Deep federated learning hybrid optimization model based on encrypted aligned data
•Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation...
Saved in:
| Published in: | Pattern recognition Vol. 148; p. 110193 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2024
|
| Subjects: | |
| ISSN: | 0031-3203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation auto-encoder Gaussian hybrid clustering and federated learning.
Federated learning can achieve multi-party data-collaborative applications while safeguarding personal privacy. However, the process often leads to a decline in the quality of sample data due to a substantial amount of missing encrypted aligned data, and there is a lack of research on how to improve the model learning effect by increasing the number of samples of encrypted aligned data in federated learning. Therefore, this paper integrates the functional characteristics of deep learning models and proposes a Variational AutoEncoder Gaussian Mixture Model Clustering Vertical Federated Learning Model (VAEGMMC-VFL), which leverages the feature extraction capability of the autoencoder and the clustering and pattern discovery capabilities of Gaussian mixture clustering on diverse datasets to further explore a large number of potentially usable samples. Firstly, the Variational AutoEncoder is used to achieve dimensionality reduction and sample feature reconstruction of high-dimensional data samples. Subsequently, Gaussian mixture clustering is further employed to partition the dataset into multiple potential Gaussian-distributed clusters and filter the sample data using thresholding. Additionally, the paper introduces a labeled sample attribute value finding algorithm to fill in attribute values for encrypted unaligned samples that meet the requirements, allowing for the full recovery of encrypted unaligned data. In the experimental section, the paper selects four sets of datasets from different industries and compares the proposed method with three federated learning clustering methods in terms of clustering loss, reconstruction loss, and other metrics. Tests on precision, accuracy, recall, ROC curve, and F1-score indicate that the proposed method outperforms similar approaches. |
|---|---|
| AbstractList | •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation auto-encoder Gaussian hybrid clustering and federated learning.
Federated learning can achieve multi-party data-collaborative applications while safeguarding personal privacy. However, the process often leads to a decline in the quality of sample data due to a substantial amount of missing encrypted aligned data, and there is a lack of research on how to improve the model learning effect by increasing the number of samples of encrypted aligned data in federated learning. Therefore, this paper integrates the functional characteristics of deep learning models and proposes a Variational AutoEncoder Gaussian Mixture Model Clustering Vertical Federated Learning Model (VAEGMMC-VFL), which leverages the feature extraction capability of the autoencoder and the clustering and pattern discovery capabilities of Gaussian mixture clustering on diverse datasets to further explore a large number of potentially usable samples. Firstly, the Variational AutoEncoder is used to achieve dimensionality reduction and sample feature reconstruction of high-dimensional data samples. Subsequently, Gaussian mixture clustering is further employed to partition the dataset into multiple potential Gaussian-distributed clusters and filter the sample data using thresholding. Additionally, the paper introduces a labeled sample attribute value finding algorithm to fill in attribute values for encrypted unaligned samples that meet the requirements, allowing for the full recovery of encrypted unaligned data. In the experimental section, the paper selects four sets of datasets from different industries and compares the proposed method with three federated learning clustering methods in terms of clustering loss, reconstruction loss, and other metrics. Tests on precision, accuracy, recall, ROC curve, and F1-score indicate that the proposed method outperforms similar approaches. |
| ArticleNumber | 110193 |
| Author | Liang, Xiaoliang Huang, Hai Zhao, Zhongnan Wang, Kun |
| Author_xml | – sequence: 1 givenname: Zhongnan orcidid: 0000-0001-6192-9452 surname: Zhao fullname: Zhao, Zhongnan email: zhaozhongnan@hrbust.edu.cn organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China – sequence: 2 givenname: Xiaoliang surname: Liang fullname: Liang, Xiaoliang organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China – sequence: 3 givenname: Hai surname: Huang fullname: Huang, Hai organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China – sequence: 4 givenname: Kun surname: Wang fullname: Wang, Kun organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China |
| BookMark | eNqFkE1Lw0AQhvdQwbb6DzzkDyTuV5qNB0HqJxRE0PMy2Z3ULWk2bBah_nq3xpMHPQ0zzPMy8yzIrPc9EnLBaMEoW13uigGi8duCUy4Klma1mJE5pYLlglNxShbjuKOUVUzyOXm5RRyyFi0GiGizDiH0rt9m74cmOJv5Ibq9-4TofJ_tvcUua2BMi6nF3oTDcKSgc9s-VQsRzshJC92I5z91Sd7u717Xj_nm-eFpfbPJjaCrmFuUJQBgCRZobaWSDasUgOCtbI1QYCouGwPMcqWAybqkRiFXYiWhbioUS3I15ZrgxzFgq42L33fGAK7TjOqjEL3TkxB9FKInIQmWv-AhuD2Ew3_Y9YRheuzDYdCjcUkDWhfQRG29-zvgC797gjM |
| CitedBy_id | crossref_primary_10_1016_j_foodchem_2025_143831 crossref_primary_10_1016_j_inffus_2025_103147 crossref_primary_10_1016_j_patcog_2025_111665 crossref_primary_10_1038_s41598_025_87454_1 crossref_primary_10_1007_s10207_025_01000_8 crossref_primary_10_1016_j_patcog_2025_112410 crossref_primary_10_1007_s11760_025_04253_x crossref_primary_10_3390_su17072827 |
| Cites_doi | 10.1016/j.neunet.2023.04.007 10.1109/TSP.2022.3210365 10.1109/TMI.2022.3222126 10.1016/j.patcog.2022.108746 10.1016/j.patrec.2021.07.004 10.1016/j.renene.2023.04.055 10.1016/j.patcog.2023.109507 10.1016/j.ins.2022.12.072 10.1109/TNSE.2022.3169117 10.1093/bib/bbad269 10.1007/s40747-020-00161-4 10.1109/TCCN.2021.3101239 10.3390/s23031083 10.1016/j.ipm.2021.102844 10.1007/s10994-023-06330-z 10.1016/j.iot.2023.100793 10.1016/j.dcan.2021.11.006 10.1177/0003702820987847 10.1109/TGCN.2022.3233825 10.1007/s10115-022-01664-x 10.1109/TVT.2022.3178612 10.1109/TNNLS.2020.3041755 10.1109/JIOT.2023.3237032 10.1109/JIOT.2022.3151945 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2023.110193 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_patcog_2023_110193 S0031320323008907 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-de45aaae5ada09d484b178aa32f4fc38ac724bca1d288a14950c8e28364a9b7e3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 21:59:22 EST 2025 Sat Nov 29 07:27:20 EST 2025 Fri May 16 00:30:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Encrypted aligned data, Privacy protection Gaussian Mixture Model Federated learning Variational AutoEncoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-de45aaae5ada09d484b178aa32f4fc38ac724bca1d288a14950c8e28364a9b7e3 |
| ORCID | 0000-0001-6192-9452 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2023_110193 crossref_primary_10_1016_j_patcog_2023_110193 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_110193 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Casado, Lema, Iglesias (bib0011) 2023; 112 Moradzadeh, Moayyed, Mohammadi-Ivatloo (bib0006) 2023; 211 Zhang, Ma, Yang (bib0008) 2022; 10 Ribero, Henderson, Williamson (bib0004) 2022; 129 Wang, Wu, Liu (bib0002) 2022; 8 Zhang, Xu, Wei (bib0020) 2023; 139 Liu, Liu, Srivastava (bib0022) 2021; 7 Liu, Li, Xiao (bib0023) 2023; 624 Girija, Baker, Ahmed (bib0012) 2023; 22 Cassará, Gotta, Valerio (bib0015) 2022; 71 Rizk, Vlaski, Sayed (bib0017) 2022; 70 Beattie, Esmonde-White (bib0021) 2021; 75 Hu, Shaloudegi, Zhang (bib0009) 2022; 9 Zhang, Mavromatics, Vafeas (bib0014) 2023; 10 Pham, Huynh-The, Sedgh-Gooya (bib0007) 2023 Shen, Feng, Song (bib0018) 2023; 23 Kassem, Alapatt, Mascagni (bib0019) 2022; 42 He, Yin, Wang (bib0016) 2021; 8 Liu, Fan, Chen (bib0026) 2021; 22 Briguglio, Moghaddam, Yousef (bib0001) 2021; 151 Liu, Huang, Zhou (bib0003) 2022; 64 Ilboudo, Kobayashi, Sugimoto (bib0025) 2020; 33 Jing, Huang, Zhuang (bib0010) 2023; 163 Qi, Zhang, Zhou (bib0013) 2023; 7 An, Wang, Zhang (bib0024) 2022; 59 Wang, He, Guo (bib0005) 2023; 24 Ilboudo (10.1016/j.patcog.2023.110193_bib0025) 2020; 33 Rizk (10.1016/j.patcog.2023.110193_bib0017) 2022; 70 Liu (10.1016/j.patcog.2023.110193_bib0026) 2021; 22 Zhang (10.1016/j.patcog.2023.110193_bib0020) 2023; 139 Liu (10.1016/j.patcog.2023.110193_bib0003) 2022; 64 Kassem (10.1016/j.patcog.2023.110193_bib0019) 2022; 42 An (10.1016/j.patcog.2023.110193_bib0024) 2022; 59 Casado (10.1016/j.patcog.2023.110193_bib0011) 2023; 112 Wang (10.1016/j.patcog.2023.110193_bib0005) 2023; 24 Shen (10.1016/j.patcog.2023.110193_bib0018) 2023; 23 Liu (10.1016/j.patcog.2023.110193_bib0023) 2023; 624 Pham (10.1016/j.patcog.2023.110193_bib0007) 2023 Wang (10.1016/j.patcog.2023.110193_bib0002) 2022; 8 Zhang (10.1016/j.patcog.2023.110193_bib0008) 2022; 10 Beattie (10.1016/j.patcog.2023.110193_bib0021) 2021; 75 Girija (10.1016/j.patcog.2023.110193_bib0012) 2023; 22 Cassará (10.1016/j.patcog.2023.110193_bib0015) 2022; 71 Zhang (10.1016/j.patcog.2023.110193_bib0014) 2023; 10 Hu (10.1016/j.patcog.2023.110193_bib0009) 2022; 9 Ribero (10.1016/j.patcog.2023.110193_bib0004) 2022; 129 He (10.1016/j.patcog.2023.110193_bib0016) 2021; 8 Qi (10.1016/j.patcog.2023.110193_bib0013) 2023; 7 Jing (10.1016/j.patcog.2023.110193_bib0010) 2023; 163 Briguglio (10.1016/j.patcog.2023.110193_bib0001) 2021; 151 Liu (10.1016/j.patcog.2023.110193_bib0022) 2021; 7 Moradzadeh (10.1016/j.patcog.2023.110193_bib0006) 2023; 211 |
| References_xml | – volume: 129 year: 2022 ident: bib0004 article-title: Federating recommendations using differentially private prototypes publication-title: Pattern Recognit. – volume: 22 start-page: 10320 year: 2021 end-page: 10325 ident: bib0026 article-title: Fate: an industrial grade platform for collaborative learning with data protection publication-title: J. Mach. Learn Res. – volume: 59 year: 2022 ident: bib0024 article-title: Ensemble unsupervised autoencoders and Gaussian Mixture Model for cyberattack detection publication-title: Inf. Process. Manag. – volume: 7 start-page: 393 year: 2023 end-page: 400 ident: bib0013 article-title: A resource-efficient cross-domain sensing method for device-free gesture recognition with federated transfer learning publication-title: IEEE Trans. Green Commun. Netw. – volume: 163 start-page: 354 year: 2023 end-page: 366 ident: bib0010 article-title: Exploring personalization via federated representation Learning on non-IID data publication-title: Neural Netw. – volume: 64 start-page: 885 year: 2022 end-page: 917 ident: bib0003 article-title: From distributed machine learning to federated learning: a survey publication-title: Knowl. Inf. Syst. – volume: 112 start-page: 3413 year: 2023 end-page: 3453 ident: bib0011 article-title: Ensemble and continual federated learning for classification tasks publication-title: Mach. Learn. – volume: 151 start-page: 148 year: 2021 end-page: 154 ident: bib0001 article-title: Machine learning in precision medicine to preserve privacy via encryption publication-title: Pattern Recognit. Lett. – volume: 70 start-page: 5381 year: 2022 end-page: 5396 ident: bib0017 article-title: Federated learning under importance sampling publication-title: IEEE Trans. Signal Process. – year: 2023 ident: bib0007 article-title: Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption publication-title: Comput. Methods Programs Biomed. – volume: 8 start-page: 1898 year: 2021 end-page: 1909 ident: bib0016 article-title: Edge device identification based on federated learning and network traffic feature engineering publication-title: IEEE Trans. Cogn. Commun. Netw. – volume: 211 start-page: 697 year: 2023 end-page: 705 ident: bib0006 article-title: A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization publication-title: Renew. Energy – volume: 10 start-page: 10095 year: 2023 end-page: 10112 ident: bib0014 article-title: Federated feature selection for horizontal federated learning in IoT networks publication-title: IEEE Internet Things J. – volume: 23 start-page: 1083 year: 2023 ident: bib0018 article-title: Federated meta-learning with attention for diversity-aware human activity recognition publication-title: Sensors – volume: 42 start-page: 1920 year: 2022 end-page: 1931 ident: bib0019 article-title: Federated cycling (FedCy): semi-supervised federated learning of surgical phases publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 2039 year: 2022 end-page: 2051 ident: bib0009 article-title: Federated learning meets multi-objective optimization publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 75 start-page: 361 year: 2021 end-page: 375 ident: bib0021 article-title: Exploration of principal component analysis: deriving principal component analysis visually using spectra publication-title: Appl. Spectrosc. – volume: 24 start-page: bbad269 year: 2023 ident: bib0005 article-title: AFEI: adaptive optimized vertical federated learning for heterogeneous multi-omics data integration publication-title: Brief. Bioinform. – volume: 22 year: 2023 ident: bib0012 article-title: Attribute recognition for person re-identification using federated learning at all-in-edge publication-title: Internet Things – volume: 7 start-page: 1895 year: 2021 end-page: 1917 ident: bib0022 article-title: Overview and methods of correlation filter algorithms in object tracking publication-title: Complex Intell. Syst. – volume: 139 year: 2023 ident: bib0020 article-title: Doubly contrastive representation learning for federated image recognition publication-title: Pattern Recognit. – volume: 33 start-page: 1324 year: 2020 end-page: 1337 ident: bib0025 article-title: Robust stochastic gradient descent with student-t distribution based first-order momentum publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 71 start-page: 9937 year: 2022 end-page: 9950 ident: bib0015 article-title: Federated feature selection for cyber-physical systems of systems publication-title: IEEETrans. Veh. Technol. – volume: 10 start-page: 5733 year: 2022 end-page: 5746 ident: bib0008 article-title: Robust semisupervised federated learning for images automatic recognition in internet of drones publication-title: IEEE Internet Things J. – volume: 8 start-page: 446 year: 2022 end-page: 454 ident: bib0002 article-title: Safeguarding cross-silo federated learning with local differential privacy publication-title: Digit. Commun. Netw. – volume: 624 start-page: 165 year: 2023 end-page: 184 ident: bib0023 article-title: Multi-view multi-label learning with high-order label correlation publication-title: Inf. Sci. Int. J. – volume: 163 start-page: 354 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0010 article-title: Exploring personalization via federated representation Learning on non-IID data publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.04.007 – volume: 70 start-page: 5381 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0017 article-title: Federated learning under importance sampling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2022.3210365 – volume: 42 start-page: 1920 issue: 7 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0019 article-title: Federated cycling (FedCy): semi-supervised federated learning of surgical phases publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3222126 – volume: 22 start-page: 10320 issue: 1 year: 2021 ident: 10.1016/j.patcog.2023.110193_bib0026 article-title: Fate: an industrial grade platform for collaborative learning with data protection publication-title: J. Mach. Learn Res. – volume: 129 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0004 article-title: Federating recommendations using differentially private prototypes publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108746 – volume: 151 start-page: 148 year: 2021 ident: 10.1016/j.patcog.2023.110193_bib0001 article-title: Machine learning in precision medicine to preserve privacy via encryption publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.07.004 – volume: 211 start-page: 697 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0006 article-title: A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization publication-title: Renew. Energy doi: 10.1016/j.renene.2023.04.055 – volume: 139 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0020 article-title: Doubly contrastive representation learning for federated image recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109507 – volume: 624 start-page: 165 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0023 article-title: Multi-view multi-label learning with high-order label correlation publication-title: Inf. Sci. Int. J. doi: 10.1016/j.ins.2022.12.072 – volume: 9 start-page: 2039 issue: 4 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0009 article-title: Federated learning meets multi-objective optimization publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3169117 – volume: 24 start-page: bbad269 issue: 5 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0005 article-title: AFEI: adaptive optimized vertical federated learning for heterogeneous multi-omics data integration publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad269 – volume: 7 start-page: 1895 year: 2021 ident: 10.1016/j.patcog.2023.110193_bib0022 article-title: Overview and methods of correlation filter algorithms in object tracking publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00161-4 – volume: 8 start-page: 1898 issue: 4 year: 2021 ident: 10.1016/j.patcog.2023.110193_bib0016 article-title: Edge device identification based on federated learning and network traffic feature engineering publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2021.3101239 – volume: 23 start-page: 1083 issue: 3 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0018 article-title: Federated meta-learning with attention for diversity-aware human activity recognition publication-title: Sensors doi: 10.3390/s23031083 – volume: 59 issue: 2 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0024 article-title: Ensemble unsupervised autoencoders and Gaussian Mixture Model for cyberattack detection publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102844 – volume: 112 start-page: 3413 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0011 article-title: Ensemble and continual federated learning for classification tasks publication-title: Mach. Learn. doi: 10.1007/s10994-023-06330-z – volume: 22 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0012 article-title: Attribute recognition for person re-identification using federated learning at all-in-edge publication-title: Internet Things doi: 10.1016/j.iot.2023.100793 – volume: 8 start-page: 446 issue: 4 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0002 article-title: Safeguarding cross-silo federated learning with local differential privacy publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2021.11.006 – volume: 75 start-page: 361 issue: 4 year: 2021 ident: 10.1016/j.patcog.2023.110193_bib0021 article-title: Exploration of principal component analysis: deriving principal component analysis visually using spectra publication-title: Appl. Spectrosc. doi: 10.1177/0003702820987847 – volume: 7 start-page: 393 issue: 1 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0013 article-title: A resource-efficient cross-domain sensing method for device-free gesture recognition with federated transfer learning publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2022.3233825 – volume: 64 start-page: 885 issue: 4 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0003 article-title: From distributed machine learning to federated learning: a survey publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-022-01664-x – volume: 71 start-page: 9937 issue: 9 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0015 article-title: Federated feature selection for cyber-physical systems of systems publication-title: IEEETrans. Veh. Technol. doi: 10.1109/TVT.2022.3178612 – year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0007 article-title: Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption publication-title: Comput. Methods Programs Biomed. – volume: 33 start-page: 1324 issue: 3 year: 2020 ident: 10.1016/j.patcog.2023.110193_bib0025 article-title: Robust stochastic gradient descent with student-t distribution based first-order momentum publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3041755 – volume: 10 start-page: 10095 issue: 11 year: 2023 ident: 10.1016/j.patcog.2023.110193_bib0014 article-title: Federated feature selection for horizontal federated learning in IoT networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3237032 – volume: 10 start-page: 5733 issue: 7 year: 2022 ident: 10.1016/j.patcog.2023.110193_bib0008 article-title: Robust semisupervised federated learning for images automatic recognition in internet of drones publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3151945 |
| SSID | ssj0017142 |
| Score | 2.4811482 |
| Snippet | •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110193 |
| SubjectTerms | Encrypted aligned data, Privacy protection Federated learning Gaussian Mixture Model Variational AutoEncoder |
| Title | Deep federated learning hybrid optimization model based on encrypted aligned data |
| URI | https://dx.doi.org/10.1016/j.patcog.2023.110193 |
| Volume | 148 |
| WOSCitedRecordID | wos001136403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017142 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NBLW_pQaUvlQ2-rrJzEWdtH1IJoVSGQaLXiEk0cZ3cRJNGyVPDvO46dB1BROPQSJdnYyWa-jD-P50HI5yhLlMqUCEBO8oDrBD-pgulAZhPrnsulaYw5v36IgwM5nap2RfeiKScgylJeXan6v4oaz6GwbejsI8TddYoncB-FjlsUO24fJPivxtSjwuaIAMsmz1rbx_zaBmeNKtQR5z740tXBGdmRLLerBvg3lte1bYXsfIYKeORD1zr-etik47QhMN7vqF_FP5lDY3Y9mVflrBy4-iy8SXq6gMoaVWY9lPwv-7DoDfte-VyWQ4NENPRj8Uo2DoM4YvENJevyaXo1iZwjdIUR72hwZ0w4Hdc4ElWzsa3uPu4vv5kw-9ZA1rkXtp5rp6nrJbW9pK6XJ2QjEolCHb6x8213-r1bchIhd6nl_dO3cZaNM-Ddp_k7jxlwk-OX5LmfVNAdB4ZNsmbKV-RFW7CDev39mhxZbNAOG7TFBnXYoENs0AYbtMEGxcMOG9Rjg1psvCE_93aPv-wHvqZGoHFyuArw80sAwCSQA1M5lzwLhQSIo4IXOpagRcQzDWEeSQl2-sy0NMhBJxxUJkz8lqyXVWneEYrsSjMAZQrJeBGxjBnJJMchUGtdFGqLxO0bSrVPOG_rnpyl98lniwRdq9olXPnH9aJ9-aknjY4Mpoioe1u-f-SdPpBnPdw_kvXV8tJsk6f692pxsfzk4fQHya-R6Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+federated+learning+hybrid+optimization+model+based+on+encrypted+aligned+data&rft.jtitle=Pattern+recognition&rft.au=Zhao%2C+Zhongnan&rft.au=Liang%2C+Xiaoliang&rft.au=Huang%2C+Hai&rft.au=Wang%2C+Kun&rft.date=2024-04-01&rft.issn=0031-3203&rft.volume=148&rft.spage=110193&rft_id=info:doi/10.1016%2Fj.patcog.2023.110193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_110193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |