AEGCN: An Autoencoder-Constrained Graph Convolutional Network

We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a convolutional network operating directly on graphs, whose hidden layers are constraine...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 432; pp. 21 - 31
Main Authors: Ma, Mingyuan, Na, Sen, Wang, Hongyu
Format: Journal Article
Language:English
Published: Elsevier B.V 07.04.2021
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a convolutional network operating directly on graphs, whose hidden layers are constrained by an autoencoder. Comparing with vanilla graph convolutional networks, the autoencoder step is added to reduce the information loss brought by Laplacian smoothing. We consider applying our model on both homogeneous graphs and heterogeneous graphs. For homogeneous graphs, the autoencoder approximates to the adjacency matrix of the input graph by taking hidden layer representations as encoder and another one-layer graph convolutional network as decoder. For heterogeneous graphs, since there are multiple adjacency matrices corresponding to different types of edges, the autoencoder approximates to the feature matrix of the input graph instead, and changes the encoder to a particularly designed multi-channel pre-processing network with two layers. In both cases, the error occurred in the autoencoder approximation goes to the penalty term in the loss function. In extensive experiments on citation networks and other heterogeneous graphs, we demonstrate that adding autoencoder constraints significantly improves the performance of graph convolutional networks. Further, we notice that our technique can be applied on graph attention network to improve the performance as well. This reveals the wide applicability of the proposed autoencoder technique.
AbstractList We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains. As suggested by its name, the core of this model is a convolutional network operating directly on graphs, whose hidden layers are constrained by an autoencoder. Comparing with vanilla graph convolutional networks, the autoencoder step is added to reduce the information loss brought by Laplacian smoothing. We consider applying our model on both homogeneous graphs and heterogeneous graphs. For homogeneous graphs, the autoencoder approximates to the adjacency matrix of the input graph by taking hidden layer representations as encoder and another one-layer graph convolutional network as decoder. For heterogeneous graphs, since there are multiple adjacency matrices corresponding to different types of edges, the autoencoder approximates to the feature matrix of the input graph instead, and changes the encoder to a particularly designed multi-channel pre-processing network with two layers. In both cases, the error occurred in the autoencoder approximation goes to the penalty term in the loss function. In extensive experiments on citation networks and other heterogeneous graphs, we demonstrate that adding autoencoder constraints significantly improves the performance of graph convolutional networks. Further, we notice that our technique can be applied on graph attention network to improve the performance as well. This reveals the wide applicability of the proposed autoencoder technique.
Author Wang, Hongyu
Na, Sen
Ma, Mingyuan
Author_xml – sequence: 1
  givenname: Mingyuan
  surname: Ma
  fullname: Ma, Mingyuan
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
– sequence: 2
  givenname: Sen
  surname: Na
  fullname: Na, Sen
  organization: Department of Statistics, University of Chicago, Chicago, IL, USA
– sequence: 3
  givenname: Hongyu
  surname: Wang
  fullname: Wang, Hongyu
  email: why5126@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Peking University, Beijing, China
BookMark eNqFkNFKwzAUhoNMcJu-gRd9gdactE2bgUIpcwpj3uh1yNJTzOySkXYT396UeeWFXh344fvPOd-MTKyzSMgt0AQo8LtdYvGo3T5hlIWIJZTDBZlCWbC4ZCWfkCkVLI9ZCuyKzPp-RykUwMSU3FfLVb1ZRJWNquPg0GrXoI9rZ_vBK2OxiVZeHd6jkJxcdxyMs6qLNjh8Ov9xTS5b1fV48zPn5O1x-Vo_xeuX1XNdrWOdUj7EzTbLw2pR8BZy0LngrRJloVTT6AwzuhXABS84UqGyIuXYYoqClagZQKl4OieLc6_2ru89tlKbQY23jEd2EqgcRcidPIuQowgJTAYRAc5-wQdv9sp__Yc9nDEMj50MetlrE_xgYzzqQTbO_F3wDaPCe3I
CitedBy_id crossref_primary_10_1007_s10489_021_02497_x
crossref_primary_10_3390_machines10100873
crossref_primary_10_1371_journal_pone_0267565
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_1016_j_neucom_2023_03_008
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_7717_peerj_cs_2648
crossref_primary_10_1007_s00607_023_01158_w
crossref_primary_10_1016_j_neucom_2025_129612
crossref_primary_10_1109_TCDS_2024_3390005
crossref_primary_10_1016_j_neucom_2022_06_107
crossref_primary_10_1109_ACCESS_2025_3581065
crossref_primary_10_3390_e25020297
crossref_primary_10_3390_electronics12020398
crossref_primary_10_1016_j_compeleceng_2025_110142
crossref_primary_10_3390_make6030104
crossref_primary_10_1109_TCBB_2024_3469164
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1109_ACCESS_2023_3278271
crossref_primary_10_1038_s41467_024_52900_7
crossref_primary_10_1016_j_ress_2022_108589
crossref_primary_10_1016_j_engappai_2023_106044
crossref_primary_10_1016_j_ins_2024_121784
crossref_primary_10_1016_j_ins_2025_122434
crossref_primary_10_1109_ACCESS_2024_3472474
crossref_primary_10_1016_j_eswa_2025_129025
Cites_doi 10.1021/ci00047a033
10.1109/TSP.2016.2602809
10.1002/prot.1081
10.1109/78.650093
10.1093/genetics/154.2.923
10.1073/pnas.0601602103
10.1109/TPAMI.2010.231
10.1016/j.physrep.2009.11.002
10.1109/TKDE.2018.2807452
10.24963/ijcai.2018/362
10.1093/bioinformatics/btn079
10.1609/aaai.v32i1.11604
10.1109/TITS.2019.2910560
10.1016/0022-2836(90)90312-A
10.1609/aaai.v28i1.8916
10.1609/aaai.v32i1.11691
10.1609/aaai.v34i01.5414
10.1609/aimag.v29i3.2157
10.1007/978-1-4614-1800-9_178
10.1111/j.1752-4571.2008.00047.x
10.14778/3402707.3402736
10.1021/cr00070a005
10.1145/2500492
10.1145/3397271.3401063
10.1145/2736277.2741093
10.1007/s10618-010-0210-x
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.12.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 31
ExternalDocumentID 10_1016_j_neucom_2020_12_061
S0925231220319615
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-db45312976f151c596fa987aaddc4e40b9169676e09a4736efe3e928ec2118a63
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620905000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:33 EST 2025
Tue Nov 18 22:00:30 EST 2025
Fri Feb 23 02:48:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph autoencoder
Graph node classification
Graph convolutional networks
Homogeneous and heterogeneous graphs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-db45312976f151c596fa987aaddc4e40b9169676e09a4736efe3e928ec2118a63
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_12_061
crossref_primary_10_1016_j_neucom_2020_12_061
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_061
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Han, Yan, Yu, Wu, Pathsim (b0335) 2011; 4
Jacobs, Rader, Kuhn, Thorpe (b0010) 2001; 44
Gao, Denoyer, Gallinari (b0060) 2011
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907, 2016.
Dong, Chawla, Swami, metapath2vec (b0115) 2017
R. v. d. Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion, arXiv preprint arXiv:1706.02263, 2017.
Schuster, Paliwal (b0185) 1997; 45
Fu, Lee, Lei, Hin2vec (b0120) 2017
Hamilton, Ying, Leskovec (b0305) 2017
van der Maaten, Hinton (b0085) 2008; 9
Qiu, Dong, Ma, Li, Wang, Tang (b0170) 2018
Higham, Rašajski, Pržulj (b0015) 2008; 24
J. Ugander, B. Karrer, L. Backstrom, C. Marlow, The anatomy of the facebook social graph, arXiv preprint arXiv:1111.4503, 2011.
Tang, Qu, Mei (b0110) 2015
T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781, 2013.
Seo, Defferrard, Vandergheynst, Bresson (b0215) 2018
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
A. Hasanzadeh, E. Hajiramezanali, K. Narayanan, N. Duffield, M. Zhou, X. Qian, Semi-implicit graph variational auto-encoders, in: Advances in Neural Information Processing Systems, 2019, pp. 10712–10723.
Kampffmeyer, Chen, Liang, Wang, Zhang, Xing (b0310) 2019
F. Tian, B. Gao, Q. Cui, E. Chen, T.-Y. Liu, Learning deep representations for graph clustering, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.
Grover, Leskovec (b0100) 2016
Newman (b0145) 2006; 103
J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional networks via importance sampling, arXiv preprint arXiv:1801.10247, 2018.
Mitchell, Artymiuk, Rice, Willett (b0005) 1990; 212
Weston, Ratle, Mobahi, Collobert (b0385) 2012
Garroway, Bowman, Carr, Wilson (b0035) 2008; 1
Sen, Namata, Bilgic, Getoor, Galligher, Eliassi-Rad (b0345) 2008; 29
Wang, Ji, Shi, Wang, Ye, Cui, Yu (b0400) 2019
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, arXiv preprint arXiv:1710.10903, 2017.
R. Li, S. Wang, F. Zhu, J. Huang, Adaptive graph convolutional neural networks, in: Thirty-second AAAI Conference on Artificial Intelligence, 2018.
J. You, R. Ying, X. Ren, W.L. Hamilton, J. Leskovec, Graphrnn: Generating realistic graphs with deep auto-regressive models, arXiv preprint arXiv:1802.08773, 2018.
B. Huang, K.M. Carley, Residual or gate? towards deeper graph neural networks for inductive graph representation learning, arXiv preprint arXiv:1904.08035, 2019.
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016.
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
Zhu, Zhang, Cui, Zhu (b0390) 2019
Ying, He, Chen, Eksombatchai, Hamilton, Leskovec (b0235) 2018
Tang, Aggarwal, Liu (b0070) 2016
Cai, He, Han, Huang (b0150) 2011; 33
K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, S. Jegelka, Representation learning on graphs with jumping knowledge networks, arXiv preprint arXiv:1806.03536, 2018.
Yu, Gu (b0355) 2019; 20
Al Hasan, Zaki (b0055) 2011
Bhagat, Cormode, Muthukrishnan (b0065) 2011
Cai, Zheng, Chang (b0130) 2018; 30
Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
Nordborg (b0030) 2000; 154
Sun, Norick, Han, Yan, Yu, Yu (b0340) 2013; 7
Park, Lee, Chang, Lee, Choi (b0295) 2019
Tang, Liu (b0135) 2009
Yang, Sun, Liu, Tu (b0160) 2017
Taubin (b0350) 1995
Ou, Cui, Pei, Zhang, Zhu (b0165) 2016
Gao, Wang, Ji (b0230) 2018
F. Wu, T. Zhang, A.H. d. Souza Jr, C. Fifty, T. Yu, K.Q. Weinberger, Simplifying graph convolutional networks, arXiv preprint arXiv:1902.07153, 2019.
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, arXiv preprint arXiv:2002.02126, 2020.
Perozzi, Al-Rfou, Skiena (b0090) 2014
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information network embedding, in: Proceedings of the 24th international conference on world wide web, 2015, pp. 1067–1077.
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b0255) 2019
Ding, Tian, Lei, Liao, Wu (b0380) 2020
Yun, Jeong, Kim, Kang, Kim (b0365) 2019
Wang, Wang, Yang, Chang, Tsai (b0125) 2017
Dong, Thanou, Frossard, Vandergheynst (b0155) 2016; 64
Derr, Ma, Tang (b0225) 2018
S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-gcn: Multi-scale graph convolution for semi-supervised node classification, in: Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 841–851.
B. Taskar, M.-F. Wong, P. Abbeel, D. Koller, Link prediction in relational data, in: Advances in neural information processing systems, 2004, pp. 659–666.
Tang, Liu (b0140) 2011; 23
Zhou, Cui, Zhang, Yang, Liu, Wang, Li, Sun (b0220) 2018
S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, arXiv preprint arXiv:1802.04407, 2018.
S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-gcn: Multi-scale graph convolution for semi-supervised node classification, arXiv preprint arXiv:1802.08888, 2018.
Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv preprint arXiv:1511.05493, 2015.
Wang, Pan, Long, Zhu, Jiang, Mgae (b0285) 2017
Na, Luo, Yang, Wang, Kolar (b0300) 2020; 2020
Z. Ke, H. Vikalo, A graph auto-encoder for haplotype assembly and viral quasispecies reconstruction, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 719–726.
Li, Muller, Thabet, Ghanem, Deepgcns (b0320) 2019
Liu, Murata, Kim, Kotarasu, Zhuang (b0175) 2019
Balaban (b0025) 1985; 25
J. Scott, Social network analysis, overview of, in: Computational complexity, vols. 1–6, Springer, New York, 2012, pp. 2898–2911.
Balasubramanian (b0020) 1985; 85
Fortunato (b0080) 2010; 486
Yang, Cohen, Salakhudinov (b0395) 2016
Yan, Ai, Yang, Tong (b0360) 2020
Balaban (10.1016/j.neucom.2020.12.061_b0025) 1985; 25
Yun (10.1016/j.neucom.2020.12.061_b0365) 2019
Yu (10.1016/j.neucom.2020.12.061_b0355) 2019; 20
Balasubramanian (10.1016/j.neucom.2020.12.061_b0020) 1985; 85
Garroway (10.1016/j.neucom.2020.12.061_b0035) 2008; 1
Tang (10.1016/j.neucom.2020.12.061_b0140) 2011; 23
Wang (10.1016/j.neucom.2020.12.061_b0285) 2017
Mitchell (10.1016/j.neucom.2020.12.061_b0005) 1990; 212
10.1016/j.neucom.2020.12.061_b0325
10.1016/j.neucom.2020.12.061_b0205
10.1016/j.neucom.2020.12.061_b0200
10.1016/j.neucom.2020.12.061_b0245
Ou (10.1016/j.neucom.2020.12.061_b0165) 2016
10.1016/j.neucom.2020.12.061_b0045
10.1016/j.neucom.2020.12.061_b0240
10.1016/j.neucom.2020.12.061_b0040
Weston (10.1016/j.neucom.2020.12.061_b0385) 2012
10.1016/j.neucom.2020.12.061_b0280
Li (10.1016/j.neucom.2020.12.061_b0320) 2019
Jacobs (10.1016/j.neucom.2020.12.061_b0010) 2001; 44
Cai (10.1016/j.neucom.2020.12.061_b0130) 2018; 30
Perozzi (10.1016/j.neucom.2020.12.061_b0090) 2014
Hamilton (10.1016/j.neucom.2020.12.061_b0305) 2017
Zhou (10.1016/j.neucom.2020.12.061_b0220) 2018
Ying (10.1016/j.neucom.2020.12.061_b0235) 2018
Kampffmeyer (10.1016/j.neucom.2020.12.061_b0310) 2019
Ding (10.1016/j.neucom.2020.12.061_b0380) 2020
Dong (10.1016/j.neucom.2020.12.061_b0155) 2016; 64
Nordborg (10.1016/j.neucom.2020.12.061_b0030) 2000; 154
10.1016/j.neucom.2020.12.061_b0330
10.1016/j.neucom.2020.12.061_b0210
10.1016/j.neucom.2020.12.061_b0375
10.1016/j.neucom.2020.12.061_b0095
10.1016/j.neucom.2020.12.061_b0370
10.1016/j.neucom.2020.12.061_b0250
10.1016/j.neucom.2020.12.061_b0050
Tang (10.1016/j.neucom.2020.12.061_b0110) 2015
Al Hasan (10.1016/j.neucom.2020.12.061_b0055) 2011
van der Maaten (10.1016/j.neucom.2020.12.061_b0085) 2008; 9
10.1016/j.neucom.2020.12.061_b0290
Zhu (10.1016/j.neucom.2020.12.061_b0390) 2019
Sen (10.1016/j.neucom.2020.12.061_b0345) 2008; 29
Na (10.1016/j.neucom.2020.12.061_b0300) 2020; 2020
Tang (10.1016/j.neucom.2020.12.061_b0135) 2009
Liu (10.1016/j.neucom.2020.12.061_b0175) 2019
Fu (10.1016/j.neucom.2020.12.061_b0120) 2017
Park (10.1016/j.neucom.2020.12.061_b0295) 2019
10.1016/j.neucom.2020.12.061_b0105
Wang (10.1016/j.neucom.2020.12.061_b0400) 2019
Taubin (10.1016/j.neucom.2020.12.061_b0350) 1995
10.1016/j.neucom.2020.12.061_b0265
10.1016/j.neucom.2020.12.061_b0260
Gao (10.1016/j.neucom.2020.12.061_b0060) 2011
10.1016/j.neucom.2020.12.061_b0180
Seo (10.1016/j.neucom.2020.12.061_b0215) 2018
Sun (10.1016/j.neucom.2020.12.061_b0340) 2013; 7
Cai (10.1016/j.neucom.2020.12.061_b0150) 2011; 33
Sun (10.1016/j.neucom.2020.12.061_b0335) 2011; 4
Yang (10.1016/j.neucom.2020.12.061_b0160) 2017
Wang (10.1016/j.neucom.2020.12.061_b0125) 2017
Qiu (10.1016/j.neucom.2020.12.061_b0170) 2018
Yan (10.1016/j.neucom.2020.12.061_b0360) 2020
Derr (10.1016/j.neucom.2020.12.061_b0225) 2018
10.1016/j.neucom.2020.12.061_b0315
Yang (10.1016/j.neucom.2020.12.061_b0395) 2016
Schuster (10.1016/j.neucom.2020.12.061_b0185) 1997; 45
Gao (10.1016/j.neucom.2020.12.061_b0230) 2018
10.1016/j.neucom.2020.12.061_b0275
Dong (10.1016/j.neucom.2020.12.061_b0115) 2017
10.1016/j.neucom.2020.12.061_b0075
Higham (10.1016/j.neucom.2020.12.061_b0015) 2008; 24
Bhagat (10.1016/j.neucom.2020.12.061_b0065) 2011
10.1016/j.neucom.2020.12.061_b0195
Newman (10.1016/j.neucom.2020.12.061_b0145) 2006; 103
Zhao (10.1016/j.neucom.2020.12.061_b0255) 2019
Tang (10.1016/j.neucom.2020.12.061_b0070) 2016
10.1016/j.neucom.2020.12.061_b0270
Grover (10.1016/j.neucom.2020.12.061_b0100) 2016
10.1016/j.neucom.2020.12.061_b0190
Fortunato (10.1016/j.neucom.2020.12.061_b0080) 2010; 486
References_xml – volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0085
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781, 2013.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
– start-page: 1169
  year: 2011
  end-page: 1174
  ident: b0060
  article-title: Temporal link prediction by integrating content and structure information
  publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management
– reference: S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-gcn: Multi-scale graph convolution for semi-supervised node classification, arXiv preprint arXiv:1802.08888, 2018.
– reference: Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv preprint arXiv:1511.05493, 2015.
– reference: X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, arXiv preprint arXiv:2002.02126, 2020.
– volume: 2020
  year: 2020
  ident: b0300
  article-title: Semiparametric nonlinear bipartite graph representation learning with provable guarantees
  publication-title: International Conference on Machine Learning (ICML)
– reference: R. Li, S. Wang, F. Zhu, J. Huang, Adaptive graph convolutional neural networks, in: Thirty-second AAAI Conference on Artificial Intelligence, 2018.
– volume: 4
  start-page: 992
  year: 2011
  end-page: 1003
  ident: b0335
  article-title: Meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proceedings of the VLDB Endowment
– start-page: 817
  year: 2009
  end-page: 826
  ident: b0135
  article-title: Relational learning via latent social dimensions
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b0185
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
– start-page: 1
  year: 2020
  end-page: 23
  ident: b0360
  article-title: Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps
  publication-title: International Journal of Geographical Information Science
– volume: 154
  start-page: 923
  year: 2000
  end-page: 929
  ident: b0030
  article-title: Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization
  publication-title: Genetics
– start-page: 1165
  year: 2015
  end-page: 1174
  ident: b0110
  article-title: Pte: Predictive text embedding through large-scale heterogeneous text networks
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: R. v. d. Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion, arXiv preprint arXiv:1706.02263, 2017.
– reference: J. Ugander, B. Karrer, L. Backstrom, C. Marlow, The anatomy of the facebook social graph, arXiv preprint arXiv:1111.4503, 2011.
– start-page: 375
  year: 2019
  end-page: 383
  ident: b0175
  article-title: A general view for network embedding as matrix factorization
  publication-title: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
– reference: S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, arXiv preprint arXiv:1802.04407, 2018.
– reference: F. Tian, B. Gao, Q. Cui, E. Chen, T.-Y. Liu, Learning deep representations for graph clustering, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.
– volume: 30
  start-page: 1616
  year: 2018
  end-page: 1637
  ident: b0130
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: A. Hasanzadeh, E. Hajiramezanali, K. Narayanan, N. Duffield, M. Zhou, X. Qian, Semi-implicit graph variational auto-encoders, in: Advances in Neural Information Processing Systems, 2019, pp. 10712–10723.
– start-page: 11983
  year: 2019
  end-page: 11993
  ident: b0365
  article-title: Graph transformer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  start-page: 334
  year: 1985
  end-page: 343
  ident: b0025
  article-title: Applications of graph theory in chemistry
  publication-title: Journal of Chemical Information and Computer Sciences
– start-page: 85
  year: 2017
  end-page: 94
  ident: b0125
  article-title: Ice: Item concept embedding via textual information
  publication-title: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval
– reference: J. You, R. Ying, X. Ren, W.L. Hamilton, J. Leskovec, Graphrnn: Generating realistic graphs with deep auto-regressive models, arXiv preprint arXiv:1802.08773, 2018.
– start-page: 459
  year: 2018
  end-page: 467
  ident: b0170
  article-title: Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec
  publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
– reference: B. Huang, K.M. Carley, Residual or gate? towards deeper graph neural networks for inductive graph representation learning, arXiv preprint arXiv:1904.08035, 2019.
– volume: 212
  start-page: 151
  year: 1990
  end-page: 166
  ident: b0005
  article-title: Use of techniques derived from graph theory to compare secondary structure motifs in proteins
  publication-title: Journal of Molecular Biology
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016.
– year: 2020
  ident: b0380
  article-title: Variational graph auto-encoders for mirna-disease association prediction
  publication-title: Methods
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: b0080
  article-title: Community detection in graphs
  publication-title: Physics reports
– volume: 7
  start-page: 1
  year: 2013
  end-page: 23
  ident: b0340
  article-title: Pathselclus: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– start-page: 701
  year: 2014
  end-page: 710
  ident: b0090
  article-title: Deepwalk: Online learning of social representations
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 20
  start-page: 3940
  year: 2019
  end-page: 3951
  ident: b0355
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: b0150
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 11487
  year: 2019
  end-page: 11496
  ident: b0310
  article-title: Rethinking knowledge graph propagation for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 54
  year: 2016
  end-page: 62
  ident: b0070
  article-title: Node classification in signed social networks
  publication-title: Proceedings of the 2016 SIAM International Conference on Data Mining
– start-page: 639
  year: 2012
  end-page: 655
  ident: b0385
  article-title: Deep learning via semi-supervised embedding
  publication-title: Neural Networks: Tricks of the Trade
– volume: 44
  start-page: 150
  year: 2001
  end-page: 165
  ident: b0010
  article-title: Protein flexibility predictions using graph theory
  publication-title: Proteins: Structure, Function, and Bioinformatics
– reference: Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– start-page: 362
  year: 2018
  end-page: 373
  ident: b0215
  article-title: Structured sequence modeling with graph convolutional recurrent networks
  publication-title: International Conference on Neural Information Processing
– start-page: 1399
  year: 2019
  end-page: 1407
  ident: b0390
  article-title: Robust graph convolutional networks against adversarial attacks
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: B. Taskar, M.-F. Wong, P. Abbeel, D. Koller, Link prediction in relational data, in: Advances in neural information processing systems, 2004, pp. 659–666.
– start-page: 1416
  year: 2018
  end-page: 1424
  ident: b0230
  article-title: Large-scale learnable graph convolutional networks
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 24
  start-page: 1093
  year: 2008
  end-page: 1099
  ident: b0015
  article-title: Fitting a geometric graph to a protein–protein interaction network
  publication-title: Bioinformatics
– start-page: 135
  year: 2017
  end-page: 144
  ident: b0115
  article-title: Scalable representation learning for heterogeneous networks
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 1
  start-page: 620
  year: 2008
  end-page: 630
  ident: b0035
  article-title: Applications of graph theory to landscape genetics
  publication-title: Evolutionary Applications
– volume: 64
  start-page: 6160
  year: 2016
  end-page: 6173
  ident: b0155
  article-title: Learning laplacian matrix in smooth graph signal representations
  publication-title: IEEE Transactions on Signal Processing
– reference: S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-gcn: Multi-scale graph convolution for semi-supervised node classification, in: Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 841–851.
– start-page: 6519
  year: 2019
  end-page: 6528
  ident: b0295
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 929
  year: 2018
  end-page: 934
  ident: b0225
  article-title: Signed graph convolutional networks
  publication-title: 2018 IEEE International Conference on Data Mining (ICDM)
– reference: Z. Ke, H. Vikalo, A graph auto-encoder for haplotype assembly and viral quasispecies reconstruction, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 719–726.
– start-page: 2022
  year: 2019
  end-page: 2032
  ident: b0400
  article-title: Heterogeneous graph attention network
  publication-title: The World Wide Web Conference
– start-page: 3894
  year: 2017
  end-page: 3900
  ident: b0160
  article-title: Fast network embedding enhancement via high order proximity approximation
  publication-title: IJCAI
– volume: 29
  start-page: 93
  year: 2008
  ident: b0345
  article-title: Collective classification in network data
  publication-title: AI Magazine
– reference: P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, arXiv preprint arXiv:1710.10903, 2017.
– reference: J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional networks via importance sampling, arXiv preprint arXiv:1801.10247, 2018.
– start-page: 9267
  year: 2019
  end-page: 9276
  ident: b0320
  article-title: Can gcns go as deep as cnns?, in
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: J. Scott, Social network analysis, overview of, in: Computational complexity, vols. 1–6, Springer, New York, 2012, pp. 2898–2911.
– reference: F. Wu, T. Zhang, A.H. d. Souza Jr, C. Fifty, T. Yu, K.Q. Weinberger, Simplifying graph convolutional networks, arXiv preprint arXiv:1902.07153, 2019.
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
– start-page: 351
  year: 1995
  end-page: 358
  ident: b0350
  article-title: A signal processing approach to fair surface design
  publication-title: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques
– start-page: 40
  year: 2016
  end-page: 48
  ident: b0395
  article-title: Revisiting semi-supervised learning with graph embeddings
  publication-title: International Conference on Machine Learning
– reference: K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, S. Jegelka, Representation learning on graphs with jumping knowledge networks, arXiv preprint arXiv:1806.03536, 2018.
– volume: 85
  start-page: 599
  year: 1985
  end-page: 618
  ident: b0020
  article-title: Applications of combinatorics and graph theory to spectroscopy and quantum chemistry
  publication-title: Chemical Reviews
– start-page: 115
  year: 2011
  end-page: 148
  ident: b0065
  article-title: Node classification in social networks
  publication-title: Social Network Data Analytics
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: b0145
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 23
  start-page: 447
  year: 2011
  end-page: 478
  ident: b0140
  article-title: Leveraging social media networks for classification
  publication-title: Data Mining and Knowledge Discovery
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907, 2016.
– year: 2019
  ident: b0255
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 855
  year: 2016
  end-page: 864
  ident: b0100
  article-title: node2vec Scalable feature learning for networks
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 243
  year: 2011
  end-page: 275
  ident: b0055
  article-title: A survey of link prediction in social networks
  publication-title: Social Network Data Analytics
– start-page: 889
  year: 2017
  end-page: 898
  ident: b0285
  article-title: Marginalized graph autoencoder for graph clustering
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– reference: J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information network embedding, in: Proceedings of the 24th international conference on world wide web, 2015, pp. 1067–1077.
– year: 2018
  ident: b0220
  article-title: Graph neural networks: A review of methods and applications
– year: 2017
  ident: b0305
  article-title: Representation learning on graphs: Methods and applications
– start-page: 974
  year: 2018
  end-page: 983
  ident: b0235
  article-title: Graph convolutional neural networks for web-scale recommender systems
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 1797
  year: 2017
  end-page: 1806
  ident: b0120
  article-title: Explore meta-paths in heterogeneous information networks for representation learning
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– start-page: 1105
  year: 2016
  end-page: 1114
  ident: b0165
  article-title: Asymmetric transitivity preserving graph embedding
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 25
  start-page: 334
  year: 1985
  ident: 10.1016/j.neucom.2020.12.061_b0025
  article-title: Applications of graph theory in chemistry
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci00047a033
– start-page: 817
  year: 2009
  ident: 10.1016/j.neucom.2020.12.061_b0135
  article-title: Relational learning via latent social dimensions
– start-page: 9267
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0320
  article-title: Can gcns go as deep as cnns?, in
– start-page: 855
  year: 2016
  ident: 10.1016/j.neucom.2020.12.061_b0100
  article-title: node2vec Scalable feature learning for networks
– volume: 64
  start-page: 6160
  year: 2016
  ident: 10.1016/j.neucom.2020.12.061_b0155
  article-title: Learning laplacian matrix in smooth graph signal representations
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2602809
– start-page: 11983
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0365
  article-title: Graph transformer networks
– volume: 44
  start-page: 150
  year: 2001
  ident: 10.1016/j.neucom.2020.12.061_b0010
  article-title: Protein flexibility predictions using graph theory
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.1081
– start-page: 351
  year: 1995
  ident: 10.1016/j.neucom.2020.12.061_b0350
  article-title: A signal processing approach to fair surface design
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.neucom.2020.12.061_b0085
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– start-page: 1105
  year: 2016
  ident: 10.1016/j.neucom.2020.12.061_b0165
  article-title: Asymmetric transitivity preserving graph embedding
– volume: 45
  start-page: 2673
  year: 1997
  ident: 10.1016/j.neucom.2020.12.061_b0185
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650093
– volume: 154
  start-page: 923
  year: 2000
  ident: 10.1016/j.neucom.2020.12.061_b0030
  article-title: Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization
  publication-title: Genetics
  doi: 10.1093/genetics/154.2.923
– year: 2020
  ident: 10.1016/j.neucom.2020.12.061_b0380
  article-title: Variational graph auto-encoders for mirna-disease association prediction
  publication-title: Methods
– volume: 103
  start-page: 8577
  year: 2006
  ident: 10.1016/j.neucom.2020.12.061_b0145
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0601602103
– start-page: 974
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0235
  article-title: Graph convolutional neural networks for web-scale recommender systems
– ident: 10.1016/j.neucom.2020.12.061_b0200
– volume: 33
  start-page: 1548
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0150
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.231
– start-page: 1165
  year: 2015
  ident: 10.1016/j.neucom.2020.12.061_b0110
  article-title: Pte: Predictive text embedding through large-scale heterogeneous text networks
– ident: 10.1016/j.neucom.2020.12.061_b0330
– volume: 486
  start-page: 75
  year: 2010
  ident: 10.1016/j.neucom.2020.12.061_b0080
  article-title: Community detection in graphs
  publication-title: Physics reports
  doi: 10.1016/j.physrep.2009.11.002
– ident: 10.1016/j.neucom.2020.12.061_b0195
– volume: 30
  start-page: 1616
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0130
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2807452
– start-page: 40
  year: 2016
  ident: 10.1016/j.neucom.2020.12.061_b0395
  article-title: Revisiting semi-supervised learning with graph embeddings
– ident: 10.1016/j.neucom.2020.12.061_b0290
  doi: 10.24963/ijcai.2018/362
– year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0305
– ident: 10.1016/j.neucom.2020.12.061_b0180
– start-page: 459
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0170
  article-title: Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec
– ident: 10.1016/j.neucom.2020.12.061_b0050
– ident: 10.1016/j.neucom.2020.12.061_b0210
– start-page: 889
  year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0285
  article-title: Marginalized graph autoencoder for graph clustering
– volume: 24
  start-page: 1093
  year: 2008
  ident: 10.1016/j.neucom.2020.12.061_b0015
  article-title: Fitting a geometric graph to a protein–protein interaction network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn079
– ident: 10.1016/j.neucom.2020.12.061_b0040
– volume: 2020
  year: 2020
  ident: 10.1016/j.neucom.2020.12.061_b0300
  article-title: Semiparametric nonlinear bipartite graph representation learning with provable guarantees
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 1797
  year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0120
  article-title: Explore meta-paths in heterogeneous information networks for representation learning
– start-page: 701
  year: 2014
  ident: 10.1016/j.neucom.2020.12.061_b0090
  article-title: Deepwalk: Online learning of social representations
– start-page: 639
  year: 2012
  ident: 10.1016/j.neucom.2020.12.061_b0385
  article-title: Deep learning via semi-supervised embedding
– start-page: 3894
  year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0160
  article-title: Fast network embedding enhancement via high order proximity approximation
– ident: 10.1016/j.neucom.2020.12.061_b0240
  doi: 10.1609/aaai.v32i1.11604
– volume: 20
  start-page: 3940
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0355
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2910560
– volume: 212
  start-page: 151
  year: 1990
  ident: 10.1016/j.neucom.2020.12.061_b0005
  article-title: Use of techniques derived from graph theory to compare secondary structure motifs in proteins
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(90)90312-A
– start-page: 929
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0225
  article-title: Signed graph convolutional networks
– start-page: 1416
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0230
  article-title: Large-scale learnable graph convolutional networks
– ident: 10.1016/j.neucom.2020.12.061_b0190
– start-page: 6519
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0295
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
– start-page: 243
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0055
  article-title: A survey of link prediction in social networks
– ident: 10.1016/j.neucom.2020.12.061_b0325
– ident: 10.1016/j.neucom.2020.12.061_b0075
  doi: 10.1609/aaai.v28i1.8916
– start-page: 1399
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0390
  article-title: Robust graph convolutional networks against adversarial attacks
– ident: 10.1016/j.neucom.2020.12.061_b0245
  doi: 10.1609/aaai.v32i1.11691
– ident: 10.1016/j.neucom.2020.12.061_b0095
– ident: 10.1016/j.neucom.2020.12.061_b0370
– start-page: 2022
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0400
  article-title: Heterogeneous graph attention network
– ident: 10.1016/j.neucom.2020.12.061_b0375
  doi: 10.1609/aaai.v34i01.5414
– ident: 10.1016/j.neucom.2020.12.061_b0280
– ident: 10.1016/j.neucom.2020.12.061_b0315
– start-page: 375
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0175
  article-title: A general view for network embedding as matrix factorization
– year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0255
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 29
  start-page: 93
  year: 2008
  ident: 10.1016/j.neucom.2020.12.061_b0345
  article-title: Collective classification in network data
  publication-title: AI Magazine
  doi: 10.1609/aimag.v29i3.2157
– ident: 10.1016/j.neucom.2020.12.061_b0265
– start-page: 362
  year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0215
  article-title: Structured sequence modeling with graph convolutional recurrent networks
– ident: 10.1016/j.neucom.2020.12.061_b0045
  doi: 10.1007/978-1-4614-1800-9_178
– ident: 10.1016/j.neucom.2020.12.061_b0250
– volume: 1
  start-page: 620
  year: 2008
  ident: 10.1016/j.neucom.2020.12.061_b0035
  article-title: Applications of graph theory to landscape genetics
  publication-title: Evolutionary Applications
  doi: 10.1111/j.1752-4571.2008.00047.x
– start-page: 115
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0065
  article-title: Node classification in social networks
– ident: 10.1016/j.neucom.2020.12.061_b0275
– volume: 4
  start-page: 992
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0335
  article-title: Meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3402707.3402736
– volume: 85
  start-page: 599
  year: 1985
  ident: 10.1016/j.neucom.2020.12.061_b0020
  article-title: Applications of combinatorics and graph theory to spectroscopy and quantum chemistry
  publication-title: Chemical Reviews
  doi: 10.1021/cr00070a005
– year: 2018
  ident: 10.1016/j.neucom.2020.12.061_b0220
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.12.061_b0340
  article-title: Pathselclus: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/2500492
– start-page: 1169
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0060
  article-title: Temporal link prediction by integrating content and structure information
– ident: 10.1016/j.neucom.2020.12.061_b0270
  doi: 10.1145/3397271.3401063
– start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.12.061_b0360
  article-title: Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps
  publication-title: International Journal of Geographical Information Science
– start-page: 85
  year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0125
  article-title: Ice: Item concept embedding via textual information
– start-page: 54
  year: 2016
  ident: 10.1016/j.neucom.2020.12.061_b0070
  article-title: Node classification in signed social networks
– ident: 10.1016/j.neucom.2020.12.061_b0105
  doi: 10.1145/2736277.2741093
– volume: 23
  start-page: 447
  year: 2011
  ident: 10.1016/j.neucom.2020.12.061_b0140
  article-title: Leveraging social media networks for classification
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-010-0210-x
– ident: 10.1016/j.neucom.2020.12.061_b0205
– start-page: 135
  year: 2017
  ident: 10.1016/j.neucom.2020.12.061_b0115
  article-title: Scalable representation learning for heterogeneous networks
– ident: 10.1016/j.neucom.2020.12.061_b0260
– start-page: 11487
  year: 2019
  ident: 10.1016/j.neucom.2020.12.061_b0310
  article-title: Rethinking knowledge graph propagation for zero-shot learning
SSID ssj0017129
Score 2.4541247
Snippet We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Graph autoencoder
Graph convolutional networks
Graph node classification
Homogeneous and heterogeneous graphs
Title AEGCN: An Autoencoder-Constrained Graph Convolutional Network
URI https://dx.doi.org/10.1016/j.neucom.2020.12.061
Volume 432
WOSCitedRecordID wos000620905000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlEMvvCsKLfKB6yJ7vd4HNysKLQisSm1pbpa9XpdWxYnSpAr_vrMPP1CgFCQuVrTxJqOdz7Ozn-eB0FtZUKZlEuIqoiWmRAlcRmWCWWXeC3L4ztbp_vqZZ5mYTuWRz7i-tu0EeNOI9VrO_6uqYQyUbVJn_0Ld3Y_CAHwGpcMV1A7Xeyk-nRyMM8_3pavlzFSqrPQCm9actiGENhRUMf9msv1uvCigqMwFhA-9VVu5Q9m-D55RSL-bwgqVQVHHIHwpXPx9c_5j1WMts6PHfabZmWemD2fmxiHbQCIbpMJ7CmwjDcZxiSTB4Cg6s6qdJRWc2Bz1oamlnstsjeVg23V7wYZBd9zC5btGr0x0D4gUWvqWRf0G1oUVHhtBjBzE5GYxU3tgi_BEihHaSj9Opp-690s8Iq4Koxe8Taq0kX-b__Vrp2XgiJw8QY_8CSJIneafoge6eYYet905Am-snyMHhPdB2gS_gUFgYRD8BIPAw-AFOv0wORkfYt8sAys49S1xVVIwpwS8yxqcOJVIVhdS8AL2L0U1DUs4B0gGD18IjyePma51rCURWhE4YxYs3kGjZtbolyioWF0SIcA3DymVihZhHVPFRBVypSsR7qK4XY1c-UryRvCrvA0ZvMzdGuZmDfOI5LCGuwh3s-auksof7uftQufeG3ReXg7YuHPmq3-e-Rpt96DfQ6PlYqX30UN1s7y4XrzxILoFyuiBfA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEGCN%3A+An+Autoencoder-Constrained+Graph+Convolutional+Network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ma%2C+Mingyuan&rft.au=Na%2C+Sen&rft.au=Wang%2C+Hongyu&rft.date=2021-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=432&rft.spage=21&rft.epage=31&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.061&rft.externalDocID=S0925231220319615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon