Deep federated learning hybrid optimization model based on encrypted aligned data

•Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 148; p. 110193
Main Authors: Zhao, Zhongnan, Liang, Xiaoliang, Huang, Hai, Wang, Kun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2024
Subjects:
ISSN:0031-3203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation auto-encoder Gaussian hybrid clustering and federated learning. Federated learning can achieve multi-party data-collaborative applications while safeguarding personal privacy. However, the process often leads to a decline in the quality of sample data due to a substantial amount of missing encrypted aligned data, and there is a lack of research on how to improve the model learning effect by increasing the number of samples of encrypted aligned data in federated learning. Therefore, this paper integrates the functional characteristics of deep learning models and proposes a Variational AutoEncoder Gaussian Mixture Model Clustering Vertical Federated Learning Model (VAEGMMC-VFL), which leverages the feature extraction capability of the autoencoder and the clustering and pattern discovery capabilities of Gaussian mixture clustering on diverse datasets to further explore a large number of potentially usable samples. Firstly, the Variational AutoEncoder is used to achieve dimensionality reduction and sample feature reconstruction of high-dimensional data samples. Subsequently, Gaussian mixture clustering is further employed to partition the dataset into multiple potential Gaussian-distributed clusters and filter the sample data using thresholding. Additionally, the paper introduces a labeled sample attribute value finding algorithm to fill in attribute values for encrypted unaligned samples that meet the requirements, allowing for the full recovery of encrypted unaligned data. In the experimental section, the paper selects four sets of datasets from different industries and compares the proposed method with three federated learning clustering methods in terms of clustering loss, reconstruction loss, and other metrics. Tests on precision, accuracy, recall, ROC curve, and F1-score indicate that the proposed method outperforms similar approaches.
AbstractList •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter samples.•Use the encrypted sample attribute searching algorithm to fill in the missing value of the sample.•Design the combination model of variation auto-encoder Gaussian hybrid clustering and federated learning. Federated learning can achieve multi-party data-collaborative applications while safeguarding personal privacy. However, the process often leads to a decline in the quality of sample data due to a substantial amount of missing encrypted aligned data, and there is a lack of research on how to improve the model learning effect by increasing the number of samples of encrypted aligned data in federated learning. Therefore, this paper integrates the functional characteristics of deep learning models and proposes a Variational AutoEncoder Gaussian Mixture Model Clustering Vertical Federated Learning Model (VAEGMMC-VFL), which leverages the feature extraction capability of the autoencoder and the clustering and pattern discovery capabilities of Gaussian mixture clustering on diverse datasets to further explore a large number of potentially usable samples. Firstly, the Variational AutoEncoder is used to achieve dimensionality reduction and sample feature reconstruction of high-dimensional data samples. Subsequently, Gaussian mixture clustering is further employed to partition the dataset into multiple potential Gaussian-distributed clusters and filter the sample data using thresholding. Additionally, the paper introduces a labeled sample attribute value finding algorithm to fill in attribute values for encrypted unaligned samples that meet the requirements, allowing for the full recovery of encrypted unaligned data. In the experimental section, the paper selects four sets of datasets from different industries and compares the proposed method with three federated learning clustering methods in terms of clustering loss, reconstruction loss, and other metrics. Tests on precision, accuracy, recall, ROC curve, and F1-score indicate that the proposed method outperforms similar approaches.
ArticleNumber 110193
Author Liang, Xiaoliang
Huang, Hai
Zhao, Zhongnan
Wang, Kun
Author_xml – sequence: 1
  givenname: Zhongnan
  orcidid: 0000-0001-6192-9452
  surname: Zhao
  fullname: Zhao, Zhongnan
  email: zhaozhongnan@hrbust.edu.cn
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
– sequence: 2
  givenname: Xiaoliang
  surname: Liang
  fullname: Liang, Xiaoliang
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
– sequence: 3
  givenname: Hai
  surname: Huang
  fullname: Huang, Hai
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
– sequence: 4
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
BookMark eNqFkE1Lw0AQhvdQwbb6DzzkDyTuV5qNB0HqJxRE0PMy2Z3ULWk2bBah_nq3xpMHPQ0zzPMy8yzIrPc9EnLBaMEoW13uigGi8duCUy4Klma1mJE5pYLlglNxShbjuKOUVUzyOXm5RRyyFi0GiGizDiH0rt9m74cmOJv5Ibq9-4TofJ_tvcUua2BMi6nF3oTDcKSgc9s-VQsRzshJC92I5z91Sd7u717Xj_nm-eFpfbPJjaCrmFuUJQBgCRZobaWSDasUgOCtbI1QYCouGwPMcqWAybqkRiFXYiWhbioUS3I15ZrgxzFgq42L33fGAK7TjOqjEL3TkxB9FKInIQmWv-AhuD2Ew3_Y9YRheuzDYdCjcUkDWhfQRG29-zvgC797gjM
CitedBy_id crossref_primary_10_1016_j_foodchem_2025_143831
crossref_primary_10_1016_j_inffus_2025_103147
crossref_primary_10_1016_j_patcog_2025_111665
crossref_primary_10_1038_s41598_025_87454_1
crossref_primary_10_1007_s10207_025_01000_8
crossref_primary_10_1016_j_patcog_2025_112410
crossref_primary_10_1007_s11760_025_04253_x
crossref_primary_10_3390_su17072827
Cites_doi 10.1016/j.neunet.2023.04.007
10.1109/TSP.2022.3210365
10.1109/TMI.2022.3222126
10.1016/j.patcog.2022.108746
10.1016/j.patrec.2021.07.004
10.1016/j.renene.2023.04.055
10.1016/j.patcog.2023.109507
10.1016/j.ins.2022.12.072
10.1109/TNSE.2022.3169117
10.1093/bib/bbad269
10.1007/s40747-020-00161-4
10.1109/TCCN.2021.3101239
10.3390/s23031083
10.1016/j.ipm.2021.102844
10.1007/s10994-023-06330-z
10.1016/j.iot.2023.100793
10.1016/j.dcan.2021.11.006
10.1177/0003702820987847
10.1109/TGCN.2022.3233825
10.1007/s10115-022-01664-x
10.1109/TVT.2022.3178612
10.1109/TNNLS.2020.3041755
10.1109/JIOT.2023.3237032
10.1109/JIOT.2022.3151945
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.110193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2023_110193
S0031320323008907
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-de45aaae5ada09d484b178aa32f4fc38ac724bca1d288a14950c8e28364a9b7e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 21:59:22 EST 2025
Sat Nov 29 07:27:20 EST 2025
Fri May 16 00:30:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Encrypted aligned data, Privacy protection
Gaussian Mixture Model
Federated learning
Variational AutoEncoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-de45aaae5ada09d484b178aa32f4fc38ac724bca1d288a14950c8e28364a9b7e3
ORCID 0000-0001-6192-9452
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2023_110193
crossref_primary_10_1016_j_patcog_2023_110193
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_110193
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Casado, Lema, Iglesias (bib0011) 2023; 112
Moradzadeh, Moayyed, Mohammadi-Ivatloo (bib0006) 2023; 211
Zhang, Ma, Yang (bib0008) 2022; 10
Ribero, Henderson, Williamson (bib0004) 2022; 129
Wang, Wu, Liu (bib0002) 2022; 8
Zhang, Xu, Wei (bib0020) 2023; 139
Liu, Liu, Srivastava (bib0022) 2021; 7
Liu, Li, Xiao (bib0023) 2023; 624
Girija, Baker, Ahmed (bib0012) 2023; 22
Cassará, Gotta, Valerio (bib0015) 2022; 71
Rizk, Vlaski, Sayed (bib0017) 2022; 70
Beattie, Esmonde-White (bib0021) 2021; 75
Hu, Shaloudegi, Zhang (bib0009) 2022; 9
Zhang, Mavromatics, Vafeas (bib0014) 2023; 10
Pham, Huynh-The, Sedgh-Gooya (bib0007) 2023
Shen, Feng, Song (bib0018) 2023; 23
Kassem, Alapatt, Mascagni (bib0019) 2022; 42
He, Yin, Wang (bib0016) 2021; 8
Liu, Fan, Chen (bib0026) 2021; 22
Briguglio, Moghaddam, Yousef (bib0001) 2021; 151
Liu, Huang, Zhou (bib0003) 2022; 64
Ilboudo, Kobayashi, Sugimoto (bib0025) 2020; 33
Jing, Huang, Zhuang (bib0010) 2023; 163
Qi, Zhang, Zhou (bib0013) 2023; 7
An, Wang, Zhang (bib0024) 2022; 59
Wang, He, Guo (bib0005) 2023; 24
Ilboudo (10.1016/j.patcog.2023.110193_bib0025) 2020; 33
Rizk (10.1016/j.patcog.2023.110193_bib0017) 2022; 70
Liu (10.1016/j.patcog.2023.110193_bib0026) 2021; 22
Zhang (10.1016/j.patcog.2023.110193_bib0020) 2023; 139
Liu (10.1016/j.patcog.2023.110193_bib0003) 2022; 64
Kassem (10.1016/j.patcog.2023.110193_bib0019) 2022; 42
An (10.1016/j.patcog.2023.110193_bib0024) 2022; 59
Casado (10.1016/j.patcog.2023.110193_bib0011) 2023; 112
Wang (10.1016/j.patcog.2023.110193_bib0005) 2023; 24
Shen (10.1016/j.patcog.2023.110193_bib0018) 2023; 23
Liu (10.1016/j.patcog.2023.110193_bib0023) 2023; 624
Pham (10.1016/j.patcog.2023.110193_bib0007) 2023
Wang (10.1016/j.patcog.2023.110193_bib0002) 2022; 8
Zhang (10.1016/j.patcog.2023.110193_bib0008) 2022; 10
Beattie (10.1016/j.patcog.2023.110193_bib0021) 2021; 75
Girija (10.1016/j.patcog.2023.110193_bib0012) 2023; 22
Cassará (10.1016/j.patcog.2023.110193_bib0015) 2022; 71
Zhang (10.1016/j.patcog.2023.110193_bib0014) 2023; 10
Hu (10.1016/j.patcog.2023.110193_bib0009) 2022; 9
Ribero (10.1016/j.patcog.2023.110193_bib0004) 2022; 129
He (10.1016/j.patcog.2023.110193_bib0016) 2021; 8
Qi (10.1016/j.patcog.2023.110193_bib0013) 2023; 7
Jing (10.1016/j.patcog.2023.110193_bib0010) 2023; 163
Briguglio (10.1016/j.patcog.2023.110193_bib0001) 2021; 151
Liu (10.1016/j.patcog.2023.110193_bib0022) 2021; 7
Moradzadeh (10.1016/j.patcog.2023.110193_bib0006) 2023; 211
References_xml – volume: 129
  year: 2022
  ident: bib0004
  article-title: Federating recommendations using differentially private prototypes
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 10320
  year: 2021
  end-page: 10325
  ident: bib0026
  article-title: Fate: an industrial grade platform for collaborative learning with data protection
  publication-title: J. Mach. Learn Res.
– volume: 59
  year: 2022
  ident: bib0024
  article-title: Ensemble unsupervised autoencoders and Gaussian Mixture Model for cyberattack detection
  publication-title: Inf. Process. Manag.
– volume: 7
  start-page: 393
  year: 2023
  end-page: 400
  ident: bib0013
  article-title: A resource-efficient cross-domain sensing method for device-free gesture recognition with federated transfer learning
  publication-title: IEEE Trans. Green Commun. Netw.
– volume: 163
  start-page: 354
  year: 2023
  end-page: 366
  ident: bib0010
  article-title: Exploring personalization via federated representation Learning on non-IID data
  publication-title: Neural Netw.
– volume: 64
  start-page: 885
  year: 2022
  end-page: 917
  ident: bib0003
  article-title: From distributed machine learning to federated learning: a survey
  publication-title: Knowl. Inf. Syst.
– volume: 112
  start-page: 3413
  year: 2023
  end-page: 3453
  ident: bib0011
  article-title: Ensemble and continual federated learning for classification tasks
  publication-title: Mach. Learn.
– volume: 151
  start-page: 148
  year: 2021
  end-page: 154
  ident: bib0001
  article-title: Machine learning in precision medicine to preserve privacy via encryption
  publication-title: Pattern Recognit. Lett.
– volume: 70
  start-page: 5381
  year: 2022
  end-page: 5396
  ident: bib0017
  article-title: Federated learning under importance sampling
  publication-title: IEEE Trans. Signal Process.
– year: 2023
  ident: bib0007
  article-title: Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption
  publication-title: Comput. Methods Programs Biomed.
– volume: 8
  start-page: 1898
  year: 2021
  end-page: 1909
  ident: bib0016
  article-title: Edge device identification based on federated learning and network traffic feature engineering
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 211
  start-page: 697
  year: 2023
  end-page: 705
  ident: bib0006
  article-title: A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization
  publication-title: Renew. Energy
– volume: 10
  start-page: 10095
  year: 2023
  end-page: 10112
  ident: bib0014
  article-title: Federated feature selection for horizontal federated learning in IoT networks
  publication-title: IEEE Internet Things J.
– volume: 23
  start-page: 1083
  year: 2023
  ident: bib0018
  article-title: Federated meta-learning with attention for diversity-aware human activity recognition
  publication-title: Sensors
– volume: 42
  start-page: 1920
  year: 2022
  end-page: 1931
  ident: bib0019
  article-title: Federated cycling (FedCy): semi-supervised federated learning of surgical phases
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 2039
  year: 2022
  end-page: 2051
  ident: bib0009
  article-title: Federated learning meets multi-objective optimization
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 75
  start-page: 361
  year: 2021
  end-page: 375
  ident: bib0021
  article-title: Exploration of principal component analysis: deriving principal component analysis visually using spectra
  publication-title: Appl. Spectrosc.
– volume: 24
  start-page: bbad269
  year: 2023
  ident: bib0005
  article-title: AFEI: adaptive optimized vertical federated learning for heterogeneous multi-omics data integration
  publication-title: Brief. Bioinform.
– volume: 22
  year: 2023
  ident: bib0012
  article-title: Attribute recognition for person re-identification using federated learning at all-in-edge
  publication-title: Internet Things
– volume: 7
  start-page: 1895
  year: 2021
  end-page: 1917
  ident: bib0022
  article-title: Overview and methods of correlation filter algorithms in object tracking
  publication-title: Complex Intell. Syst.
– volume: 139
  year: 2023
  ident: bib0020
  article-title: Doubly contrastive representation learning for federated image recognition
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 1324
  year: 2020
  end-page: 1337
  ident: bib0025
  article-title: Robust stochastic gradient descent with student-t distribution based first-order momentum
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 71
  start-page: 9937
  year: 2022
  end-page: 9950
  ident: bib0015
  article-title: Federated feature selection for cyber-physical systems of systems
  publication-title: IEEETrans. Veh. Technol.
– volume: 10
  start-page: 5733
  year: 2022
  end-page: 5746
  ident: bib0008
  article-title: Robust semisupervised federated learning for images automatic recognition in internet of drones
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 446
  year: 2022
  end-page: 454
  ident: bib0002
  article-title: Safeguarding cross-silo federated learning with local differential privacy
  publication-title: Digit. Commun. Netw.
– volume: 624
  start-page: 165
  year: 2023
  end-page: 184
  ident: bib0023
  article-title: Multi-view multi-label learning with high-order label correlation
  publication-title: Inf. Sci. Int. J.
– volume: 163
  start-page: 354
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0010
  article-title: Exploring personalization via federated representation Learning on non-IID data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.04.007
– volume: 70
  start-page: 5381
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0017
  article-title: Federated learning under importance sampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2022.3210365
– volume: 42
  start-page: 1920
  issue: 7
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0019
  article-title: Federated cycling (FedCy): semi-supervised federated learning of surgical phases
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3222126
– volume: 22
  start-page: 10320
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2023.110193_bib0026
  article-title: Fate: an industrial grade platform for collaborative learning with data protection
  publication-title: J. Mach. Learn Res.
– volume: 129
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0004
  article-title: Federating recommendations using differentially private prototypes
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108746
– volume: 151
  start-page: 148
  year: 2021
  ident: 10.1016/j.patcog.2023.110193_bib0001
  article-title: Machine learning in precision medicine to preserve privacy via encryption
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.07.004
– volume: 211
  start-page: 697
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0006
  article-title: A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.04.055
– volume: 139
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0020
  article-title: Doubly contrastive representation learning for federated image recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109507
– volume: 624
  start-page: 165
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0023
  article-title: Multi-view multi-label learning with high-order label correlation
  publication-title: Inf. Sci. Int. J.
  doi: 10.1016/j.ins.2022.12.072
– volume: 9
  start-page: 2039
  issue: 4
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0009
  article-title: Federated learning meets multi-objective optimization
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3169117
– volume: 24
  start-page: bbad269
  issue: 5
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0005
  article-title: AFEI: adaptive optimized vertical federated learning for heterogeneous multi-omics data integration
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad269
– volume: 7
  start-page: 1895
  year: 2021
  ident: 10.1016/j.patcog.2023.110193_bib0022
  article-title: Overview and methods of correlation filter algorithms in object tracking
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00161-4
– volume: 8
  start-page: 1898
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2023.110193_bib0016
  article-title: Edge device identification based on federated learning and network traffic feature engineering
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2021.3101239
– volume: 23
  start-page: 1083
  issue: 3
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0018
  article-title: Federated meta-learning with attention for diversity-aware human activity recognition
  publication-title: Sensors
  doi: 10.3390/s23031083
– volume: 59
  issue: 2
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0024
  article-title: Ensemble unsupervised autoencoders and Gaussian Mixture Model for cyberattack detection
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102844
– volume: 112
  start-page: 3413
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0011
  article-title: Ensemble and continual federated learning for classification tasks
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-023-06330-z
– volume: 22
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0012
  article-title: Attribute recognition for person re-identification using federated learning at all-in-edge
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100793
– volume: 8
  start-page: 446
  issue: 4
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0002
  article-title: Safeguarding cross-silo federated learning with local differential privacy
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2021.11.006
– volume: 75
  start-page: 361
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2023.110193_bib0021
  article-title: Exploration of principal component analysis: deriving principal component analysis visually using spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702820987847
– volume: 7
  start-page: 393
  issue: 1
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0013
  article-title: A resource-efficient cross-domain sensing method for device-free gesture recognition with federated transfer learning
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2022.3233825
– volume: 64
  start-page: 885
  issue: 4
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0003
  article-title: From distributed machine learning to federated learning: a survey
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01664-x
– volume: 71
  start-page: 9937
  issue: 9
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0015
  article-title: Federated feature selection for cyber-physical systems of systems
  publication-title: IEEETrans. Veh. Technol.
  doi: 10.1109/TVT.2022.3178612
– year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0007
  article-title: Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption
  publication-title: Comput. Methods Programs Biomed.
– volume: 33
  start-page: 1324
  issue: 3
  year: 2020
  ident: 10.1016/j.patcog.2023.110193_bib0025
  article-title: Robust stochastic gradient descent with student-t distribution based first-order momentum
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3041755
– volume: 10
  start-page: 10095
  issue: 11
  year: 2023
  ident: 10.1016/j.patcog.2023.110193_bib0014
  article-title: Federated feature selection for horizontal federated learning in IoT networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3237032
– volume: 10
  start-page: 5733
  issue: 7
  year: 2022
  ident: 10.1016/j.patcog.2023.110193_bib0008
  article-title: Robust semisupervised federated learning for images automatic recognition in internet of drones
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3151945
SSID ssj0017142
Score 2.4811482
Snippet •Improving the quality of Federal Learning encrypted alignment data.•Use Gaussian mixture clustering to cluster samples and set a threshold to filter...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110193
SubjectTerms Encrypted aligned data, Privacy protection
Federated learning
Gaussian Mixture Model
Variational AutoEncoder
Title Deep federated learning hybrid optimization model based on encrypted aligned data
URI https://dx.doi.org/10.1016/j.patcog.2023.110193
Volume 148
WOSCitedRecordID wos001136403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NBLW_pQaUvlQ2-rrJzEWdtH1IJoVSGQaLXiEk0cZ3cRJNGyVPDvO46dB1BROPQSJdnYyWa-jD-P50HI5yhLlMqUCEBO8oDrBD-pgulAZhPrnsulaYw5v36IgwM5nap2RfeiKScgylJeXan6v4oaz6GwbejsI8TddYoncB-FjlsUO24fJPivxtSjwuaIAMsmz1rbx_zaBmeNKtQR5z740tXBGdmRLLerBvg3lte1bYXsfIYKeORD1zr-etik47QhMN7vqF_FP5lDY3Y9mVflrBy4-iy8SXq6gMoaVWY9lPwv-7DoDfte-VyWQ4NENPRj8Uo2DoM4YvENJevyaXo1iZwjdIUR72hwZ0w4Hdc4ElWzsa3uPu4vv5kw-9ZA1rkXtp5rp6nrJbW9pK6XJ2QjEolCHb6x8213-r1bchIhd6nl_dO3cZaNM-Ddp_k7jxlwk-OX5LmfVNAdB4ZNsmbKV-RFW7CDev39mhxZbNAOG7TFBnXYoENs0AYbtMEGxcMOG9Rjg1psvCE_93aPv-wHvqZGoHFyuArw80sAwCSQA1M5lzwLhQSIo4IXOpagRcQzDWEeSQl2-sy0NMhBJxxUJkz8lqyXVWneEYrsSjMAZQrJeBGxjBnJJMchUGtdFGqLxO0bSrVPOG_rnpyl98lniwRdq9olXPnH9aJ9-aknjY4Mpoioe1u-f-SdPpBnPdw_kvXV8tJsk6f692pxsfzk4fQHya-R6Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+federated+learning+hybrid+optimization+model+based+on+encrypted+aligned+data&rft.jtitle=Pattern+recognition&rft.au=Zhao%2C+Zhongnan&rft.au=Liang%2C+Xiaoliang&rft.au=Huang%2C+Hai&rft.au=Wang%2C+Kun&rft.date=2024-04-01&rft.issn=0031-3203&rft.volume=148&rft.spage=110193&rft_id=info:doi/10.1016%2Fj.patcog.2023.110193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_110193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon