A two-dimensional fast lattice recursive least squares algorithm

This paper is mainly devoted to the derivation of a new two-dimensional fast lattice recursive least squares (2D FLRLS) algorithm. This algorithm updates the filter coefficients in growing-order form with linear computational complexity. After appropriately defining the "order" of 2D data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 44; číslo 10; s. 2557 - 2567
Hlavní autoři: Xiang Liu, Najim, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.10.1996
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1053-587X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is mainly devoted to the derivation of a new two-dimensional fast lattice recursive least squares (2D FLRLS) algorithm. This algorithm updates the filter coefficients in growing-order form with linear computational complexity. After appropriately defining the "order" of 2D data and exploiting the relation with 1D multichannel, "order" recursion relations and shift invariance property are derived. The geometrical approaches of the vector space and the orthogonal projection then can be used for solving this 2D prediction problem. We examine the performances of this new algorithm in comparison with other fast algorithms.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
DOI:10.1109/78.539039