-time T-S fuzzy affine systems via piecewise lyapunov functions
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2210555
– ident: 10.1016/j.neucom.2016.06.067_bib13
  doi: 10.1109/IWECA.2014.6845678
– volume: 352
  start-page: 189
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib20
  article-title: New approach to delay-dependent H∞ control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions
  publication-title: J. Frankl. I
  doi: 10.1016/j.jfranklin.2014.10.022
– start-page: 436
  year: 2013
  ident: 10.1016/j.neucom.2016.06.067_bib5
  article-title: Speech enhancement based on deep denoising autoencoder
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2013-130
– volume: 97
  start-page: 374
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.06.067_bib24
  article-title: EOG artifact removal using a wavelet neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.04.016
– volume: 15
  start-page: 473
  issue: 4
  year: 2007
  ident: 10.1016/j.neucom.2016.06.067_bib14
  article-title: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.906956
– volume: 112
  start-page: 215
  year: 2001
  ident: 10.1016/j.neucom.2016.06.067_bib23
  article-title: The effects of ocular artifacts on (lateralized) broadband power in the EEG
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00541-1
– volume: 42
  start-page: 407
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2016.06.067_bib8
  article-title: Removal of ocular artifacts from electro-encephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344717
– volume: 72
  start-page: 1
  year: 2011
  ident: 10.1016/j.neucom.2016.06.067_bib10
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture Notes
– volume: 99
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib21
  article-title: Fuzzy-model-based reliable static output feedback h-infinity control of nonlinear hyperbolic PDE systems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 149
  start-page: 93
  year: 2015
  ident: 10.1016/j.neucom.2016.06.067_bib1
  article-title: Adaptive time-window length based on online performance measurement in SSVEP-based BCIs
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2014.01.062
– volume: 133
  start-page: 271
  year: 2014
  ident: 10.1016/j.neucom.2016.06.067_bib17
  article-title: Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.009
SSID ssj0017129
Score 2.3193688
Snippet Electrooculogram (EOG) artifacts are the most important form of interferences in electroencephalogram (EEG) based brain computer interfaces (BCIs). In...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1053
SubjectTerms Brain computer interfaces (BCIs)
Electroencephalogram (EEG)
Electrooculogram (EOG)
Recursive least squares (RLS) adaptive filtering
Sparse autoencoder (SAE)
Title Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter
URI https://dx.doi.org/10.1016/j.neucom.2016.06.067
Volume 214
WOSCitedRecordID wos000386741300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ohCqXzgFgXVzvu4hbTloYLQIi2nyLEddVfbZNlstv0P_GlmYidNoSr0wCVZRY7zmG_HM5OZbwh5ncRaitAr3Fix2PUZC91cBcwVSvqaFZIz2Ur6U3RyEk-nyZfR6GdXC7NZRGUZX1wky_8qajgGwsbS2VuIu58UDsBvEDpsQeyw_SfBf9Vn1caYmOnnIyQxmmH1Qm0qSdL0yGna-IBwpKgxOx5Hgl5Z1doRzbpCZkskmGgTzzEa3ya4L7DHj1P_aLBeyRFKLA1h-GzR5ffOOx6oBtbEtleEjUKMz5CMQSHy-qjDdxumPoD9adMvDe8aE4_9KGbnlzVqfVB7IqphlAIkjplyyTDcyAMXbMkrmpczf6A7wdLzBusw-Kr71-p4E26Yvyl1gwk_eLWWgtW09bhKqf3bUtcnIHa5bfPMzJLhLBmm-IXRHbLNoyABLb89fp9OP_QfpSLGDXWjfZSuErNNF_zzbq63dAbWy-QhuW_dDjo2cHlERrp8TB50LT2o1fBPSG3RQ6uCAnpojx6K6KGAHtqihwpq0YMjDXroAD0U0EN79NAWPdSih3booQY9T8m3w3Ty9ti1fTlcCQ7m2lUafJ2g4J70E-WJ3FeF8kJQ7CyJAx7mHLRCGAY69_I8V_htXYALBy9Pe7kvwGp6RrbKqtTPCfVDP_El18jrj65DrngQx4HkEokB2f4O8bp3mElLWo-9UxbZTRLcIW5_1tKQtvxlfNSJJ7OGpzEoM8DcjWe-uOWVXpJ7l_-OXbK1XjX6FbkrN-tZvdqzgPsF-_in8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+EOG+artifacts+from+EEG+using+a+cascade+of+sparse+autoencoder+and+recursive+least+squares+adaptive+filter&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yang%2C+Banghua&rft.au=Duan%2C+Kaiwen&rft.au=Zhang%2C+Tao&rft.date=2016-11-19&rft.issn=0925-2312&rft.volume=214&rft.spage=1053&rft.epage=1060&rft_id=info:doi/10.1016%2Fj.neucom.2016.06.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_06_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon