Summary of research progress on industrial flue gas desulfurization technology
•The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies a...
Uložené v:
| Vydané v: | Separation and purification technology Ročník 281; s. 119849 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.01.2022
|
| Predmet: | |
| ISSN: | 1383-5866, 1873-3794 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies are reviewed.•The current development problems and future research directions of desulfurization technology are pointed out.
Through the purification technology of flue gas desulfurization, ultralow emissions of SO2 flue gas in industrial flue gas can be achieved. This article involves dry desulfurization, semi-dry desulfurization, and wet desulfurization technologies. The research progress of these technologies since they were first proposed is summarized, and the problems existing in these desulfurization technologies are analyzed. The theory of mass transfer and absorption in flue gas desulfurization is summarized, and the optimal desulfurization process parameters for the operation of desulfurization technology are obtained. A high added value production of desulfurization technology can be realized by studying the recycling of desulfurization products. This paper summarizes the characteristics and the latest research progress of various desulfurization technologies, and aims to provide help for the better development of desulfurization technologies. It also provides suggestions for the future research direction of desulfurization technology. |
|---|---|
| AbstractList | •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies are reviewed.•The current development problems and future research directions of desulfurization technology are pointed out.
Through the purification technology of flue gas desulfurization, ultralow emissions of SO2 flue gas in industrial flue gas can be achieved. This article involves dry desulfurization, semi-dry desulfurization, and wet desulfurization technologies. The research progress of these technologies since they were first proposed is summarized, and the problems existing in these desulfurization technologies are analyzed. The theory of mass transfer and absorption in flue gas desulfurization is summarized, and the optimal desulfurization process parameters for the operation of desulfurization technology are obtained. A high added value production of desulfurization technology can be realized by studying the recycling of desulfurization products. This paper summarizes the characteristics and the latest research progress of various desulfurization technologies, and aims to provide help for the better development of desulfurization technologies. It also provides suggestions for the future research direction of desulfurization technology. |
| ArticleNumber | 119849 |
| Author | Liu, Yan Dou, Zhihe Han, Jinru Li, Xueke Zhang, Ting-an |
| Author_xml | – sequence: 1 givenname: Xueke surname: Li fullname: Li, Xueke – sequence: 2 givenname: Jinru surname: Han fullname: Han, Jinru – sequence: 3 givenname: Yan surname: Liu fullname: Liu, Yan email: liuyan@smm.neu.edu.cn – sequence: 4 givenname: Zhihe surname: Dou fullname: Dou, Zhihe – sequence: 5 givenname: Ting-an surname: Zhang fullname: Zhang, Ting-an |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6TYsWM7LJBQxUuqYAGsraljt67SOLITpPL1pIQVC1jNjHTPSPfM0KQJjUXokpIFJVRc7RbJtm0fFznJ6YLSUvHyBE2pkixjsuSTYWeKZYUS4gzNUtoRQiVV-RQ9v_b7PcQDDg5HmyxEs8VtDJvhSDg02DdVn7roocau7i3eQMKVTX3t-ug_ofNDprNm24Q6bA7n6NRBnezFz5yj9_u7t-Vjtnp5eFrerjLDiOiySjoOUCgD3JSlKtekACmFlLzkCgThigknHIiK5esil44qxUFxCW4IQ8XmiI9_TQwpRet0G_2xh6ZEH53onR6d6KMTPToZsOtfmPHdd4cugq__g29G2A7FPryNOhlvG2MrH63pdBX83w--AAyBg9E |
| CitedBy_id | crossref_primary_10_1016_j_powtec_2022_117211 crossref_primary_10_1016_j_cej_2025_166003 crossref_primary_10_3390_su16156686 crossref_primary_10_1016_j_jenvman_2024_121532 crossref_primary_10_1016_j_jece_2025_119004 crossref_primary_10_1016_j_scitotenv_2024_172492 crossref_primary_10_1016_j_psep_2022_07_038 crossref_primary_10_1016_j_seppur_2025_133106 crossref_primary_10_1021_acs_energyfuels_5c00262 crossref_primary_10_1016_j_jandt_2023_08_003 crossref_primary_10_1021_acs_energyfuels_4c06274 crossref_primary_10_1038_s41467_023_36362_x crossref_primary_10_1016_j_jece_2024_114907 crossref_primary_10_15377_2409_983X_2024_11_5 crossref_primary_10_1016_j_colsurfa_2024_134865 crossref_primary_10_3390_su17136137 crossref_primary_10_1080_00986445_2024_2361421 crossref_primary_10_3390_app142311364 crossref_primary_10_1016_j_seppur_2024_128425 crossref_primary_10_1039_D5GC01651G crossref_primary_10_3390_pr13051496 crossref_primary_10_1016_j_fuel_2025_134786 crossref_primary_10_1016_j_fuel_2024_133116 crossref_primary_10_1016_j_jece_2024_114064 crossref_primary_10_3390_en17051052 crossref_primary_10_1016_j_powtec_2025_121447 crossref_primary_10_3390_ma16010303 crossref_primary_10_1016_j_ces_2025_121211 crossref_primary_10_1021_acs_energyfuels_4c06318 crossref_primary_10_3390_app15095105 crossref_primary_10_1016_j_nanoms_2025_04_001 crossref_primary_10_3389_fenvs_2022_978559 crossref_primary_10_1007_s11356_022_23837_5 crossref_primary_10_1016_j_jhazmat_2024_134490 crossref_primary_10_1002_cjce_24717 crossref_primary_10_1016_j_jelechem_2025_119345 crossref_primary_10_1016_j_jclepro_2022_134205 crossref_primary_10_3390_technologies10050099 crossref_primary_10_1016_j_fuel_2023_129239 crossref_primary_10_1016_j_cej_2024_149190 crossref_primary_10_1016_j_rineng_2025_103970 crossref_primary_10_1016_j_jece_2023_109973 crossref_primary_10_1016_j_seppur_2024_129463 crossref_primary_10_1016_j_ultsonch_2022_106043 crossref_primary_10_1063_5_0169153 crossref_primary_10_1016_j_cjche_2023_03_011 crossref_primary_10_1002_srin_202200904 crossref_primary_10_1016_j_cherd_2024_10_009 crossref_primary_10_1016_j_jcrysgro_2024_127583 crossref_primary_10_1007_s11356_024_32923_9 crossref_primary_10_1016_j_icheatmasstransfer_2025_109684 crossref_primary_10_1080_09593330_2024_2385066 crossref_primary_10_1016_j_cherd_2022_09_045 crossref_primary_10_1007_s13762_025_06681_1 crossref_primary_10_1016_j_seppur_2022_122980 crossref_primary_10_1007_s11164_025_05504_9 crossref_primary_10_1016_j_jece_2024_112356 crossref_primary_10_1016_j_cep_2025_110464 crossref_primary_10_1007_s11356_024_35646_z crossref_primary_10_1080_09593330_2023_2283810 crossref_primary_10_1007_s11356_023_28818_w crossref_primary_10_1016_j_wasman_2023_02_002 crossref_primary_10_3390_ma17153628 crossref_primary_10_5937_podrad2501123M crossref_primary_10_1002_tqem_70174 crossref_primary_10_1080_15567036_2023_2284844 crossref_primary_10_1016_j_heliyon_2024_e34789 crossref_primary_10_1016_j_cej_2025_165375 crossref_primary_10_2166_wst_2025_049 crossref_primary_10_1016_j_jece_2024_114762 crossref_primary_10_1016_j_mtsust_2023_100475 crossref_primary_10_1016_j_psep_2022_01_041 crossref_primary_10_1088_1742_6596_3092_1_012021 crossref_primary_10_1007_s11696_024_03775_x crossref_primary_10_1061_JOEEDU_EEENG_7476 crossref_primary_10_1177_1478422X251347338 crossref_primary_10_1016_j_cej_2025_159785 crossref_primary_10_3390_ma17102227 crossref_primary_10_1016_j_scitotenv_2023_169857 crossref_primary_10_1016_j_seppur_2024_130558 crossref_primary_10_1016_j_cej_2024_152053 crossref_primary_10_1016_j_scitotenv_2023_166108 crossref_primary_10_1016_j_egyr_2023_04_032 crossref_primary_10_1016_j_jenvman_2024_120184 crossref_primary_10_1016_j_seppur_2024_128238 crossref_primary_10_1016_j_cej_2025_168411 crossref_primary_10_1016_j_conbuildmat_2024_139780 crossref_primary_10_1016_j_ceramint_2025_03_051 crossref_primary_10_1016_j_fuel_2025_135964 crossref_primary_10_1016_j_jhazmat_2022_129827 crossref_primary_10_3390_app13137370 crossref_primary_10_3390_ma17051138 crossref_primary_10_3390_separations10060356 crossref_primary_10_1016_j_jssc_2024_124709 crossref_primary_10_1016_j_ces_2025_122593 crossref_primary_10_1016_j_psep_2024_07_119 crossref_primary_10_1016_j_scitotenv_2024_174631 crossref_primary_10_1109_TASE_2024_3398776 crossref_primary_10_1002_ep_14608 crossref_primary_10_1016_j_jhazmat_2024_134065 crossref_primary_10_1016_j_seppur_2025_134113 crossref_primary_10_3390_cryst15030223 crossref_primary_10_1016_j_jclepro_2024_142023 crossref_primary_10_1016_j_applthermaleng_2025_126339 crossref_primary_10_3390_chemengineering9040067 crossref_primary_10_1016_j_seppur_2024_127255 crossref_primary_10_1016_j_joei_2023_101313 crossref_primary_10_1016_j_molliq_2023_121937 crossref_primary_10_3390_en17194799 crossref_primary_10_1016_j_procir_2024_12_137 crossref_primary_10_1016_j_ces_2023_118536 crossref_primary_10_1021_acs_iecr_5c01746 crossref_primary_10_1016_S1003_6326_22_66026_6 crossref_primary_10_1016_j_jece_2024_113298 crossref_primary_10_1016_j_seppur_2025_134062 crossref_primary_10_1007_s11814_022_1253_6 crossref_primary_10_1016_j_cherd_2024_07_008 crossref_primary_10_1016_j_jece_2025_117038 crossref_primary_10_1061_JOEEDU_EEENG_7179 crossref_primary_10_1016_j_seppur_2025_133133 crossref_primary_10_1080_00986445_2025_2503009 crossref_primary_10_1016_j_conbuildmat_2023_132304 crossref_primary_10_1016_j_electacta_2024_144008 crossref_primary_10_1016_j_conbuildmat_2023_134692 crossref_primary_10_1016_j_jece_2022_107298 crossref_primary_10_1080_10934529_2023_2174334 crossref_primary_10_1016_j_aej_2025_04_001 crossref_primary_10_3390_en17246382 crossref_primary_10_1016_j_cej_2025_161163 crossref_primary_10_1016_j_psep_2024_04_043 crossref_primary_10_3390_ma18020394 crossref_primary_10_1016_j_cej_2024_149276 crossref_primary_10_1016_j_icheatmasstransfer_2022_106275 crossref_primary_10_1002_app_57385 crossref_primary_10_1016_j_apcatb_2025_125077 crossref_primary_10_1080_15567036_2023_2276900 crossref_primary_10_1016_j_cjche_2022_09_021 crossref_primary_10_1016_j_conbuildmat_2025_141971 crossref_primary_10_1016_j_jece_2025_115385 crossref_primary_10_1002_aic_70001 crossref_primary_10_1016_j_petsci_2024_09_021 crossref_primary_10_1080_14680629_2025_2479577 crossref_primary_10_1016_j_conbuildmat_2023_131840 crossref_primary_10_1016_j_jcis_2024_02_098 crossref_primary_10_1007_s11696_025_04040_5 crossref_primary_10_1016_j_psep_2024_03_042 crossref_primary_10_3390_toxics13050396 crossref_primary_10_1016_j_cemconres_2024_107619 crossref_primary_10_1016_j_desal_2022_116057 crossref_primary_10_1016_j_matchemphys_2024_129287 crossref_primary_10_1016_j_seppur_2023_125411 crossref_primary_10_1016_j_fuproc_2023_107983 crossref_primary_10_1016_j_seppur_2024_127513 crossref_primary_10_1016_j_cjche_2024_05_017 crossref_primary_10_1016_j_conbuildmat_2025_140996 crossref_primary_10_1016_j_ecmx_2025_101201 crossref_primary_10_3390_gels11030193 crossref_primary_10_1016_j_chemosphere_2022_135683 crossref_primary_10_1016_j_jhazmat_2024_133834 crossref_primary_10_1016_j_ces_2023_119329 crossref_primary_10_1016_j_energy_2025_134840 crossref_primary_10_1016_j_jtice_2024_105902 crossref_primary_10_1007_s00449_023_02895_0 crossref_primary_10_1016_j_isci_2025_113476 crossref_primary_10_1007_s11696_023_02997_9 crossref_primary_10_1016_j_fuel_2022_125353 crossref_primary_10_1016_j_seta_2023_103489 crossref_primary_10_1016_j_cej_2024_155883 crossref_primary_10_1007_s11356_022_23860_6 crossref_primary_10_1021_acs_jpcb_5c01441 crossref_primary_10_1016_j_compositesb_2025_112340 crossref_primary_10_1016_j_jes_2022_09_008 crossref_primary_10_1016_j_engappai_2025_110294 crossref_primary_10_3390_en16041971 crossref_primary_10_1016_j_fuel_2023_128408 crossref_primary_10_1016_j_mcat_2025_115366 crossref_primary_10_1007_s11837_025_07254_w crossref_primary_10_1016_j_chemosphere_2022_137592 crossref_primary_10_1016_j_cej_2023_143096 |
| Cites_doi | 10.1021/ie030446z 10.1016/j.fuel.2020.118564 10.1016/j.seppur.2013.02.012 10.1016/j.cej.2012.02.022 10.1016/j.apenergy.2010.03.023 10.1016/j.seppur.2019.115873 10.1016/j.desal.2020.114654 10.1002/chin.200506102 10.4028/www.scientific.net/AMR.634-638.198 10.1016/j.applthermaleng.2014.01.032 10.1016/j.cep.2020.107957 10.1016/j.ces.2006.12.069 10.1016/S0008-6223(03)00205-7 10.1016/0032-5910(94)02969-U 10.1021/ie00040a032 10.1002/anie.200353437 10.1016/j.cej.2012.10.091 10.1016/j.cep.2011.05.008 10.1021/es000229e 10.1016/S0255-2701(99)00107-5 10.1039/C6NJ03563A 10.1016/j.cej.2020.124678 10.1016/j.conbuildmat.2021.122963 10.1016/j.cjche.2020.05.001 10.1016/j.jhazmat.2019.02.059 10.1016/j.proenv.2011.12.156 10.1016/j.jclepro.2020.120026 10.1016/j.cej.2019.02.059 10.1016/S0032-5910(96)03243-3 10.1021/ie050457n 10.1016/j.cep.2020.107935 10.1016/j.psep.2017.03.033 10.1016/j.psep.2021.04.032 10.1016/j.ces.2013.04.011 10.1002/aic.14793 10.1016/j.powtec.2020.09.047 10.1016/j.enconman.2009.06.012 10.1016/j.envpol.2018.12.001 10.1016/j.jhazmat.2009.02.156 10.1016/j.cattod.2015.03.046 10.1016/j.seppur.2009.09.018 10.1021/ef049975l 10.1021/ie102554f 10.1016/S0255-2701(99)00077-X 10.1252/kakoronbunshu.24.279 10.1016/j.cej.2014.09.085 10.1016/j.fuproc.2014.07.002 10.1016/j.fuproc.2015.05.002 10.1016/j.jhazmat.2017.08.060 10.1016/S1004-9541(12)60373-5 10.1016/j.cej.2014.04.040 10.1016/j.fuproc.2010.07.020 10.1016/j.powtec.2021.01.044 10.1016/j.wasman.2020.12.007 10.1016/j.fuel.2012.07.050 10.1016/j.wasman.2008.11.014 10.1016/j.powtec.2018.11.017 10.1016/j.cej.2014.11.038 10.1016/j.jclepro.2018.09.145 10.1016/j.cherd.2010.08.014 10.1016/j.jes.2020.04.018 10.1007/s11771-019-4019-5 10.1016/j.cep.2021.108372 10.1016/j.cemconcomp.2020.103760 10.1016/j.resconrec.2016.04.005 10.1016/S1093-0191(00)00003-4 10.1016/j.cherd.2019.06.011 10.1097/JOM.0000000000000135 10.1252/kakoronbunshu.22.1400 10.1002/ep.670200410 10.1016/j.fuel.2017.08.107 10.1021/ie100988r 10.1080/10473289.1992.10466964 10.1016/j.apr.2015.05.005 10.1016/j.molliq.2013.12.019 10.1016/S0016-2361(02)00133-3 10.1021/es702208e 10.1080/10588330490269840 10.1016/j.enconman.2017.03.078 10.1016/j.jes.2019.08.002 10.1016/j.fuel.2010.08.016 10.1021/jp9108859 10.1016/j.powtec.2010.09.013 10.1016/0009-2509(81)80124-8 10.1016/j.agee.2018.01.009 10.1016/j.apt.2014.06.018 10.1016/j.jaerosci.2011.05.005 10.1016/j.applthermaleng.2020.115102 10.1016/j.fuel.2020.118945 10.1016/0255-2701(84)80007-0 10.1016/j.cep.2017.03.001 10.1021/ie300163v 10.1016/j.powtec.2021.05.024 10.1016/j.cherd.2019.03.043 10.1016/j.fuel.2020.119714 10.1016/j.cej.2019.122257 10.1016/j.jclepro.2020.122497 10.1016/j.psep.2015.10.018 10.1016/j.cjche.2020.08.004 10.1016/j.apsusc.2021.149478 10.1021/ie990699l 10.1002/cjce.5450770222 10.1016/j.cej.2018.06.177 10.1002/ceat.201100690 10.1021/ie0603619 10.1016/S0032-5910(99)00199-0 10.1016/j.jhazmat.2007.07.042 10.1016/j.cej.2017.08.127 10.1016/S0008-6223(97)00190-5 10.1016/j.jhazmat.2008.03.097 10.1016/S0196-8904(02)00230-3 10.1126/science.1090313 10.1021/acssuschemeng.9b01933 10.1016/j.fuel.2020.117215 10.1016/j.envres.2012.07.003 10.1016/j.wasman.2004.11.005 10.1016/0032-5910(92)88003-Z 10.1016/j.jhazmat.2020.122270 10.1002/ceat.270100114 10.1016/j.fuel.2014.12.065 10.1021/acs.energyfuels.6b01006 10.1016/0032-5910(95)03003-R 10.1039/c3ra22450c 10.1016/j.cep.2020.108069 10.1016/j.cep.2019.107793 10.1016/j.apcatb.2020.119143 10.1021/jp1124074 10.1016/j.jece.2018.102831 10.1021/jp063547u 10.1016/j.geoderma.2018.01.033 10.1016/j.cej.2013.03.084 10.1016/j.molcata.2007.07.036 10.1039/b609714f 10.1080/00022470.1979.10470925 10.1016/j.jhazmat.2009.04.075 10.1039/b110838g 10.1016/j.jes.2020.10.012 10.1016/j.jclepro.2020.122212 10.1016/j.joei.2017.02.010 10.1016/j.fuel.2019.116178 10.1016/j.cej.2017.12.151 10.1002/ep.670220118 10.1016/S0009-2509(00)00090-7 10.1016/j.cej.2010.08.041 10.1016/j.seppur.2021.118546 10.1021/acs.iecr.6b02588 10.1016/B978-0-08-031869-1.50038-7 10.1016/j.egypro.2014.11.675 10.1016/j.ijheatmasstransfer.2006.03.013 10.1002/cjce.5450770206 10.1016/j.powtec.2005.03.017 10.1021/es0706899 10.1016/j.cej.2017.06.180 10.1016/j.psep.2021.03.020 10.1016/j.conbuildmat.2020.119519 10.1016/j.ifacol.2015.12.412 10.1021/ed075p1603 10.1080/10643380500326374 10.1016/j.joei.2014.09.002 10.1016/j.toxlet.2010.03.013 10.1016/j.fuproc.2008.04.004 10.1021/acs.energyfuels.6b02884 10.1021/es001104c 10.1016/S0016-2361(00)00130-7 10.1016/j.energy.2021.120585 10.1002/aic.690420123 10.1016/j.seppur.2020.116915 10.1016/j.jes.2020.01.020 10.1016/j.fuel.2020.119209 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seppur.2021.119849 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3794 |
| ExternalDocumentID | 10_1016_j_seppur_2021_119849 S1383586621015562 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c306t-d7f4aa58ca4c9989b05a776774948a604836f6fa6d32b527f1884a847af89bad3 |
| ISICitedReferencesCount | 209 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714424100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-5866 |
| IngestDate | Sat Nov 29 07:01:03 EST 2025 Tue Nov 18 22:08:23 EST 2025 Fri Feb 23 02:39:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dry method Desulfurization Wet method Semi-dry method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-d7f4aa58ca4c9989b05a776774948a604836f6fa6d32b527f1884a847af89bad3 |
| ParticipantIDs | crossref_primary_10_1016_j_seppur_2021_119849 crossref_citationtrail_10_1016_j_seppur_2021_119849 elsevier_sciencedirect_doi_10_1016_j_seppur_2021_119849 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Separation and purification technology |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Linek, Vacek (b0650) 1981; 36 Anderson, Dixon, Maginn, Brennecke (b0970) 2006; 110 Li, Zhang, Li, Ren, Yang, Jiang, Zhang (b0380) 2019; 225 Jin, Hou, Wu, Ren, Lei (b0955) 2011; 115 Hao, Ma, Yong, Yang (b0150) 2012; 215 Xu, Guo, Kaneko, Kato (b0320) 2000; 4 Lei, Wu, Jie, Li, Ping (b1060) 2019; 26 Jia, Qin, Fan, Wang (b0830) 2010; 164 Yan, Peng, Wang (b0355) 2003; 23 Huang, Wu, Yang (b0900) 2020; 379 Hanjitsuwan, Injorhor, Phoongernkham, Damrongwiriyanupap, Li, Sukontasukkul, Chindaprasirt (b0560) 2020; 114 Deng, Jiang, Liu (b0990) 2017; 41 Tokumura, Baba, Znad, Kawase, Takeda (b0755) 2006; 45 Mohammadi, Foroutan (b1020) 2014; 193 N.Q. Yan, Y. Shi, Z.B. Wu, Y.P. Li, S. Li, T.E. Tan, Process of Dual-Alkali FGD in a Rotating-Stream-Tray Scrubbe, Environ. Sci. 05 (1998) 72-74. CNKI:SUN:HJKZ.0.1998-05-019. Chen, You, Wang, Liu (b0415) 2019; 343 H.G. He, In-furnace Sorbent Injection-based Desulfurization Technolog, Therm Power Generat 5 (1989) 7-9+6. CNKI:SUN:RLFD.0.1989-05-001. Neathery (b0205) 1996; 42 Chen, Lin, Yu, Ding, He, Li (b1030) 2015; 61 Wang, Li, Lei (b0775) 2013; 97 Zhou, Zhang, Wang, Wang (b0260) 2005; 44 Chen, You, Wang, Xie (b0420) 2020; 171 Wang, Lu, Li, Wang, Xu (b0800) 2018; 338 Wang, Zhao, Ye, Su (b0425) 2020; 247 Sipos (b0655) 1998; 75 Hill, Zank (b0215) 2000; 39 Li, Deng, Wen, Tian, Li (b0875) 2019; 146 Zhang, Chang, Liu, Li (b0220) 2019; 04 Cai, Liu, Zhu, Zou, Tao, Tian (b0280) 2020; 96 Feng, Kai, Gao, Gong, Ma, Zhou (b0335) 2019; 31 Ma, Feng, Zhao, Peng, Fu (b0430) 2020; 153 Wu, Ni, Guan (b0605) 2008; 152 Thriel, Schäper, Kleinbeck, Kiesswetter, Blaszkewicz, Golka, Nies, Heimsoth, Brüning (b0010) 2010; 196 Wei, Li, Fan, Yuan (b0090) 2006; 26 Fang, Xing, Liu, Guo, Qi, Liu, Wang (b0695) 2021; 551 Hao, Mao, Mao, Wang, Gong, Zhang, Zhao (b0910) 2019; 365 Liu, Li, Li (b0175) 2003; 12 Bromley (b0745) 1972; 7 Cui, Lu, Song, Tang, Li, Dong (b0510) 2021; 285 Cao (b0025) 2013; 32 Chandara, Azizli, Ahmad, Sakai (b0535) 2009; 29 Liu, Wu, Liu, Li, Luo, Chu, Zou, Chen (b1035) 2020; 148 Wang, Siyu, Liu, Cui, Liu, Zhang (b0845) 2018; 331 Zhou, Peng, Xian, Zhang (b0130) 2011; 205 S. Han, B.H. Song, S.Y. Lu, Y.J. Han, W.X. Wang, Z.Y. Yang, Application of Magnesium Process of FGD Technology in Coal-fired Power Plant, Technol. Eng. Appl. (06) (2008) 56-59. CNKI: SUN: ZHBY.0.2008-06-020. Jia, Yin, Yalin, Ding, Sheng (b0840) 2015; 6 Wu, Yan, Chen (b0155) 2018; 351 Ma, Kaneko, Tashimo, Yoshida, Kato (b0305) 2000; 55 Wang, Zhu, Zhang, Zhang, Wang, Zhao (b0860) 2015; 88 Liu, Zhao, Gao, Baleta, Li, Li, Shen, Zheng, Gao (b0855) 2021; 149 Dou, Pan, Jin, Wang, Li (b0470) 2009; 50 H.Y. Zhang, Industrial Application of Technology of Using Zinc Oxide Method to Abosorb low-concentration SO2 Fume, Nonferrous Metals Des., (03) (2003) 51-55. DOI:CNKI:SUN:YJSS.0.2003-03-012. Yi, Xiang, Huo, Luo, Ni, Cen (b0450) 2008; 89 Zermeño, Niubó, Formosa, Guembe, Aparicio, Chimenos (b0640) 2015; 262 Shen, Guo, Kang, Zeng, Yin, Tian, Lu (b0675) 2012; 51 Wei, Sheng, Tian (b0120) 2006; 49 Mo, Wu, Cheng, Guan, Zhao (b0600) 2007; 02 Vidal, Ollero (b0770) 2001; 35 Guo, Kato (b0285) 1998; 24 Zhang, Lin, Bing, Wang, Ma (b0360) 2010; 2010 Getler, Shelton, Furlong (b0210) 1979; 29 He, Zheng, Yan, Tong, Chen, Chen (b0815) 2003; 44 Tian, Kai, Min (b0565) 2020; 265 Pan, Shi, Xu (b0050) 1991; 12 Wang, Li, Zhu, Jing, Wang (b0370) 2015; 264 Li, Wang, Xing, Qi, Zhang, Liu, Zhang, Ma, Wang (b0850) 2021; 103 Chen, Huang, Wong, Wang, Thach, Chen, Kan (b0020) 2012; 118 Pang, Li, Jin, Wei, Li (b1050) 2013; 634–638 Yang, Kim (b0230) 2000; 34 Wang, Zhang (b0245) 2011; 11 Ying, Li, Zhang, Hui, Wang, Li, Zhang (b0950) 2011; 175 Skopec, Hrdlika, Vodika (b0195) 2021; 283 Du, Yi, Tang, Zhao, Gao, Yu, Yang, Yang, Xie, Ma (b0270) 2020; 230 Yang, Jing, Lu, Zhu, Liu (b0540) 2020; 257 Rogers, Seddon (b0930) 2003; 302 Bai, Jin, Yu, Zhu (b0135) 1992; 71 Zhang, He, Wang, Huang, Li, Kumar, Cen (b0180) 2017; 210 Jiang, Keener, Khang (b0340) 1995; 85 Wypiór, Krzyyńska (b0505) 2020; 281 Qiao, Qu, Gu, Tang, Si, Romero, Yao (b0485) 2019; 258 Huang, Lu, Wu, Hu, Zhang (b1000) 2013; 215–216 Oikawa, Yongsiri, Takeda, Harimoto (b0760) 2003; 22 Gao, Han, Li, Jiang, Liu, Wu, Chang, Zhang (b1015) 2005; 36 Zhang, Hou, Ren, Zhang, Wu (b0940) 2019; 7 Li, Liu, Wang, Gao (b1005) 2017; 31 Cao, Zhang, Liu, Zhang, Lv (b0735) 2020; 3 J.J. Yang, Optimization and Upgrading of Semi-dry Desulfurization Process of Circulating Fluidized Bed for Ultra Clean Emission, J. Environ. Eng. Technol. (04) (2016) 371-376. CNKI:SUN:HKWZ.0.2016-04-010. Bao, Yang, Sun, Geng, Yan, Shen (b0590) 2011; 50 Kaiser (b0055) 2000; 39 Ragipani, Escobar, Prentice, Bustillos, Simonetti, Sant, Wanga (b0405) 2021; 121 Srivastava, Jozewicz, Singer (b0445) 2001; 20 Yu (b0585) 2001; 03 Tong, Ma, Zhang, Li, Hao (b0680) 2015; 258 Marocco, Mora (b0060) 2013; 108 Bian, Qi, Xin, Shu, Feng, Li (b0795) 2016; 101 Fang, Liao, Zhang, Teng, Xue (b0400) 2017; 342 Sedman, Hall, Jozewicz, Singer, Maxwell (b0255) 1992; 42 Wang, Chen, Li, Zhuo, Xu (b0525) 2017; 121 Zhou, Ding, Tang, Xie, Wang, Zhang, Ni (b0395) 2017; 327 Katolicky, Jicha (b0235) 2013; 36 Qu, Qi, Zhang, Li, Wang (b0490) 2021; 29 Guo, Noriaki, Kato (b0290) 1996; 22 W. Song, J. Zhou, B. Wang, S. Li, J. Han, New insight into investigation of reduction of desulfurization ash by pyrite for clean generation SO Ma, Kaneko, Xu, Kato (b0310) 2001; 80 Velden, Baeyens, Smolders (b0125) 2007; 62 Li, Qiao, Ni (b0550) 2020; 269 Jie Liu, Mengxuan Deng, Junsheng Yuan, Zhiyong Ji, Yingying Zhao, Xiaofu Guo, An aeration membrane absorption seawater flue gas desulfurization process intensified by combining dual-phase flow and oxidation reaction, Chem. Eng. Process. - Process Intensificat. 153 (2020) 107935. 10.1016/j.cep.2020.107935. Cotton, Patchigolla, Oakey (b0920) 2014; 63 Zhao, Wang, Li, Liu, Zhuo, Zhang, Jing, Xu (b0530) 2018; 261 Hou, Qi, You, Xu (b0095) 2005; 19 Li, Dong, Li, Feng, Zhang, Li, Ren, Lu (b0885) 2020; 155 Sanders, Keener, Wang (b0250) 1995; 34 Li, Jiang (b0570) 2021; 286 Yingying Zhao, Lurong Wang, Zhiyong Ji, Jie Liu, Xiaofu Guo, Fei Li, Shizhao Wang, Junsheng Yuan, Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis, Desalination 494 (2020) 114654. 10.1016/j.desal.2020.114654. Anthony, Berry, Blondin (b0045) 2005; 25 Bi, Grace (b0110) 2010; 77 L.C. Feng, Z.M. Yi, Study on the Technology of Desulphuration of Flue Gas with Magnesium Oxide. 1996. Sichuan Environ. (04) (1996) CNKI:SUN:SCHJ.0.1996-04-011. Li, Wu, Liu, Zhu, Liu, Zhao (b1065) 2020; 392 Chen, Chen, Chiang (b0915) 2020; 393 Zeng, Gao, Zhang, Dong, Zhang, Zhang (b0985) 2014; 251 Xing, Liu, Qi, Wang, Wang, Zhang (b0685) 2020; 275 Jia, Yin, Yalin, Chen, Ding (b0865) 2017; 116 Cheng, Zhou, Yang, Wu, Fan (b0905) 2020; 88 Pandey, Biswas, Chakrabarti, Devotta (b0005) 2005; 356 G.Q. Dong, J. Wang, The Prospect on Technology and Application of FGD by Magnesium Oxide Scrubbing. Inorg. Chem. Ind. (01) (2005) 11-12. CNKI:SUN:WJYG.0.2005-01-004. Sun, Zhang, Zhu (b0145) 2021 Zhao, Zhang, Gao, Baleta, Liu, Li, Weng, Dai, Zheng, Gao (b0435) 2021; 150 Chen, Hwang (b0365) 2005; 154 Du, Yue, Wu, Ma, Hui (b0330) 2021; 383 Zermeño, Formosa, Aparicio, Guembe, Chimenos (b0645) 2015; 138 Córdoba (b0500) 2015; 144 Alobaid, Peters, Epple (b0160) 2021; 228 Xu, Wang, Yuan, Shao, Fan (b0325) 2021; 378 Zhao, Wang, Li, Liu, Zhuo, Chen, Wang, Xu, Sun (b0520) 2018; 321 Qin, Dong, Cui, Yao, Ma (b0410) 2019; 148 Yan, Bao, Yang, Fan, Shen (b0890) 2011; 42 Klingspor, Strmberg, Karlsson, Bjerle (b0295) 1984; 18 Huang, Riisager, Berg, Fehrmann (b0960) 2008; 279 Wilkes (b0925) 2002; 4 Junjie Bian, Shu Zhang, Jingwei Zhang, Xin Min, Chunhu Li, Supported manganese dioxide catalyst for seawater flue gas desulfurization application 189-190 (2012) 57-61. 10.1016/j.cej.2012.02.022. Feng, Zhao, Wang, Xia, Zhang, Huan, Ma (b0185) 2016; 30 Xiang, Sun, Wei, Wang, Boczkaj, Yoon, Chen (b0440) 2021; 163 Yang (b1045) 2012 Rubio, Teresa, Ana, Mastral (b0170) 1998; 36 Mo, Wu, Cheng, Li, Guan, Zhao (b0595) 2006; 06 Hui, Ge, Dou, Pan, Zhou (b0670) 2009; 23 Zhu, Ye, Bai, Wu, Liu, Yang (b0460) 2015; 129 Zheng, Kiil, Johnsson, Qin (b0275) 2002; 81 Vidal, Ollero, Gutiérrez Ortiz, Villanueva (b0765) 2007; 41 Zhou, Zhu, Peng, Liu, Zhang, Zhang (b0265) 2009; 170 L.M. Huang, Application and improvement of zinc oxide method desulphurization technology in lead and zinc smelters, Sulphuric Acid Industry (05) (2015) 42-45. CNKI:SUN:LSGY.0.2015-05-017. Rahimi, Hatamipour, Gholami (b0315) 2011; 89 Gisi, Molino, Notarnicola (b0480) 2017; 109 Gu, Chen (b0555) 2020; 271 Yan, Lu, Guo, Wang, Ji (b0700) 2014; 25 Zhang, You, Zhao, Chen, Qi (b0345) 2008; 42 Huang, Wu, Yang (b0895) 2020; 92 Zhou, Wei, Zhu, Wang, Wu (b0375) 2020; 290 Zhang, Xing, Liu, Qi, Wang (b0690) 2021; 266 Castro, Medeiros, Araújo, Cruz, Ribeiro, Oliveirac (b0385) 2017; 143 Gao, Ding, Du, Wu, Fang, Luo, Cen (b0825) 2010; 87 Korpela, Majanne, Salminen, Laari, Björkqvist (b0240) 2015; 48 Wang, Yao, Peng (b0835) 2020; 28 Sakai, Matsumoto, Sadakata (b0515) 2004; 13 Sun, Xie, Huang, Li, Li, Cui, Xu, Qu, Yan (b0610) 2021; 288 Niu, Zhang, Li, Guo (b0200) 2021; 293 Karlsson, Klingspor (b0225) 1987; 10 Ren, Hou, Wu, Liu, Chen (b1025) 2010; 114 Rashid (b1010) 2020; 321 Xie, Li, Guo, Gao, Yu (b0975) 2012; 20 Shen, Chen, Tong, Guo, Ni, Lu (b0635) 2013; 105 Bai, Shibuya, Masuda, Nishio, Kato (b0105) 1995; 84 Jiang, Li, Wang, Xu, Chu (b0545) 2018; 205 Ye, An, Zhang, Wang, Guo, Yu (b0880) 2021; 389 Zhang, Wang, Zhu, Wang, Zhang (b0870) 2018; 91 Nyman (b0750) 1991; 89 253 (2020) 120026. 10.1016/j.jclepro.2020.120026. Xiaoping Wang, Sulfite oxidation in seawater flue gas desulfurization by plate falling film corona-streamer discharge, 2013. F.Z. Wang, Technical Analysis of Flue Gas Desulfurization Technology Using Zinc Oxide as Absorbent for Zinc Smelters, Energy Saving Nonferrous Metall. (05) (2013) 44-48. CNKI:SUN:YJJN.0.2013-05-012. Li, Li, He (b0740) 2019; 7 X.M. Wang, Technology about dry desulfurization and semi-dry desulfurization, Electric Power Environ Protect 34(01) (2018) 45-48. CNKI:SUN:DLHB.0.2018-01-010. Wang, Ma, Zhang, Li (10.1016/j.seppur.2021.119849_b0885) 2020; 155 Jiang (10.1016/j.seppur.2021.119849_b0545) 2018; 205 Zhang (10.1016/j.seppur.2021.119849_b0345) 2008; 42 Liu (10.1016/j.seppur.2021.119849_b0070) 2004; 43 Sanders (10.1016/j.seppur.2021.119849_b0250) 1995; 34 Castro (10.1016/j.seppur.2021.119849_b0385) 2017; 143 10.1016/j.seppur.2021.119849_b0350 Zhang (10.1016/j.seppur.2021.119849_b0180) 2017; 210 Rahimi (10.1016/j.seppur.2021.119849_b0315) 2011; 89 Xiang (10.1016/j.seppur.2021.119849_b0440) 2021; 163 Dou (10.1016/j.seppur.2021.119849_b0470) 2009; 50 Karlsson (10.1016/j.seppur.2021.119849_b0225) 1987; 10 Yang (10.1016/j.seppur.2021.119849_b1045) 2012 Zhang (10.1016/j.seppur.2021.119849_b0140) 2010; 49 Xie (10.1016/j.seppur.2021.119849_b0975) 2012; 20 Feng (10.1016/j.seppur.2021.119849_b0185) 2016; 30 Cai (10.1016/j.seppur.2021.119849_b0280) 2020; 96 10.1016/j.seppur.2021.119849_b0580 10.1016/j.seppur.2021.119849_b0465 Pan (10.1016/j.seppur.2021.119849_b0050) 1991; 12 Zhao (10.1016/j.seppur.2021.119849_b0530) 2018; 261 Yan (10.1016/j.seppur.2021.119849_b0355) 2003; 23 Li (10.1016/j.seppur.2021.119849_b0550) 2020; 269 Vidal (10.1016/j.seppur.2021.119849_b0765) 2007; 41 Gupta (10.1016/j.seppur.2021.119849_b0115) 2000; 108 Li (10.1016/j.seppur.2021.119849_b0875) 2019; 146 Mo (10.1016/j.seppur.2021.119849_b0600) 2007; 02 Pandey (10.1016/j.seppur.2021.119849_b0005) 2005; 356 Zhang (10.1016/j.seppur.2021.119849_b0730) 2002; 02 Feng (10.1016/j.seppur.2021.119849_b0080) 2020; 267 Wang (10.1016/j.seppur.2021.119849_b0245) 2011; 11 Jia (10.1016/j.seppur.2021.119849_b0830) 2010; 164 10.1016/j.seppur.2021.119849_b0575 Rogers (10.1016/j.seppur.2021.119849_b0930) 2003; 302 Guo (10.1016/j.seppur.2021.119849_b0630) 2011; 90 Ng (10.1016/j.seppur.2021.119849_b0945) 2021; 127061 Nyman (10.1016/j.seppur.2021.119849_b0750) 1991; 89 Jiang (10.1016/j.seppur.2021.119849_b0495) 2019; 246 Zhang (10.1016/j.seppur.2021.119849_b1070) 2021; 272 Wang (10.1016/j.seppur.2021.119849_b0835) 2020; 28 Du (10.1016/j.seppur.2021.119849_b0270) 2020; 230 Bao (10.1016/j.seppur.2021.119849_b0590) 2011; 50 Shi (10.1016/j.seppur.2021.119849_b0785) 2009; 70 Hanjitsuwan (10.1016/j.seppur.2021.119849_b0560) 2020; 114 Tokumura (10.1016/j.seppur.2021.119849_b0755) 2006; 45 Huang (10.1016/j.seppur.2021.119849_b0965) 2006; 38 Lei (10.1016/j.seppur.2021.119849_b1060) 2019; 26 Yang (10.1016/j.seppur.2021.119849_b0230) 2000; 34 Chandara (10.1016/j.seppur.2021.119849_b0535) 2009; 29 Chen (10.1016/j.seppur.2021.119849_b0020) 2012; 118 Tian (10.1016/j.seppur.2021.119849_b0980) 2013; 3 Ma (10.1016/j.seppur.2021.119849_b0430) 2020; 153 10.1016/j.seppur.2021.119849_b0790 Niu (10.1016/j.seppur.2021.119849_b0200) 2021; 293 Wei (10.1016/j.seppur.2021.119849_b0090) 2006; 26 Shen (10.1016/j.seppur.2021.119849_b0635) 2013; 105 Linek (10.1016/j.seppur.2021.119849_b0650) 1981; 36 Wypiór (10.1016/j.seppur.2021.119849_b0505) 2020; 281 Huang (10.1016/j.seppur.2021.119849_b0895) 2020; 92 Li (10.1016/j.seppur.2021.119849_b1065) 2020; 392 Huang (10.1016/j.seppur.2021.119849_b0960) 2008; 279 Zhou (10.1016/j.seppur.2021.119849_b0260) 2005; 44 Zhang (10.1016/j.seppur.2021.119849_b0165) 2000; 05 Cao (10.1016/j.seppur.2021.119849_b0735) 2020; 3 Wilkes (10.1016/j.seppur.2021.119849_b0925) 2002; 4 10.1016/j.seppur.2021.119849_b0780 Wang (10.1016/j.seppur.2021.119849_b0370) 2015; 264 Wei (10.1016/j.seppur.2021.119849_b1040) 2012 Kallinikos (10.1016/j.seppur.2021.119849_b0455) 2010; 91 Wu (10.1016/j.seppur.2021.119849_b0605) 2008; 152 Chen (10.1016/j.seppur.2021.119849_b0420) 2020; 171 Zhang (10.1016/j.seppur.2021.119849_b0360) 2010; 2010 Hao (10.1016/j.seppur.2021.119849_b0910) 2019; 365 Cui (10.1016/j.seppur.2021.119849_b0510) 2021; 285 Yan (10.1016/j.seppur.2021.119849_b0665) 2014; 65 Zeng (10.1016/j.seppur.2021.119849_b0985) 2014; 251 Zheng (10.1016/j.seppur.2021.119849_b0275) 2002; 81 Li (10.1016/j.seppur.2021.119849_b0740) 2019; 7 Yan (10.1016/j.seppur.2021.119849_b0890) 2011; 42 Bai (10.1016/j.seppur.2021.119849_b0135) 1992; 71 Chen (10.1016/j.seppur.2021.119849_b0415) 2019; 343 Zhao (10.1016/j.seppur.2021.119849_b0520) 2018; 321 Tian (10.1016/j.seppur.2021.119849_b0565) 2020; 265 Yan (10.1016/j.seppur.2021.119849_b0700) 2014; 25 Feng (10.1016/j.seppur.2021.119849_b0335) 2019; 31 Guo (10.1016/j.seppur.2021.119849_b0290) 1996; 22 cr-split#-10.1016/j.seppur.2021.119849_b0625.2 Ye (10.1016/j.seppur.2021.119849_b0880) 2021; 389 cr-split#-10.1016/j.seppur.2021.119849_b0625.1 Bi (10.1016/j.seppur.2021.119849_b0110) 2010; 77 Korpela (10.1016/j.seppur.2021.119849_b0240) 2015; 48 Wei (10.1016/j.seppur.2021.119849_b0120) 2006; 49 Jia (10.1016/j.seppur.2021.119849_b0840) 2015; 6 Wang (10.1016/j.seppur.2021.119849_b0775) 2013; 97 Fang (10.1016/j.seppur.2021.119849_b0695) 2021; 551 Bian (10.1016/j.seppur.2021.119849_b0795) 2016; 101 Zermeño (10.1016/j.seppur.2021.119849_b0645) 2015; 138 Fang (10.1016/j.seppur.2021.119849_b0400) 2017; 342 Anthony (10.1016/j.seppur.2021.119849_b0045) 2005; 25 Guo (10.1016/j.seppur.2021.119849_b0285) 1998; 24 Chen (10.1016/j.seppur.2021.119849_b0365) 2005; 154 Wang (10.1016/j.seppur.2021.119849_b0525) 2017; 121 Yang (10.1016/j.seppur.2021.119849_b0540) 2020; 257 Zhou (10.1016/j.seppur.2021.119849_b0130) 2011; 205 Ma (10.1016/j.seppur.2021.119849_b0300) 1999; 77 Zhou (10.1016/j.seppur.2021.119849_b0265) 2009; 170 Du (10.1016/j.seppur.2021.119849_b0330) 2021; 383 10.1016/j.seppur.2021.119849_b0615 Gao (10.1016/j.seppur.2021.119849_b0825) 2010; 87 Hill (10.1016/j.seppur.2021.119849_b0215) 2000; 39 Córdoba (10.1016/j.seppur.2021.119849_b0500) 2015; 144 Deng (10.1016/j.seppur.2021.119849_b0990) 2017; 41 Pang (10.1016/j.seppur.2021.119849_b1050) 2013; 634–638 Xing (10.1016/j.seppur.2021.119849_b0685) 2020; 275 Ishizuka (10.1016/j.seppur.2021.119849_b0065) 2000; 39 Ma (10.1016/j.seppur.2021.119849_b0310) 2001; 80 Ren (10.1016/j.seppur.2021.119849_b1025) 2010; 114 Wu (10.1016/j.seppur.2021.119849_b0935) 2010; 43 10.1016/j.seppur.2021.119849_b0620 Yi (10.1016/j.seppur.2021.119849_b0450) 2008; 89 Shale (10.1016/j.seppur.2021.119849_b0820) 1971; 67 Wang (10.1016/j.seppur.2021.119849_b0425) 2020; 247 Mohammadi (10.1016/j.seppur.2021.119849_b1020) 2014; 193 Hui (10.1016/j.seppur.2021.119849_b0670) 2009; 23 He (10.1016/j.seppur.2021.119849_b0815) 2003; 44 10.1016/j.seppur.2021.119849_b0725 Zhang (10.1016/j.seppur.2021.119849_b0220) 2019; 04 Mo (10.1016/j.seppur.2021.119849_b0595) 2006; 06 Sun (10.1016/j.seppur.2021.119849_b0610) 2021; 288 Wang (10.1016/j.seppur.2021.119849_b0845) 2018; 331 Sakai (10.1016/j.seppur.2021.119849_b0515) 2004; 13 Shen (10.1016/j.seppur.2021.119849_b0675) 2012; 51 Dahlan (10.1016/j.seppur.2021.119849_b0075) 2009; 161 Zhao (10.1016/j.seppur.2021.119849_b0435) 2021; 150 Zhang (10.1016/j.seppur.2021.119849_b0870) 2018; 91 Cao (10.1016/j.seppur.2021.119849_b0025) 2013; 32 Zhou (10.1016/j.seppur.2021.119849_b0375) 2020; 290 Hao (10.1016/j.seppur.2021.119849_b0150) 2012; 215 Gu (10.1016/j.seppur.2021.119849_b0555) 2020; 271 Wei (10.1016/j.seppur.2021.119849_b0100) 1997; 91 Nie (10.1016/j.seppur.2021.119849_b1055) 2019; 369 Anderson (10.1016/j.seppur.2021.119849_b0970) 2006; 110 10.1016/j.seppur.2021.119849_b0040 Gisi (10.1016/j.seppur.2021.119849_b0480) 2017; 109 Bai (10.1016/j.seppur.2021.119849_b0105) 1995; 84 Neathery (10.1016/j.seppur.2021.119849_b0205) 1996; 42 Graf (10.1016/j.seppur.2021.119849_b0085) 1986 Zhang (10.1016/j.seppur.2021.119849_b0190) 2020; 10 Qin (10.1016/j.seppur.2021.119849_b0410) 2019; 148 Cheng (10.1016/j.seppur.2021.119849_b0905) 2020; 88 Qu (10.1016/j.seppur.2021.119849_b0490) 2021; 29 10.1016/j.seppur.2021.119849_b0720 Xu (10.1016/j.seppur.2021.119849_b0325) 2021; 378 Liu (10.1016/j.seppur.2021.119849_b0175) 2003; 12 Zhang (10.1016/j.seppur.2021.119849_b0995) 2016; 55 Sedman (10.1016/j.seppur.2021.119849_b0255) 1992; 42 Kaiser (10.1016/j.seppur.2021.119849_b0055) 2000; 39 Thriel (10.1016/j.seppur.2021.119849_b0010) 2010; 196 10.1016/j.seppur.2021.119849_b0390 Getler (10.1016/j.seppur.2021.119849_b0210) 1979; 29 10.1016/j.seppur.2021.119849_b0030 Skopec (10.1016/j.seppur.2021.119849_b0195) 2021; 283 Oikawa (10.1016/j.seppur.2021.119849_b0760) 2003; 22 10.1016/j.seppur.2021.119849_b0035 Ragipani (10.1016/j.seppur.2021.119849_b0405) 2021; 121 Li (10.1016/j.seppur.2021.119849_b1005) 2017; 31 Rashid (10.1016/j.seppur.2021.119849_b1010) 2020; 321 10.1016/j.seppur.2021.119849_b0710 10.1016/j.seppur.2021.119849_b0810 Chen (10.1016/j.seppur.2021.119849_b0915) 2020; 393 Jiang (10.1016/j.seppur.2021.119849_b0340) 1995; 85 Martin (10.1016/j.seppur.2021.119849_b0015) 2014; 56 Marocco (10.1016/j.seppur.2021.119849_b0060) 2013; 108 Jia (10.1016/j.seppur.2021.119849_b0865) 2017; 116 Li (10.1016/j.seppur.2021.119849_b0570) 2021; 286 Tong (10.1016/j.seppur.2021.119849_b0680) 2015; 258 Wang (10.1016/j.seppur.2021.119849_b0860) 2015; 88 Klingspor (10.1016/j.seppur.2021.119849_b0295) 1984; 18 Srivastava (10.1016/j.seppur.2021.119849_b0445) 2001; 20 Wang (10.1016/j.seppur.2021.119849_b0660) 2013; 258–259 Sun (10.1016/j.seppur.2021.119849_b0145) 2021 Zhou (10.1016/j.seppur.2021.119849_b0395) 2017; 327 Xu (10.1016/j.seppur.2021.119849_b0320) 2000; 4 Ying (10.1016/j.seppur.2021.119849_b0950) 2011; 175 Zhang (10.1016/j.seppur.2021.119849_b0940) 2019; 7 Zhu (10.1016/j.seppur.2021.119849_b0460) 2015; 129 10.1016/j.seppur.2021.119849_b0805 Wu (10.1016/j.seppur.2021.119849_b0155) 2018; 351 Zermeño (10.1016/j.seppur.2021.119849_b0640) 2015; 262 Bromley (10.1016/j.seppur.2021.119849_b0745) 1972; 7 Jin (10.1016/j.seppur.2021.119849_b0955) 2011; 115 Vidal (10.1016/j.seppur.2021.119849_b0770) 2001; 35 Chen (10.1016/j.seppur.2021.119849_b1030) 2015; 61 Zhang (10.1016/j.seppur.2021.119849_b0690) 2021; 266 Alobaid (10.1016/j.seppur.2021.119849_b0160) 2021; 228 Scheidema (10.1016/j.seppur.2021.119849_b0705) 2011; 50 Rubio (10.1016/j.seppur.2021.119849_b0170) 1998; 36 Velden (10.1016/j.seppur.2021.119849_b0125) 2007; 62 Li (10.1016/j.seppur.2021.119849_b0380) 2019; 225 Liu (10.1016/j.seppur.2021.119849_b1035) 2020; 148 Cotton (10.1016/j.seppur.2021.119849_b0920) 2014; 63 Sipos (10.1016/j.seppur.2021.119849_b0655) 1998; 75 Liu (10.1016/j.seppur.2021.119849_b0855) 2021; 14 |
| References_xml | – volume: 38 start-page: 4027 year: 2006 end-page: 4029 ident: b0965 article-title: Reversible physical absorption of SO2 by ionic liquids publication-title: Chem. Commun. – volume: 43 start-page: 184 year: 2004 end-page: 189 ident: b0070 article-title: Effect of NaOH Addition on the Reactivities of Iron Blast Furnace Slag/Hydrated Lime Sorbents for Low-Temperature Flue Gas Desulfurization publication-title: Ind. Eng. Chem. Res. – volume: 164 start-page: 132 year: 2010 end-page: 138 ident: b0830 article-title: Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process publication-title: Chem. Eng. J. – volume: 272 year: 2021 ident: b1070 article-title: Research on red mud-limestone modified desulfurization mechanism and engineering application publication-title: Sep. Purif. Technol. – volume: 80 start-page: 673 year: 2001 end-page: 680 ident: b0310 article-title: Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed publication-title: Fuel – reference: K.M. Zhang, Sustainable development has gradually changed from passive to conscious, Low Carbon World 04 (2012) 52-53. CNKI:SUN:DTSJ.0.2012-04-015. – volume: 24 start-page: 279 year: 1998 end-page: 284 ident: b0285 article-title: The Effect of Operating Conditions on SO2 Removal in Semi-Dry Desulfurization Process by Powder-Particle Spouted Bed publication-title: Kagaku Kogaku Ronbunshu – volume: 6 start-page: 997 year: 2015 end-page: 1003 ident: b0840 article-title: A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system publication-title: Atmos. Pollut. Res. – volume: 22 start-page: 1400 year: 1996 end-page: 1407 ident: b0290 article-title: Process Development of Effective Semi-Dry Flue Gas Desulfurization by Powder-Particle Spouted Bed [J] publication-title: Kagaku Kogaku Ronbunshu – volume: 155 year: 2020 ident: b0885 article-title: A numerical study of the ammonia desulfurization in the spray scattering tower publication-title: Chem. Eng. Process. – volume: 228 year: 2021 ident: b0160 article-title: Experimental measurements for Polish lignite combustion in a 1 MWth circulating fluidized bed during load changes publication-title: Energy – reference: Jie Liu, Mengxuan Deng, Junsheng Yuan, Zhiyong Ji, Yingying Zhao, Xiaofu Guo, An aeration membrane absorption seawater flue gas desulfurization process intensified by combining dual-phase flow and oxidation reaction, Chem. Eng. Process. - Process Intensificat. 153 (2020) 107935. 10.1016/j.cep.2020.107935. – volume: 12 start-page: 62 year: 1991 end-page: 68 ident: b0050 article-title: Overview of desulphurization technologies by in-furnace calcuium-based sorbent injection and main influence factors on SO2 capture publication-title: Chinese J. Environ. Sci. – volume: 108 start-page: 21 year: 2000 end-page: 31 ident: b0115 article-title: Evaluation of the gas–solid suspension density in CFB risers with exit effects publication-title: Powder Technol. – volume: 11 start-page: 1023 year: 2011 end-page: 1208 ident: b0245 article-title: Effect of Humidification Water on Semi-dry Flue Gas Desulfurization publication-title: Proc. Environ. Sci. – volume: 392 start-page: 12270 year: 2020 ident: b1065 article-title: Simultaneous removal of SO2 and no using a novel method with red mud as absorbent combined with O publication-title: J. Hazard. Mater. – volume: 39 start-page: 1390 year: 2000 end-page: 1396 ident: b0065 article-title: Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 104 year: 1987 end-page: 112 ident: b0225 article-title: Tentative modelling of spray-dry scrubbing of SO2 publication-title: Chem. Eng. Technol. – volume: 246 start-page: 249 year: 2019 end-page: 256 ident: b0495 article-title: A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet publication-title: Environ. Pollut. – volume: 264 start-page: 479 year: 2015 end-page: 486 ident: b0370 article-title: Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model publication-title: Chem. Eng. J. – volume: 7 start-page: 77 year: 1972 end-page: 84 ident: b0745 article-title: Use of sea water to scrub sulfur dioxide from stack gases publication-title: Int. J. Sulfur Chem. – volume: 81 start-page: 1899 year: 2002 end-page: 1905 ident: b0275 article-title: Use of spray dry absorption product in wet flue gas desulphurization plants: pilot-scale experiments publication-title: Fuel – volume: 321 year: 2020 ident: b1010 article-title: Ionic liquids: innovative fluids for sustainable gas separation from industrial waste stream publication-title: J. Mol. Liq. – volume: 30 start-page: 6578 year: 2016 end-page: 6584 ident: b0185 article-title: Reduction of SO2 with CO to Elemental Sulfur in Activated Carbon Bed publication-title: Energy Fuels – volume: 42 start-page: 259 year: 1996 end-page: 268 ident: b0205 article-title: Model for Flue-Gas Desulfurization in a Circulating Dry Scrubber publication-title: AIChE J. – volume: 265 year: 2020 ident: b0565 article-title: Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders publication-title: Constr. Build. Mater. – volume: 77 start-page: 356 year: 1999 end-page: 362 ident: b0300 article-title: Removal of SO2 from flue gas using a new semidry flue gas desulfurization process with a powder-particle spouted bed publication-title: Can. J. Chem. Eng. – volume: 257 year: 2020 ident: b0540 article-title: Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials publication-title: Constr. Build. Mater. – volume: 36 start-page: 263 year: 1998 end-page: 268 ident: b0170 article-title: Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars publication-title: Carbon – volume: 383 start-page: 471 year: 2021 end-page: 483 ident: b0330 article-title: Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed publication-title: Powder Technol. – volume: 205 start-page: 589 year: 2018 end-page: 598 ident: b0545 article-title: Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete publication-title: J. Cleaner Prod. – volume: 210 start-page: 738 year: 2017 end-page: 747 ident: b0180 article-title: Multi-stage semi-coke activation for the removal of SO2 and NO publication-title: Fuel – volume: 50 start-page: 9550 year: 2011 end-page: 9556 ident: b0705 article-title: Decomposition Thermodynamics of Magnesium Sulfate publication-title: Ind. Eng. Chem. Res. – volume: 129 start-page: 15 year: 2015 end-page: 23 ident: b0460 article-title: A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization publication-title: Fuel Process. Technol. – volume: 258 year: 2019 ident: b0485 article-title: An investigation on data mining and operating optimization for wet flue gas desulfurization systems publication-title: Fuel – volume: 31 start-page: 323 year: 2019 end-page: 331 ident: b0335 article-title: Numerical simulation of semi-dry flue gas desulfurization process in the powder-particle spouted bed. 2020 publication-title: Adv. Powder Technol. – volume: 85 start-page: 115 year: 1995 end-page: 126 ident: b0340 article-title: The use of a circulating fluidized bed absorber for the control of sulfur dioxide emissions by calcium oxide sorbent via in situ hydration publication-title: Powder Technol. – volume: 89 start-page: 52 year: 1991 end-page: 54 ident: b0750 article-title: Seawater Scrubbing Removes SO2 from Refinery Flue Gases publication-title: Oil Gas J. – volume: 127061 year: 2021 ident: b0945 article-title: A Review on Dry-based and Wet-based Catalytic Sulphur Dioxide (SO2) Reduction Technologies publication-title: J. Hazard. Mater. – volume: 293 year: 2021 ident: b0200 article-title: Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO publication-title: Fuel – volume: 343 start-page: 122 year: 2019 end-page: 128 ident: b0415 article-title: Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device publication-title: Powder Technol. – volume: 286 year: 2021 ident: b0570 article-title: Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete publication-title: Constr. Build. Mater. – volume: 121 start-page: 82 year: 2017 end-page: 92 ident: b0525 article-title: Research on saline-alkali soil amelioration with FGD gypsum publication-title: Resour. Conserv. Recycl. – volume: 225 year: 2019 ident: b0380 article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum publication-title: Fuel – reference: L.M. Huang, Application and improvement of zinc oxide method desulphurization technology in lead and zinc smelters, Sulphuric Acid Industry (05) (2015) 42-45. CNKI:SUN:LSGY.0.2015-05-017. – volume: 50 start-page: 2547 year: 2009 end-page: 2553 ident: b0470 article-title: Prediction of SO publication-title: Energy Convers. Manage. – volume: 65 start-page: 487 year: 2014 end-page: 494 ident: b0665 article-title: Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization publication-title: Appl. Therm. Eng. – reference: Junjie Bian, Shu Zhang, Jingwei Zhang, Xin Min, Chunhu Li, Supported manganese dioxide catalyst for seawater flue gas desulfurization application 189-190 (2012) 57-61. 10.1016/j.cej.2012.02.022. – reference: L.C. Feng, Z.M. Yi, Study on the Technology of Desulphuration of Flue Gas with Magnesium Oxide. 1996. Sichuan Environ. (04) (1996) CNKI:SUN:SCHJ.0.1996-04-011. – volume: 90 start-page: 7 year: 2011 end-page: 10 ident: b0630 article-title: Dissolution rate of magnesium hydrate for wet flue gas desulfurization publication-title: Fuel – volume: 258 start-page: 70 year: 2015 end-page: 74 ident: b0680 article-title: Experimental investigation of MgSO3 oxidation process by catalysis in the magnesium desulfurization publication-title: Catal. Today – volume: 144 start-page: 274 year: 2015 end-page: 286 ident: b0500 article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs publication-title: Fuel – volume: 41 start-page: 2090 year: 2017 end-page: 2097 ident: b0990 article-title: Investigation of furoate based ionic liquid as efficient SO2 absorbent publication-title: New J. Chem. – volume: 36 start-page: 3083 year: 2005 end-page: 3089 ident: b1015 article-title: Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reaction publication-title: ChemInform – volume: 153 year: 2020 ident: b0430 article-title: Jet absorption and desulfurization technology of sulfur waste gas in the acrylonitrile apparatus publication-title: Chem. Eng. Process. – volume: 29 start-page: 1675 year: 2009 end-page: 1679 ident: b0535 article-title: Use of waste gypsum to replace natural gypsum as set retarders in portland cement publication-title: Waste Manage. – volume: 36 start-page: 1747 year: 1981 end-page: 1768 ident: b0650 article-title: Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas—liquid contactors publication-title: Chem. Eng. Sci. – volume: 50 start-page: 828 year: 2011 end-page: 835 ident: b0590 article-title: Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process publication-title: Chem. Eng. Process. Process Intensif. – volume: 103 start-page: 207 year: 2021 end-page: 218 ident: b0850 article-title: Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization publication-title: J. Environ. Sci. – volume: 4 start-page: 9 year: 2000 end-page: 18 ident: b0320 article-title: A new semi-dry desulfurization process using a powder-particle spouted bed publication-title: Adv. Environ. Res. – volume: 302 year: 2003 ident: b0930 article-title: Ionic liquids-solvents of the future? publication-title: Science – volume: 88 start-page: 284 year: 2015 end-page: 291 ident: b0860 article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower publication-title: J. Energy Inst. – volume: 290 year: 2020 ident: b0375 article-title: Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directional growth control publication-title: J. Cleaner Prod. – volume: 44 start-page: 2175 year: 2003 end-page: 2188 ident: b0815 article-title: Temperature impact on SO2 removal efficiency by ammonia gas scrubbing publication-title: Energy Convers. Manage. – volume: 91 start-page: 619 year: 2018 end-page: 629 ident: b0870 article-title: Full-scale simulation of flow field in ammonia-based wet flue gas desulfurization double tower publication-title: J. Energy Inst. – volume: 285 year: 2021 ident: b0510 article-title: Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization publication-title: Fuel – volume: 63 start-page: 6404 year: 2014 end-page: 6412 ident: b0920 article-title: Engineering Scale-up Challenges, and Effects of SO2 on the Calcium Looping Cycle for Post Combustion CO2 Capture publication-title: Energy Procedia – volume: 279 start-page: 170 year: 2008 end-page: 176 ident: b0960 article-title: Tuning ionic liquids for high gas solubility and reversible gas sorption publication-title: J. Mol. Catal. A: Chem. – volume: 55 start-page: 11012 year: 2016 end-page: 11021 ident: b0995 article-title: Cyano-containing protic ionic liquids for highly selective absorption of SO2 from CO2: Experimental study and theoretical analysis publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 467 year: 2019 end-page: 478 ident: b1060 article-title: Removal of SO publication-title: J. Central South Univ. – volume: 91 start-page: 189 year: 1997 end-page: 195 ident: b0100 article-title: Mass flux profiles in a high density circulating fluidized bed publication-title: Powder Technol. – volume: 114 start-page: 2175 year: 2010 end-page: 2179 ident: b1025 article-title: Properties of ionic liquids absorbing SO2 and the mechanism of the absorption publication-title: J. Phys. Chem. B – volume: 34 start-page: 302 year: 1995 end-page: 307 ident: b0250 article-title: Heated Fly Ash/Hydrated Lime Slurries for SO2 Removal in Spray Dryer Absorbers publication-title: Ind. Eng. Chem. Res. – volume: 261 start-page: 115 year: 2018 end-page: 124 ident: b0530 article-title: Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China publication-title: Agric. Ecosyst. Environ. – volume: 23 start-page: 2552 year: 2009 end-page: 2556 ident: b0670 article-title: Thermogravimetric Kinetics of MgSO3·6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization publication-title: Energy Fuels – volume: 379 year: 2020 ident: b0900 article-title: Study on the ammonia emission characteristics in an ammonia-based WFGD system publication-title: Chem. Eng. J. – volume: 215 start-page: 2012 year: 2012 ident: b0150 article-title: Composite fluidization in a circulating fluidized bed for flue gas desulfurization publication-title: Powder Technol. – volume: 10 start-page: 22 year: 2020 end-page: 27 ident: b0190 article-title: Effect of activated coke diameter on SO publication-title: Water Conserv. Electric Power Mach. – volume: 36 start-page: 156 year: 2013 end-page: 166 ident: b0235 article-title: Influence of the Lime Slurry Droplet Spectrum on the Efficiency of Semi-Dry Flue Gas Desulfurization publication-title: Chem. Eng. Technol. – volume: 351 start-page: 1104 year: 2018 end-page: 1114 ident: b0155 article-title: Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization publication-title: Chem. Eng. J. – volume: 378 start-page: 191 year: 2021 end-page: 201 ident: b0325 article-title: Numerical simulation of semi-dry desulfurization spouted bed using the discrete element method (DEM) publication-title: Powder Technol. – volume: 369 start-page: 503 year: 2019 end-page: 511 ident: b1055 article-title: Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation publication-title: J. Hazard. Mater. – volume: 96 start-page: 64 year: 2020 end-page: 71 ident: b0280 article-title: Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas publication-title: J. Environ. Sci. – volume: 06 start-page: 718 year: 2006 end-page: 723 ident: b0595 article-title: Experimental and Theoretical Studies on Desulfurization Efficiency of Dual-alkali FGD System in a RST Scrubber publication-title: Chinese J. Process Eng. – volume: 267 year: 2020 ident: b0080 article-title: Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization publication-title: Fuel – volume: 149 start-page: 610 year: 2021 end-page: 618 ident: b0855 article-title: Process optimization of S (IV) oxidation in flue gas desulfurization scrubbers publication-title: Process Saf. Environ. Prot. – volume: 84 start-page: 75 year: 1995 end-page: 81 ident: b0105 article-title: Distinction between upward and downward flows in circulating fluidized beds publication-title: Powder Technol. – volume: 04 start-page: 14 year: 2019 end-page: 18 ident: b0220 article-title: Application of SDS Dry Desulfurization and SCR Medium and Low Temperature Denitration Technology in Coke Oven Flue Gas Treatment publication-title: Chem. Equipment Technol. – reference: 253 (2020) 120026. 10.1016/j.jclepro.2020.120026. – reference: X.M. Wang, Technology about dry desulfurization and semi-dry desulfurization, Electric Power Environ Protect 34(01) (2018) 45-48. CNKI:SUN:DLHB.0.2018-01-010. – volume: 205 start-page: 208 year: 2011 end-page: 216 ident: b0130 article-title: Hydrodynamics of gas–solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization publication-title: Powder Technol. – volume: 20 start-page: 140 year: 2012 end-page: 145 ident: b0975 article-title: Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization publication-title: Chin. J. Chem. Eng. – volume: 193 start-page: 60 year: 2014 end-page: 68 ident: b1020 article-title: Molecular investigation of SO2 gas absorption by ionic liquids: effects of anion type publication-title: J. Mol. Liq. – volume: 161 start-page: 570 year: 2009 end-page: 574 ident: b0075 article-title: Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature publication-title: J. Hazard. Mater. – volume: 150 start-page: 453 year: 2021 end-page: 463 ident: b0435 article-title: Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system publication-title: Process Saf. Environ. Prot. – volume: 365 start-page: 282 year: 2019 end-page: 290 ident: b0910 article-title: Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption publication-title: Chem. Eng. J. – volume: 49 start-page: 11464 year: 2010 end-page: 11470 ident: b0140 article-title: Effect of Internal Structure on Flue Gas Desulfurization with Rapidly Hydrated Sorbent in a Circulating Fluidized Bed at Moderate Temperatures publication-title: Ind. Eng. Chem. Res. – volume: 230 year: 2020 ident: b0270 article-title: Desulfurization and denitrification experiments in SDA system: A new high-efficient semi-dry process by NaClO2 publication-title: Sep. Purif. Technol. – volume: 03 start-page: 25 year: 2001 end-page: 27 ident: b0585 article-title: Research on Main Influence Factors of Flue Gas Desulfurization by Sodium-Calcium Dual-alkali Scrubbi publication-title: Environ. Sci. Technol. – volume: 247 year: 2020 ident: b0425 article-title: Wet flue gas desulfurization using micro vortex flow scrubber: Characteristics, modeling and simulation publication-title: Sep. Purif. Technol. – volume: 29 start-page: 1270 year: 1979 end-page: 1274 ident: b0210 article-title: Modeling the Spray Absorption Process for SO2 Removal publication-title: J. Air Pollution Control Assoc. – reference: Xiaoping Wang, Sulfite oxidation in seawater flue gas desulfurization by plate falling film corona-streamer discharge, 2013. – volume: 42 start-page: 1705 year: 2008 end-page: 1710 ident: b0345 article-title: Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization publication-title: Environ. Sci. Technol. – volume: 87 start-page: 2647 year: 2010 end-page: 2651 ident: b0825 article-title: Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization publication-title: Appl. Energy – volume: 331 start-page: 416 year: 2018 end-page: 424 ident: b0845 article-title: Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process publication-title: Chem. Eng. J. – volume: 25 start-page: 1709 year: 2014 end-page: 1714 ident: b0700 article-title: Research on the thermal decomposition and kinetics of byproducts from MgO wet flue gas desulfurization publication-title: Adv. Powder Technol. – volume: 170 start-page: 436 year: 2009 end-page: 442 ident: b0265 article-title: The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process publication-title: J. Hazard. Mater. – volume: 196 start-page: 42 year: 2010 end-page: 50 ident: b0010 article-title: Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2) publication-title: Toxicol. Lett. – volume: 89 start-page: 1025 year: 2008 end-page: 1032 ident: b0450 article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants publication-title: Fuel Process. Technol. – volume: 23 start-page: 173 year: 2003 end-page: 177 ident: b0355 article-title: Investigation on flue gas desulfurization in a circulating fluidized bed publication-title: Proc. CSEE – reference: N.Q. Yan, Y. Shi, Z.B. Wu, Y.P. Li, S. Li, T.E. Tan, Process of Dual-Alkali FGD in a Rotating-Stream-Tray Scrubbe, Environ. Sci. 05 (1998) 72-74. CNKI:SUN:HJKZ.0.1998-05-019. – volume: 143 start-page: 173 year: 2017 end-page: 187 ident: b0385 article-title: Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates publication-title: Energy Convers. Manage. – volume: 356 start-page: 571 year: 2005 end-page: 622 ident: b0005 article-title: Flue gas desulfurization: physicochemical and biotechnological approaches publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 18 start-page: 239 year: 1984 end-page: 247 ident: b0295 article-title: Similarities between lime and limestone in wet—dry scrubbing publication-title: Chem. Eng. Process. Process Intensif. – volume: 275 year: 2020 ident: b0685 article-title: Superior energy-saving catalyst of Mn@ZIF67 for reclaiming byproduct in wet magnesia desulfurization publication-title: Appl. Catal. B – reference: W. Song, J. Zhou, B. Wang, S. Li, J. Han, New insight into investigation of reduction of desulfurization ash by pyrite for clean generation SO – volume: 163 year: 2021 ident: b0440 article-title: Numerical investigation on distribution characteristics of oxidation air in a lime slurry desulfurization system with rotary jet agitators publication-title: Chem. Eng. Process. – volume: 42 start-page: 103 year: 1992 end-page: 110 ident: b0255 article-title: Current Status of the ADVACATE Process for Flue Gas Desulfurization publication-title: J. Air Waste Manag. Assoc. – volume: 262 start-page: 268 year: 2015 end-page: 277 ident: b0640 article-title: Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by-products publication-title: Chem. Eng. J. – volume: 269 year: 2020 ident: b0550 article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag publication-title: J. Cleaner Prod. – volume: 25 start-page: 265 year: 2005 end-page: 279 ident: b0045 article-title: LIFAC ash-strategies for management publication-title: Waste Manage. – volume: 30 start-page: 2251 year: 2004 end-page: 2260 ident: b0715 article-title: Study on utilizing zinc and lead-bearing metallurgical dust as sulfur absorbent during briquette combustion. 2005 publication-title: Energy – volume: 288 year: 2021 ident: b0610 article-title: Novel product-adjustable technology using Wellman-Lord method coupled with sodium-alkali for SO publication-title: Fuel – volume: 118 start-page: 101 year: 2012 end-page: 106 ident: b0020 article-title: Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES) publication-title: Environ. Res. – reference: F.Z. Wang, Technical Analysis of Flue Gas Desulfurization Technology Using Zinc Oxide as Absorbent for Zinc Smelters, Energy Saving Nonferrous Metall. (05) (2013) 44-48. CNKI:SUN:YJJN.0.2013-05-012. – volume: 97 start-page: 7 year: 2013 end-page: 15 ident: b0775 article-title: Model study of sulfite oxidation in seawater flue gas desulfurization by cylindrical wetted-wall corona-streamer discharge publication-title: Chem. Eng. Sci. – volume: 13 start-page: 65 year: 2004 end-page: 80 ident: b0515 article-title: Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content in Corn Grains publication-title: Soil Sediment Contam. – start-page: 317 year: 1986 end-page: 327 ident: b0085 article-title: First operating experience with a dry flue gas desulfurization (FGD) process using a circulating fluid bed (FGD-CFB) publication-title: Circulat. Fluidized Bed Technol. – volume: 49 start-page: 3338 year: 2006 end-page: 3342 ident: b0120 article-title: Characterizing particle dispersion by image analysis in ICFB publication-title: Int. J. Heat Mass Transf. – volume: 12 start-page: 2217 year: 2003 end-page: 2223 ident: b0175 article-title: SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions publication-title: Carbon – volume: 56 start-page: 33 year: 2014 end-page: 39 ident: b0015 article-title: Community health risk assessment of primary aluminum smelter emissions publication-title: J. Occup. Environ. Med. – volume: 77 start-page: 223 year: 2010 end-page: 230 ident: b0110 article-title: Flow Patterns in High-Velocity Fluidized Beds and Pneumatic Conveying publication-title: Can. J. Chem. Eng. – volume: 148 start-page: 280 year: 2019 end-page: 290 ident: b0410 article-title: Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers publication-title: Chem. Eng. Res. Des. – volume: 138 start-page: 30 year: 2015 end-page: 36 ident: b0645 article-title: Transposition of wet flue gas desulfurization using MgO by-products: From laboratory discontinuous batch reactor to pilot scrubber publication-title: Fuel Process. Technol. – reference: Yingying Zhao, Lurong Wang, Zhiyong Ji, Jie Liu, Xiaofu Guo, Fei Li, Shizhao Wang, Junsheng Yuan, Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis, Desalination 494 (2020) 114654. 10.1016/j.desal.2020.114654. – volume: 55 start-page: 4643 year: 2000 end-page: 4652 ident: b0305 article-title: Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed publication-title: Chem. Eng. Sci. – volume: 91 start-page: 1794 year: 2010 end-page: 1802 ident: b0455 article-title: Simulation of the operation of an industrial wet flue gas desulfurization system publication-title: Fuel Process. Technol. – reference: R.K. Srivastava, Controlling SO2 Emissions: A Review of Technologies. U.S. Environmental Protection Agency Office of Research and Development Washington, D.C. 20460, 2000, pp. 3-19. – volume: 251 start-page: 248 year: 2014 end-page: 256 ident: b0985 article-title: Efficient and reversible capture of SO2 by pyridinium-based ionic liquids publication-title: Chem. Eng. J. – volume: 148 start-page: 107793 year: 2020 ident: b1035 article-title: Desulfurization intensification by ionic liquid in a rotating packed bed publication-title: Chem. Eng. Process. - Process Intensification – volume: 551 start-page: 149478 year: 2021 ident: b0695 article-title: Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization publication-title: Appl. Surf. Sci. – volume: 389 start-page: 178 year: 2021 end-page: 188 ident: b0880 article-title: Process simulation on atomization and evaporation of desulfurization wastewater and its application publication-title: Powder Technol. – volume: 22 start-page: 67 year: 2003 end-page: 73 ident: b0760 article-title: Seawater flue gas desulfurization: its technical implications and performance results publication-title: Environ. Prog. – volume: 75 start-page: 1603 year: 1998 end-page: 1605 ident: b0655 article-title: Inhibition of Sulfite Oxidation by Phenols: Screening Antioxidant Behavior with a Clark Oxygen Sensor publication-title: J. Chem. Ed. – volume: 634–638 start-page: 198 year: 2013 end-page: 203 ident: b1050 article-title: Analysis of alumina red mud wet flue gas desulfurization (FGD) technology publication-title: Adv. Mater. Res. – volume: 283 year: 2021 ident: b0195 article-title: Dry additive desulfurization in oxyfuel bubbling fluidized bed combustor publication-title: Fuel – volume: 338 start-page: 184 year: 2018 end-page: 190 ident: b0800 article-title: Integrated electrochemical-aerating oxidation in recovery system of seawater flue gas desulfurization publication-title: Chem. Eng. J. – volume: 7 year: 2019 ident: b0740 article-title: Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid publication-title: J. Environ. Chem. Eng. – volume: 3 start-page: 1 year: 2020 end-page: 9 ident: b0735 article-title: Research on the oxidation characteristics of zinc sulfite in the zinc oxide desulfurization process publication-title: Environ. Technol. – volume: 393 year: 2020 ident: b0915 article-title: Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification publication-title: Chem. Eng. J. – volume: 62 start-page: 2139 year: 2007 end-page: 2153 ident: b0125 article-title: Solids mixing in the riser of a circulating fluidized bed publication-title: Chem. Eng. Sci. – volume: 44 start-page: 8830 year: 2005 end-page: 8836 ident: b0260 article-title: Study on a Novel Semidry Flue Gas Desulfurization with Multifluid Alkaline Spray Generator publication-title: Ind. Eng. Chem. Res. – volume: 146 start-page: 117 year: 2019 end-page: 129 ident: b0875 article-title: Evaporation experiment and numerical simulation study of desulfurization wastewater in high-temperature raw gas publication-title: Chem. Eng. Res. Des. – volume: 281 year: 2020 ident: b0505 article-title: Effect of ammonia and ammonium compounds on wet-limestone flue gas desulfurization process from a coal-based power plant – Preliminary industrial scale study publication-title: Fuel – reference: H.Y. Zhang, Industrial Application of Technology of Using Zinc Oxide Method to Abosorb low-concentration SO2 Fume, Nonferrous Metals Des., (03) (2003) 51-55. DOI:CNKI:SUN:YJSS.0.2003-03-012. – reference: K.H. Wang, R.J. Biolchini, K.L. Legatski, Sodium-Limestone Double Alkali Flue Gas Desulfurization Method [P], US Pat.: 4 410500, 1983-10-18, 1983. – volume: 70 start-page: 212 year: 2009 end-page: 218 ident: b0785 article-title: Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process publication-title: Sep. Purif. Technol. – volume: 258–259 start-page: 61 year: 2013 end-page: 69 ident: b0660 article-title: Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid publication-title: J. Hazard. Mater. – volume: 26 start-page: 12 year: 2006 end-page: 18 ident: b0090 article-title: Numerical simulation study on the optimization of gas–solid two-phase flows in a desulfurization tower publication-title: Proc. CSEE – volume: 101 start-page: 117 year: 2016 end-page: 123 ident: b0795 article-title: Modified clinoptilolite catalysts for seawater flue gas desulfurization application: Preparation, characterization and kinetic evaluation publication-title: Process Saf. Environ. Prot. – volume: 154 start-page: 14 year: 2005 end-page: 23 ident: b0365 article-title: Flue gas desulfurization in an internally circulating fluidized bed reactor publication-title: Powder Technol. – volume: 28 start-page: 2457 year: 2020 end-page: 2466 ident: b0835 article-title: Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption publication-title: Chin. J. Chem. Eng. – volume: 31 start-page: 1771 year: 2017 end-page: 1777 ident: b1005 article-title: Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas publication-title: Energy Fuels – volume: 67 start-page: 52 year: 1971 end-page: 57 ident: b0820 article-title: Removal of sulfur and nitrogen oxides from stack gases by ammonia publication-title: Chem. Eng. Prog. Symp. Ser. – volume: 41 start-page: 7114 year: 2007 end-page: 7119 ident: b0765 article-title: Catalytic Seawater flue gas desulfurization process: An experimental pilot plant study publication-title: Environ. Sci. Technol. – volume: 342 start-page: 436 year: 2017 end-page: 445 ident: b0400 article-title: A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater publication-title: J. Hazard. Mater. – volume: 115 start-page: 6585 year: 2011 end-page: 6591 ident: b0955 article-title: Solubilities and thermodynamic properties of SO2 in ionic liquids publication-title: J. Phys. Chem. B – volume: 19 start-page: 73 year: 2005 end-page: 78 ident: b0095 article-title: Dry Desulfurization in a Circulating Fluidized Bed (CFB) with Chain Reactions at Moderate Temperatures publication-title: Energy Fuels – reference: H.G. He, In-furnace Sorbent Injection-based Desulfurization Technolog, Therm Power Generat 5 (1989) 7-9+6. CNKI:SUN:RLFD.0.1989-05-001. – reference: G.Q. Dong, J. Wang, The Prospect on Technology and Application of FGD by Magnesium Oxide Scrubbing. Inorg. Chem. Ind. (01) (2005) 11-12. CNKI:SUN:WJYG.0.2005-01-004. – volume: 45 start-page: 6339 year: 2006 end-page: 6348 ident: b0755 article-title: Neutralization of the Acidified Seawater Effluent from the Flue Gas Desulfurization Process: Experimental Investigation, Dynamic Modeling and Simulation publication-title: Ind. Eng. Chem. Res. – volume: 327 start-page: 914 year: 2017 end-page: 923 ident: b0395 article-title: Utilization of semi-dry sintering flue gas desulfurized ash for SO publication-title: Chem. Eng. J. – year: 2012 ident: b1045 publication-title: Experimental Study of Red Mud for Industrial Flue Gas Desulfurization – volume: 2010 start-page: 1 year: 2010 end-page: 4 ident: b0360 article-title: Experimental Study of SO2 Removal by Powder Activated Carbon in Fluidized Bed Reactor publication-title: Asia-Pacific Power and Energy Engineering Conference IEEE – volume: 88 start-page: 72 year: 2020 end-page: 80 ident: b0905 article-title: Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system publication-title: J. Environ. Sci. – volume: 29 start-page: 13 year: 2021 end-page: 26 ident: b0490 article-title: Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process publication-title: Chin. J. Chem. Eng. – volume: 108 start-page: 205 year: 2013 end-page: 214 ident: b0060 article-title: CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime publication-title: Sep. Purif. Technol. – volume: 152 start-page: 757 year: 2008 end-page: 764 ident: b0605 article-title: Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process publication-title: J. Hazard. Mater. – volume: 35 start-page: 2792 year: 2001 end-page: 2796 ident: b0770 article-title: A kinetic study of the oxidation of S(IV) in seawater publication-title: Environ. Sci. Technol. – volume: 171 year: 2020 ident: b0420 article-title: A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery publication-title: Appl. Therm. Eng. – reference: S. Han, B.H. Song, S.Y. Lu, Y.J. Han, W.X. Wang, Z.Y. Yang, Application of Magnesium Process of FGD Technology in Coal-fired Power Plant, Technol. Eng. Appl. (06) (2008) 56-59. CNKI: SUN: ZHBY.0.2008-06-020. – volume: 92 start-page: 95 year: 2020 end-page: 105 ident: b0895 article-title: Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. 2020 publication-title: J. Environ. Sci. – volume: 02 start-page: 49 year: 2002 end-page: 53 ident: b0730 article-title: The Study on Reaction of Zinc Sulfite by Blasting Air publication-title: Nat. Sci. J. Xiangtan Univ. – volume: 39 start-page: 425 year: 2000 end-page: 432 ident: b0055 article-title: Modeling a dry-scrubbing flue gas cleaning process publication-title: Chem. Eng. Process. Process Intensif. – volume: 121 start-page: 117 year: 2021 end-page: 126 ident: b0405 article-title: Selective sulfur removal from semi-dry flue gas desulfurization coal fly ash for concrete and carbon dioxide capture applications publication-title: Waste Manage. – volume: 105 start-page: 578 year: 2013 end-page: 584 ident: b0635 article-title: Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct publication-title: Fuel – volume: 61 start-page: 2028 year: 2015 end-page: 2034 ident: b1030 article-title: Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas publication-title: AIChE J. – year: 2021 ident: b0145 article-title: Numerical investigations on gas–solid flow in circulating fluidized bed risers using a new cluster-based drag model publication-title: Particuology – volume: 39 start-page: 45 year: 2000 end-page: 52 ident: b0215 article-title: Flue gas desulphurization by spray dry absorption publication-title: Chem. Eng. Process. Process Intensif. – volume: 34 start-page: 4582 year: 2000 end-page: 4586 ident: b0230 article-title: Experimental Study on the Spray Characteristics in the Spray Drying Absorber publication-title: Environ. Sci. Technol. – volume: 7 start-page: 10931 year: 2019 end-page: 10936 ident: b0940 article-title: Efficient regeneration of SO2-absorbed functional ionic liquids with H2S via the liquid-phase claus reaction publication-title: ACS Sustainable Chem. Eng. – volume: 05 start-page: 4 year: 2000 end-page: 6 ident: b0165 article-title: Studies on Sulfur Dioxide Adsorption on the Improved Active Coke publication-title: Environ. Protect. Sci. – volume: 32 start-page: 73 year: 2013 end-page: 74 ident: b0025 article-title: SO publication-title: Environ. Sci. Survey – volume: 321 start-page: 52 year: 2018 end-page: 60 ident: b0520 article-title: Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. 2018 publication-title: Geoderma – year: 2012 ident: b1040 publication-title: Research of Industrial Flue Gas Desulfurization by Alumina Red Mud – volume: 42 start-page: 604 year: 2011 end-page: 614 ident: b0890 article-title: The formation and removal characteristics of aerosols in ammonia-based wet flue gas desulfurization publication-title: J. Aerosol Sci. – volume: 266 year: 2021 ident: b0690 article-title: Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet desulfurization using one-pot synthesized Co-TUD-1/S publication-title: Sep. Purif. Technol. – volume: 110 start-page: 15059 year: 2006 end-page: 15062 ident: b0970 article-title: Measurement of SO2 solubility in ionic liquids publication-title: J. Phys. Chem. B – volume: 71 start-page: 51 year: 1992 end-page: 58 ident: b0135 article-title: The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds publication-title: Powder Technol. – volume: 43 start-page: 2415 year: 2010 end-page: 2417 ident: b0935 article-title: Desulfurization of flue gas: SO2 absorption by an ionic liquid publication-title: Angew. Chem. Int. Ed. – volume: 271 year: 2020 ident: b0555 article-title: Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement publication-title: J. Cleaner Prod. – volume: 175 start-page: 324 year: 2011 end-page: 329 ident: b0950 article-title: Guanidinium-based ionic liquids for sulfur dioxide sorption publication-title: Chem. Eng. J. – volume: 116 start-page: 60 year: 2017 end-page: 67 ident: b0865 article-title: Simulation of the absorption of SO2 by ammonia in a spray scrubber publication-title: Chem. Eng. Process. Process Intensif. – volume: 20 start-page: 219 year: 2001 end-page: 228 ident: b0445 article-title: SO2 Scrubbing Technologies: A Review publication-title: Environ. Prog. – volume: 3 start-page: 3572 year: 2013 end-page: 3577 ident: b0980 article-title: Absorption of SO2 by thermal-stable functional ionic liquids with lactate anion publication-title: RSC Adv. – volume: 109 start-page: 117 year: 2017 end-page: 129 ident: b0480 article-title: Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study publication-title: Process Saf. Environ. Prot. – volume: 4 start-page: 73 year: 2002 end-page: 80 ident: b0925 article-title: A short history of ionic liquids-from molten salts to neoteric solvents publication-title: Green Chem. – volume: 02 start-page: 100 year: 2007 end-page: 105 ident: b0600 article-title: Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system publication-title: J. Environ. Sci. – reference: J.J. Yang, Optimization and Upgrading of Semi-dry Desulfurization Process of Circulating Fluidized Bed for Ultra Clean Emission, J. Environ. Eng. Technol. (04) (2016) 371-376. CNKI:SUN:HKWZ.0.2016-04-010. – volume: 48 start-page: 403 year: 2015 end-page: 408 ident: b0240 article-title: Monitoring of spraying in semi-dry desulfurization processes in coal fired power plants publication-title: Ifac Papersonline – volume: 51 start-page: 4192 year: 2012 end-page: 4198 ident: b0675 article-title: Kinetics and Mechanism of Sulfite Oxidation in the Magnesium-Based Wet Flue Gas Desulfurization Process publication-title: Ind. Eng. Chem. Res. – volume: 215–216 start-page: 36 year: 2013 end-page: 44 ident: b1000 article-title: Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids publication-title: Chem. Eng. J. – volume: 168 start-page: 1059 year: 2009 end-page: 1064 ident: b0475 article-title: Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite publication-title: J. Hazard. Mater. – volume: 114 year: 2020 ident: b0560 article-title: Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive publication-title: Cem. Concr. Compos. – volume: 89 start-page: 777 year: 2011 end-page: 784 ident: b0315 article-title: Non-isothermal modeling of the flue gas desulphurization process using a semi-dry spouted bed reactor publication-title: Chem. Eng. Res. Des. – volume: 43 start-page: 184 issue: 1 year: 2004 ident: 10.1016/j.seppur.2021.119849_b0070 article-title: Effect of NaOH Addition on the Reactivities of Iron Blast Furnace Slag/Hydrated Lime Sorbents for Low-Temperature Flue Gas Desulfurization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030446z – volume: 281 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0505 article-title: Effect of ammonia and ammonium compounds on wet-limestone flue gas desulfurization process from a coal-based power plant – Preliminary industrial scale study publication-title: Fuel doi: 10.1016/j.fuel.2020.118564 – volume: 175 start-page: 324 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0950 article-title: Guanidinium-based ionic liquids for sulfur dioxide sorption publication-title: Chem. Eng. J. – volume: 108 start-page: 205 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0060 article-title: CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.02.012 – ident: 10.1016/j.seppur.2021.119849_b0790 doi: 10.1016/j.cej.2012.02.022 – volume: 87 start-page: 2647 issue: 8 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0825 article-title: Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.03.023 – volume: 230 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0270 article-title: Desulfurization and denitrification experiments in SDA system: A new high-efficient semi-dry process by NaClO2 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115873 – ident: 10.1016/j.seppur.2021.119849_b0810 doi: 10.1016/j.desal.2020.114654 – volume: 290 issue: 3 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0375 article-title: Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directional growth control publication-title: J. Cleaner Prod. – volume: 36 start-page: 3083 issue: 6 year: 2005 ident: 10.1016/j.seppur.2021.119849_b1015 article-title: Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reaction publication-title: ChemInform doi: 10.1002/chin.200506102 – volume: 634–638 start-page: 198 year: 2013 ident: 10.1016/j.seppur.2021.119849_b1050 article-title: Analysis of alumina red mud wet flue gas desulfurization (FGD) technology publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.634-638.198 – volume: 225 issue: 1 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0380 article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum publication-title: Fuel – volume: 65 start-page: 487 issue: 1–2 year: 2014 ident: 10.1016/j.seppur.2021.119849_b0665 article-title: Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.01.032 – volume: 153 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0430 article-title: Jet absorption and desulfurization technology of sulfur waste gas in the acrylonitrile apparatus publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2020.107957 – volume: 62 start-page: 2139 issue: 8 year: 2007 ident: 10.1016/j.seppur.2021.119849_b0125 article-title: Solids mixing in the riser of a circulating fluidized bed publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.12.069 – volume: 12 start-page: 2217 year: 2003 ident: 10.1016/j.seppur.2021.119849_b0175 article-title: SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions publication-title: Carbon doi: 10.1016/S0008-6223(03)00205-7 – volume: 84 start-page: 75 issue: 1 year: 1995 ident: 10.1016/j.seppur.2021.119849_b0105 article-title: Distinction between upward and downward flows in circulating fluidized beds publication-title: Powder Technol. doi: 10.1016/0032-5910(94)02969-U – volume: 34 start-page: 302 issue: 1 year: 1995 ident: 10.1016/j.seppur.2021.119849_b0250 article-title: Heated Fly Ash/Hydrated Lime Slurries for SO2 Removal in Spray Dryer Absorbers publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00040a032 – volume: 43 start-page: 2415 issue: 18 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0935 article-title: Desulfurization of flue gas: SO2 absorption by an ionic liquid publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200353437 – ident: 10.1016/j.seppur.2021.119849_b0040 – volume: 215–216 start-page: 36 year: 2013 ident: 10.1016/j.seppur.2021.119849_b1000 article-title: Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.10.091 – volume: 50 start-page: 828 issue: 8 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0590 article-title: Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2011.05.008 – volume: 35 start-page: 2792 issue: 13 year: 2001 ident: 10.1016/j.seppur.2021.119849_b0770 article-title: A kinetic study of the oxidation of S(IV) in seawater publication-title: Environ. Sci. Technol. doi: 10.1021/es000229e – volume: 39 start-page: 425 issue: 5 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0055 article-title: Modeling a dry-scrubbing flue gas cleaning process publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/S0255-2701(99)00107-5 – volume: 41 start-page: 2090 issue: 5 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0990 article-title: Investigation of furoate based ionic liquid as efficient SO2 absorbent publication-title: New J. Chem. doi: 10.1039/C6NJ03563A – volume: 393 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0915 article-title: Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124678 – volume: 286 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0570 article-title: Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122963 – volume: 28 start-page: 2457 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0835 article-title: Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.05.001 – volume: 369 start-page: 503 year: 2019 ident: 10.1016/j.seppur.2021.119849_b1055 article-title: Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.02.059 – volume: 11 start-page: 1023 issue: B year: 2011 ident: 10.1016/j.seppur.2021.119849_b0245 article-title: Effect of Humidification Water on Semi-dry Flue Gas Desulfurization publication-title: Proc. Environ. Sci. doi: 10.1016/j.proenv.2011.12.156 – ident: 10.1016/j.seppur.2021.119849_b0390 doi: 10.1016/j.jclepro.2020.120026 – volume: 365 start-page: 282 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0910 article-title: Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.059 – volume: 91 start-page: 189 issue: 3 year: 1997 ident: 10.1016/j.seppur.2021.119849_b0100 article-title: Mass flux profiles in a high density circulating fluidized bed publication-title: Powder Technol. doi: 10.1016/S0032-5910(96)03243-3 – volume: 44 start-page: 8830 issue: 23 year: 2005 ident: 10.1016/j.seppur.2021.119849_b0260 article-title: Study on a Novel Semidry Flue Gas Desulfurization with Multifluid Alkaline Spray Generator publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050457n – volume: 89 start-page: 52 issue: 26 year: 1991 ident: 10.1016/j.seppur.2021.119849_b0750 article-title: Seawater Scrubbing Removes SO2 from Refinery Flue Gases publication-title: Oil Gas J. – volume: 03 start-page: 25 year: 2001 ident: 10.1016/j.seppur.2021.119849_b0585 article-title: Research on Main Influence Factors of Flue Gas Desulfurization by Sodium-Calcium Dual-alkali Scrubbi publication-title: Environ. Sci. Technol. – ident: 10.1016/j.seppur.2021.119849_b0805 doi: 10.1016/j.cep.2020.107935 – volume: 26 start-page: 12 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0090 article-title: Numerical simulation study on the optimization of gas–solid two-phase flows in a desulfurization tower publication-title: Proc. CSEE – volume: 02 start-page: 49 year: 2002 ident: 10.1016/j.seppur.2021.119849_b0730 article-title: The Study on Reaction of Zinc Sulfite by Blasting Air publication-title: Nat. Sci. J. Xiangtan Univ. – volume: 109 start-page: 117 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0480 article-title: Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.03.033 – volume: 150 start-page: 453 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0435 article-title: Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.04.032 – volume: 97 start-page: 7 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0775 article-title: Model study of sulfite oxidation in seawater flue gas desulfurization by cylindrical wetted-wall corona-streamer discharge publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.04.011 – volume: 61 start-page: 2028 issue: 6 year: 2015 ident: 10.1016/j.seppur.2021.119849_b1030 article-title: Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas publication-title: AIChE J. doi: 10.1002/aic.14793 – ident: 10.1016/j.seppur.2021.119849_b0710 – volume: 378 start-page: 191 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0325 article-title: Numerical simulation of semi-dry desulfurization spouted bed using the discrete element method (DEM) publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.09.047 – volume: 50 start-page: 2547 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0470 article-title: Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.06.012 – volume: 246 start-page: 249 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0495 article-title: A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.12.001 – volume: 168 start-page: 1059 issue: 2–3 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0475 article-title: Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.156 – volume: 258 start-page: 70 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0680 article-title: Experimental investigation of MgSO3 oxidation process by catalysis in the magnesium desulfurization publication-title: Catal. Today doi: 10.1016/j.cattod.2015.03.046 – volume: 70 start-page: 212 issue: 2 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0785 article-title: Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.09.018 – volume: 19 start-page: 73 issue: 1 year: 2005 ident: 10.1016/j.seppur.2021.119849_b0095 article-title: Dry Desulfurization in a Circulating Fluidized Bed (CFB) with Chain Reactions at Moderate Temperatures publication-title: Energy Fuels doi: 10.1021/ef049975l – volume: 50 start-page: 9550 issue: 16 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0705 article-title: Decomposition Thermodynamics of Magnesium Sulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102554f – volume: 39 start-page: 45 issue: 1 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0215 article-title: Flue gas desulphurization by spray dry absorption publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/S0255-2701(99)00077-X – volume: 24 start-page: 279 issue: 2 year: 1998 ident: 10.1016/j.seppur.2021.119849_b0285 article-title: The Effect of Operating Conditions on SO2 Removal in Semi-Dry Desulfurization Process by Powder-Particle Spouted Bed publication-title: Kagaku Kogaku Ronbunshu doi: 10.1252/kakoronbunshu.24.279 – year: 2021 ident: 10.1016/j.seppur.2021.119849_b0145 article-title: Numerical investigations on gas–solid flow in circulating fluidized bed risers using a new cluster-based drag model publication-title: Particuology – volume: 262 start-page: 268 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0640 article-title: Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by-products publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.085 – volume: 02 start-page: 100 year: 2007 ident: 10.1016/j.seppur.2021.119849_b0600 article-title: Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system publication-title: J. Environ. Sci. – volume: 127061 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0945 article-title: A Review on Dry-based and Wet-based Catalytic Sulphur Dioxide (SO2) Reduction Technologies publication-title: J. Hazard. Mater. – volume: 129 start-page: 15 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0460 article-title: A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.07.002 – volume: 138 start-page: 30 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0645 article-title: Transposition of wet flue gas desulfurization using MgO by-products: From laboratory discontinuous batch reactor to pilot scrubber publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.05.002 – volume: 321 year: 2020 ident: 10.1016/j.seppur.2021.119849_b1010 article-title: Ionic liquids: innovative fluids for sustainable gas separation from industrial waste stream publication-title: J. Mol. Liq. – volume: 342 start-page: 436 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0400 article-title: A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.08.060 – volume: 20 start-page: 140 issue: 1 year: 2012 ident: 10.1016/j.seppur.2021.119849_b0975 article-title: Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(12)60373-5 – volume: 251 start-page: 248 year: 2014 ident: 10.1016/j.seppur.2021.119849_b0985 article-title: Efficient and reversible capture of SO2 by pyridinium-based ionic liquids publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.040 – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0735 article-title: Research on the oxidation characteristics of zinc sulfite in the zinc oxide desulfurization process publication-title: Environ. Technol. – volume: 91 start-page: 1794 issue: 12 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0455 article-title: Simulation of the operation of an industrial wet flue gas desulfurization system publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.07.020 – volume: 383 start-page: 471 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0330 article-title: Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.01.044 – volume: 121 start-page: 117 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0405 article-title: Selective sulfur removal from semi-dry flue gas desulfurization coal fly ash for concrete and carbon dioxide capture applications publication-title: Waste Manage. doi: 10.1016/j.wasman.2020.12.007 – ident: 10.1016/j.seppur.2021.119849_b0580 – volume: 105 start-page: 578 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0635 article-title: Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct publication-title: Fuel doi: 10.1016/j.fuel.2012.07.050 – ident: 10.1016/j.seppur.2021.119849_b0350 – volume: 29 start-page: 1675 issue: 5 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0535 article-title: Use of waste gypsum to replace natural gypsum as set retarders in portland cement publication-title: Waste Manage. doi: 10.1016/j.wasman.2008.11.014 – volume: 343 start-page: 122 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0415 article-title: Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.11.017 – volume: 264 start-page: 479 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0370 article-title: Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.038 – volume: 205 start-page: 589 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0545 article-title: Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.09.145 – volume: 89 start-page: 777 issue: 6 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0315 article-title: Non-isothermal modeling of the flue gas desulphurization process using a semi-dry spouted bed reactor publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.08.014 – volume: 96 start-page: 64 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0280 article-title: Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.04.018 – volume: 26 start-page: 467 issue: 2 year: 2019 ident: 10.1016/j.seppur.2021.119849_b1060 article-title: Removal of SO2 from flue gas using bayer red mud: influence factors and mechanism publication-title: J. Central South Univ. doi: 10.1007/s11771-019-4019-5 – year: 2012 ident: 10.1016/j.seppur.2021.119849_b1045 – volume: 10 start-page: 22 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0190 article-title: Effect of activated coke diameter on SO2 adsorption in fixed-bed and entrained-flow reactors publication-title: Water Conserv. Electric Power Mach. – ident: 10.1016/j.seppur.2021.119849_b0030 – volume: 163 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0440 article-title: Numerical investigation on distribution characteristics of oxidation air in a lime slurry desulfurization system with rotary jet agitators publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2021.108372 – volume: 114 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0560 article-title: Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103760 – volume: 121 start-page: 82 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0525 article-title: Research on saline-alkali soil amelioration with FGD gypsum publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2016.04.005 – volume: 4 start-page: 9 issue: 1 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0320 article-title: A new semi-dry desulfurization process using a powder-particle spouted bed publication-title: Adv. Environ. Res. doi: 10.1016/S1093-0191(00)00003-4 – volume: 148 start-page: 280 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0410 article-title: Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.06.011 – volume: 56 start-page: 33 issue: 5 year: 2014 ident: 10.1016/j.seppur.2021.119849_b0015 article-title: Community health risk assessment of primary aluminum smelter emissions publication-title: J. Occup. Environ. Med. doi: 10.1097/JOM.0000000000000135 – volume: 22 start-page: 1400 issue: 6 year: 1996 ident: 10.1016/j.seppur.2021.119849_b0290 article-title: Process Development of Effective Semi-Dry Flue Gas Desulfurization by Powder-Particle Spouted Bed [J] publication-title: Kagaku Kogaku Ronbunshu doi: 10.1252/kakoronbunshu.22.1400 – volume: 20 start-page: 219 issue: 4 year: 2001 ident: 10.1016/j.seppur.2021.119849_b0445 article-title: SO2 Scrubbing Technologies: A Review publication-title: Environ. Prog. doi: 10.1002/ep.670200410 – volume: 210 start-page: 738 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0180 article-title: Multi-stage semi-coke activation for the removal of SO2 and NO publication-title: Fuel doi: 10.1016/j.fuel.2017.08.107 – volume: 49 start-page: 11464 issue: 22 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0140 article-title: Effect of Internal Structure on Flue Gas Desulfurization with Rapidly Hydrated Sorbent in a Circulating Fluidized Bed at Moderate Temperatures publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100988r – volume: 42 start-page: 103 issue: 1 year: 1992 ident: 10.1016/j.seppur.2021.119849_b0255 article-title: Current Status of the ADVACATE Process for Flue Gas Desulfurization publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.1992.10466964 – volume: 6 start-page: 997 issue: 6 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0840 article-title: A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2015.05.005 – volume: 193 start-page: 60 year: 2014 ident: 10.1016/j.seppur.2021.119849_b1020 article-title: Molecular investigation of SO2 gas absorption by ionic liquids: effects of anion type publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2013.12.019 – volume: 81 start-page: 1899 issue: 15 year: 2002 ident: 10.1016/j.seppur.2021.119849_b0275 article-title: Use of spray dry absorption product in wet flue gas desulphurization plants: pilot-scale experiments publication-title: Fuel doi: 10.1016/S0016-2361(02)00133-3 – volume: 42 start-page: 1705 issue: 5 year: 2008 ident: 10.1016/j.seppur.2021.119849_b0345 article-title: Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization publication-title: Environ. Sci. Technol. doi: 10.1021/es702208e – volume: 13 start-page: 65 year: 2004 ident: 10.1016/j.seppur.2021.119849_b0515 article-title: Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content in Corn Grains publication-title: Soil Sediment Contam. doi: 10.1080/10588330490269840 – volume: 143 start-page: 173 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0385 article-title: Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.03.078 – volume: 23 start-page: 173 issue: 11 year: 2003 ident: 10.1016/j.seppur.2021.119849_b0355 article-title: Investigation on flue gas desulfurization in a circulating fluidized bed publication-title: Proc. CSEE – volume: 88 start-page: 72 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0905 article-title: Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.08.002 – ident: 10.1016/j.seppur.2021.119849_b0465 – ident: 10.1016/j.seppur.2021.119849_b0035 – volume: 90 start-page: 7 issue: 1 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0630 article-title: Dissolution rate of magnesium hydrate for wet flue gas desulfurization publication-title: Fuel doi: 10.1016/j.fuel.2010.08.016 – ident: 10.1016/j.seppur.2021.119849_b0575 – volume: 114 start-page: 2175 issue: 6 year: 2010 ident: 10.1016/j.seppur.2021.119849_b1025 article-title: Properties of ionic liquids absorbing SO2 and the mechanism of the absorption publication-title: J. Phys. Chem. B doi: 10.1021/jp9108859 – volume: 32 start-page: 73 issue: 2 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0025 article-title: SO2 Pollution and Its Hazards and Control Technology in China publication-title: Environ. Sci. Survey – volume: 205 start-page: 208 issue: 1–3 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0130 article-title: Hydrodynamics of gas–solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.09.013 – volume: 36 start-page: 1747 issue: 11 year: 1981 ident: 10.1016/j.seppur.2021.119849_b0650 article-title: Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas—liquid contactors publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(81)80124-8 – volume: 261 start-page: 115 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0530 article-title: Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.01.009 – volume: 25 start-page: 1709 issue: 6 year: 2014 ident: 10.1016/j.seppur.2021.119849_b0700 article-title: Research on the thermal decomposition and kinetics of byproducts from MgO wet flue gas desulfurization publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2014.06.018 – volume: 42 start-page: 604 issue: 9 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0890 article-title: The formation and removal characteristics of aerosols in ammonia-based wet flue gas desulfurization publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2011.05.005 – volume: 31 start-page: 323 issue: 1 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0335 article-title: Numerical simulation of semi-dry flue gas desulfurization process in the powder-particle spouted bed. 2020 publication-title: Adv. Powder Technol. – volume: 171 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0420 article-title: A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115102 – volume: 283 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0195 article-title: Dry additive desulfurization in oxyfuel bubbling fluidized bed combustor publication-title: Fuel doi: 10.1016/j.fuel.2020.118945 – volume: 293 issue: 5 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0200 article-title: Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature publication-title: Fuel – volume: 18 start-page: 239 issue: 5 year: 1984 ident: 10.1016/j.seppur.2021.119849_b0295 article-title: Similarities between lime and limestone in wet—dry scrubbing publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/0255-2701(84)80007-0 – volume: 116 start-page: 60 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0865 article-title: Simulation of the absorption of SO2 by ammonia in a spray scrubber publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2017.03.001 – volume: 51 start-page: 4192 issue: 11 year: 2012 ident: 10.1016/j.seppur.2021.119849_b0675 article-title: Kinetics and Mechanism of Sulfite Oxidation in the Magnesium-Based Wet Flue Gas Desulfurization Process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300163v – volume: 06 start-page: 718 issue: 05 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0595 article-title: Experimental and Theoretical Studies on Desulfurization Efficiency of Dual-alkali FGD System in a RST Scrubber publication-title: Chinese J. Process Eng. – volume: 265 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0565 article-title: Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders publication-title: Constr. Build. Mater. – volume: 389 start-page: 178 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0880 article-title: Process simulation on atomization and evaporation of desulfurization wastewater and its application publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.05.024 – volume: 146 start-page: 117 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0875 article-title: Evaporation experiment and numerical simulation study of desulfurization wastewater in high-temperature raw gas publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.03.043 – volume: 288 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0610 article-title: Novel product-adjustable technology using Wellman-Lord method coupled with sodium-alkali for SO2 removal and regeneration from smelting gas publication-title: Fuel doi: 10.1016/j.fuel.2020.119714 – volume: 379 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0900 article-title: Study on the ammonia emission characteristics in an ammonia-based WFGD system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122257 – volume: 271 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0555 article-title: Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122497 – volume: 101 start-page: 117 year: 2016 ident: 10.1016/j.seppur.2021.119849_b0795 article-title: Modified clinoptilolite catalysts for seawater flue gas desulfurization application: Preparation, characterization and kinetic evaluation publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2015.10.018 – volume: 29 start-page: 13 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0490 article-title: Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.08.004 – volume: 551 start-page: 149478 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0695 article-title: Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149478 – volume: 39 start-page: 1390 issue: 5 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0065 article-title: Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990699l – volume: 77 start-page: 356 issue: 2 year: 1999 ident: 10.1016/j.seppur.2021.119849_b0300 article-title: Removal of SO2 from flue gas using a new semidry flue gas desulfurization process with a powder-particle spouted bed publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450770222 – volume: 351 start-page: 1104 issue: 1 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0155 article-title: Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.177 – volume: 36 start-page: 156 issue: 1 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0235 article-title: Influence of the Lime Slurry Droplet Spectrum on the Efficiency of Semi-Dry Flue Gas Desulfurization publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201100690 – volume: 45 start-page: 6339 issue: 18 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0755 article-title: Neutralization of the Acidified Seawater Effluent from the Flue Gas Desulfurization Process: Experimental Investigation, Dynamic Modeling and Simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0603619 – volume: 108 start-page: 21 issue: 1 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0115 article-title: Evaluation of the gas–solid suspension density in CFB risers with exit effects publication-title: Powder Technol. doi: 10.1016/S0032-5910(99)00199-0 – volume: 30 start-page: 2251 issue: 11/12 year: 2004 ident: 10.1016/j.seppur.2021.119849_b0715 article-title: Study on utilizing zinc and lead-bearing metallurgical dust as sulfur absorbent during briquette combustion. 2005 publication-title: Energy – volume: 152 start-page: 757 issue: 2 year: 2008 ident: 10.1016/j.seppur.2021.119849_b0605 article-title: Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.07.042 – volume: 331 start-page: 416 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0845 article-title: Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.127 – volume: 36 start-page: 263 issue: 3 year: 1998 ident: 10.1016/j.seppur.2021.119849_b0170 article-title: Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars publication-title: Carbon doi: 10.1016/S0008-6223(97)00190-5 – ident: #cr-split#-10.1016/j.seppur.2021.119849_b0625.1 – volume: 161 start-page: 570 issue: 1 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0075 article-title: Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.03.097 – volume: 44 start-page: 2175 issue: 13 year: 2003 ident: 10.1016/j.seppur.2021.119849_b0815 article-title: Temperature impact on SO2 removal efficiency by ammonia gas scrubbing publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(02)00230-3 – volume: 302 year: 2003 ident: 10.1016/j.seppur.2021.119849_b0930 article-title: Ionic liquids-solvents of the future? publication-title: Science doi: 10.1126/science.1090313 – volume: 7 start-page: 10931 issue: 12 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0940 article-title: Efficient regeneration of SO2-absorbed functional ionic liquids with H2S via the liquid-phase claus reaction publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01933 – volume: 7 start-page: 77 issue: 1 year: 1972 ident: 10.1016/j.seppur.2021.119849_b0745 article-title: Use of sea water to scrub sulfur dioxide from stack gases publication-title: Int. J. Sulfur Chem. – volume: 267 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0080 article-title: Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization publication-title: Fuel doi: 10.1016/j.fuel.2020.117215 – volume: 118 start-page: 101 year: 2012 ident: 10.1016/j.seppur.2021.119849_b0020 article-title: Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES) publication-title: Environ. Res. doi: 10.1016/j.envres.2012.07.003 – volume: 25 start-page: 265 issue: 3 year: 2005 ident: 10.1016/j.seppur.2021.119849_b0045 article-title: LIFAC ash-strategies for management publication-title: Waste Manage. doi: 10.1016/j.wasman.2004.11.005 – volume: 05 start-page: 4 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0165 article-title: Studies on Sulfur Dioxide Adsorption on the Improved Active Coke publication-title: Environ. Protect. Sci. – ident: #cr-split#-10.1016/j.seppur.2021.119849_b0625.2 – volume: 23 start-page: 2552 issue: 3 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0670 article-title: Thermogravimetric Kinetics of MgSO3·6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization publication-title: Energy Fuels – volume: 71 start-page: 51 year: 1992 ident: 10.1016/j.seppur.2021.119849_b0135 article-title: The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds publication-title: Powder Technol. doi: 10.1016/0032-5910(92)88003-Z – volume: 392 start-page: 12270 year: 2020 ident: 10.1016/j.seppur.2021.119849_b1065 article-title: Simultaneous removal of SO2 and no using a novel method with red mud as absorbent combined with O3 oxidation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122270 – volume: 10 start-page: 104 year: 1987 ident: 10.1016/j.seppur.2021.119849_b0225 article-title: Tentative modelling of spray-dry scrubbing of SO2 publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.270100114 – volume: 144 start-page: 274 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0500 article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs publication-title: Fuel doi: 10.1016/j.fuel.2014.12.065 – ident: 10.1016/j.seppur.2021.119849_b0620 – volume: 30 start-page: 6578 issue: 8 year: 2016 ident: 10.1016/j.seppur.2021.119849_b0185 article-title: Reduction of SO2 with CO to Elemental Sulfur in Activated Carbon Bed publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01006 – volume: 85 start-page: 115 issue: 2 year: 1995 ident: 10.1016/j.seppur.2021.119849_b0340 article-title: The use of a circulating fluidized bed absorber for the control of sulfur dioxide emissions by calcium oxide sorbent via in situ hydration publication-title: Powder Technol. doi: 10.1016/0032-5910(95)03003-R – volume: 12 start-page: 62 issue: 5 year: 1991 ident: 10.1016/j.seppur.2021.119849_b0050 article-title: Overview of desulphurization technologies by in-furnace calcuium-based sorbent injection and main influence factors on SO2 capture publication-title: Chinese J. Environ. Sci. – volume: 67 start-page: 52 issue: No.115 year: 1971 ident: 10.1016/j.seppur.2021.119849_b0820 article-title: Removal of sulfur and nitrogen oxides from stack gases by ammonia publication-title: Chem. Eng. Prog. Symp. Ser. – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0360 article-title: Experimental Study of SO2 Removal by Powder Activated Carbon in Fluidized Bed Reactor publication-title: Asia-Pacific Power and Energy Engineering Conference IEEE – volume: 3 start-page: 3572 issue: 11 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0980 article-title: Absorption of SO2 by thermal-stable functional ionic liquids with lactate anion publication-title: RSC Adv. doi: 10.1039/c3ra22450c – volume: 155 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0885 article-title: A numerical study of the ammonia desulfurization in the spray scattering tower publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2020.108069 – volume: 148 start-page: 107793 year: 2020 ident: 10.1016/j.seppur.2021.119849_b1035 article-title: Desulfurization intensification by ionic liquid in a rotating packed bed publication-title: Chem. Eng. Process. - Process Intensification doi: 10.1016/j.cep.2019.107793 – volume: 275 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0685 article-title: Superior energy-saving catalyst of Mn@ZIF67 for reclaiming byproduct in wet magnesia desulfurization publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119143 – volume: 115 start-page: 6585 issue: 20 year: 2011 ident: 10.1016/j.seppur.2021.119849_b0955 article-title: Solubilities and thermodynamic properties of SO2 in ionic liquids publication-title: J. Phys. Chem. B doi: 10.1021/jp1124074 – volume: 7 issue: 1 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0740 article-title: Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.102831 – volume: 110 start-page: 15059 issue: 31 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0970 article-title: Measurement of SO2 solubility in ionic liquids publication-title: J. Phys. Chem. B doi: 10.1021/jp063547u – volume: 321 start-page: 52 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0520 article-title: Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. 2018 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.033 – ident: 10.1016/j.seppur.2021.119849_b0780 doi: 10.1016/j.cej.2013.03.084 – volume: 279 start-page: 170 issue: 2 year: 2008 ident: 10.1016/j.seppur.2021.119849_b0960 article-title: Tuning ionic liquids for high gas solubility and reversible gas sorption publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2007.07.036 – volume: 38 start-page: 4027 issue: 38 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0965 article-title: Reversible physical absorption of SO2 by ionic liquids publication-title: Chem. Commun. doi: 10.1039/b609714f – ident: 10.1016/j.seppur.2021.119849_b0725 – volume: 29 start-page: 1270 issue: 12 year: 1979 ident: 10.1016/j.seppur.2021.119849_b0210 article-title: Modeling the Spray Absorption Process for SO2 Removal publication-title: J. Air Pollution Control Assoc. doi: 10.1080/00022470.1979.10470925 – volume: 170 start-page: 436 issue: 1 year: 2009 ident: 10.1016/j.seppur.2021.119849_b0265 article-title: The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.04.075 – volume: 4 start-page: 73 issue: 2 year: 2002 ident: 10.1016/j.seppur.2021.119849_b0925 article-title: A short history of ionic liquids-from molten salts to neoteric solvents publication-title: Green Chem. doi: 10.1039/b110838g – year: 2012 ident: 10.1016/j.seppur.2021.119849_b1040 – volume: 103 start-page: 207 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0850 article-title: Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.10.012 – volume: 269 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0550 article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122212 – volume: 04 start-page: 14 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0220 article-title: Application of SDS Dry Desulfurization and SCR Medium and Low Temperature Denitration Technology in Coke Oven Flue Gas Treatment publication-title: Chem. Equipment Technol. – volume: 91 start-page: 619 issue: 4 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0870 article-title: Full-scale simulation of flow field in ammonia-based wet flue gas desulfurization double tower publication-title: J. Energy Inst. doi: 10.1016/j.joei.2017.02.010 – volume: 258 year: 2019 ident: 10.1016/j.seppur.2021.119849_b0485 article-title: An investigation on data mining and operating optimization for wet flue gas desulfurization systems publication-title: Fuel doi: 10.1016/j.fuel.2019.116178 – volume: 338 start-page: 184 year: 2018 ident: 10.1016/j.seppur.2021.119849_b0800 article-title: Integrated electrochemical-aerating oxidation in recovery system of seawater flue gas desulfurization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.151 – volume: 22 start-page: 67 issue: 1 year: 2003 ident: 10.1016/j.seppur.2021.119849_b0760 article-title: Seawater flue gas desulfurization: its technical implications and performance results publication-title: Environ. Prog. doi: 10.1002/ep.670220118 – volume: 55 start-page: 4643 issue: 20 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0305 article-title: Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(00)00090-7 – volume: 164 start-page: 132 issue: 1 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0830 article-title: Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.08.041 – volume: 266 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0690 article-title: Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet desulfurization using one-pot synthesized Co-TUD-1/S publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118546 – volume: 55 start-page: 11012 year: 2016 ident: 10.1016/j.seppur.2021.119849_b0995 article-title: Cyano-containing protic ionic liquids for highly selective absorption of SO2 from CO2: Experimental study and theoretical analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02588 – start-page: 317 year: 1986 ident: 10.1016/j.seppur.2021.119849_b0085 article-title: First operating experience with a dry flue gas desulfurization (FGD) process using a circulating fluid bed (FGD-CFB) publication-title: Circulat. Fluidized Bed Technol. doi: 10.1016/B978-0-08-031869-1.50038-7 – volume: 63 start-page: 6404 year: 2014 ident: 10.1016/j.seppur.2021.119849_b0920 article-title: Engineering Scale-up Challenges, and Effects of SO2 on the Calcium Looping Cycle for Post Combustion CO2 Capture publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.675 – volume: 49 start-page: 3338 year: 2006 ident: 10.1016/j.seppur.2021.119849_b0120 article-title: Characterizing particle dispersion by image analysis in ICFB publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.03.013 – volume: 215 start-page: 2012 issue: 46–53 year: 2012 ident: 10.1016/j.seppur.2021.119849_b0150 article-title: Composite fluidization in a circulating fluidized bed for flue gas desulfurization publication-title: Powder Technol. – volume: 77 start-page: 223 issue: 2 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0110 article-title: Flow Patterns in High-Velocity Fluidized Beds and Pneumatic Conveying publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450770206 – volume: 154 start-page: 14 issue: 1 year: 2005 ident: 10.1016/j.seppur.2021.119849_b0365 article-title: Flue gas desulfurization in an internally circulating fluidized bed reactor publication-title: Powder Technol. doi: 10.1016/j.powtec.2005.03.017 – volume: 41 start-page: 7114 issue: 20 year: 2007 ident: 10.1016/j.seppur.2021.119849_b0765 article-title: Catalytic Seawater flue gas desulfurization process: An experimental pilot plant study publication-title: Environ. Sci. Technol. doi: 10.1021/es0706899 – volume: 327 start-page: 914 year: 2017 ident: 10.1016/j.seppur.2021.119849_b0395 article-title: Utilization of semi-dry sintering flue gas desulfurized ash for SO2 generation during sulfuric acid production using boiling furnace publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.180 – volume: 149 start-page: 610 issue: 3 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0855 article-title: Process optimization of S (IV) oxidation in flue gas desulfurization scrubbers publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.03.020 – volume: 257 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0540 article-title: Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119519 – volume: 48 start-page: 403 issue: 30 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0240 article-title: Monitoring of spraying in semi-dry desulfurization processes in coal fired power plants publication-title: Ifac Papersonline doi: 10.1016/j.ifacol.2015.12.412 – volume: 272 issue: 1 year: 2021 ident: 10.1016/j.seppur.2021.119849_b1070 article-title: Research on red mud-limestone modified desulfurization mechanism and engineering application publication-title: Sep. Purif. Technol. – volume: 75 start-page: 1603 issue: 12 year: 1998 ident: 10.1016/j.seppur.2021.119849_b0655 article-title: Inhibition of Sulfite Oxidation by Phenols: Screening Antioxidant Behavior with a Clark Oxygen Sensor publication-title: J. Chem. Ed. doi: 10.1021/ed075p1603 – ident: 10.1016/j.seppur.2021.119849_b0615 – volume: 356 start-page: 571 issue: 6 year: 2005 ident: 10.1016/j.seppur.2021.119849_b0005 article-title: Flue gas desulfurization: physicochemical and biotechnological approaches publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326374 – volume: 88 start-page: 284 issue: 3 year: 2015 ident: 10.1016/j.seppur.2021.119849_b0860 article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower publication-title: J. Energy Inst. doi: 10.1016/j.joei.2014.09.002 – volume: 196 start-page: 42 year: 2010 ident: 10.1016/j.seppur.2021.119849_b0010 article-title: Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2) publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.03.013 – volume: 89 start-page: 1025 issue: 11 year: 2008 ident: 10.1016/j.seppur.2021.119849_b0450 article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2008.04.004 – volume: 31 start-page: 1771 issue: 2 year: 2017 ident: 10.1016/j.seppur.2021.119849_b1005 article-title: Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02884 – ident: 10.1016/j.seppur.2021.119849_b0720 – volume: 34 start-page: 4582 issue: 21 year: 2000 ident: 10.1016/j.seppur.2021.119849_b0230 article-title: Experimental Study on the Spray Characteristics in the Spray Drying Absorber publication-title: Environ. Sci. Technol. doi: 10.1021/es001104c – volume: 258–259 start-page: 61 year: 2013 ident: 10.1016/j.seppur.2021.119849_b0660 article-title: Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid publication-title: J. Hazard. Mater. – volume: 80 start-page: 673 issue: 5 year: 2001 ident: 10.1016/j.seppur.2021.119849_b0310 article-title: Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed publication-title: Fuel doi: 10.1016/S0016-2361(00)00130-7 – volume: 228 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0160 article-title: Experimental measurements for Polish lignite combustion in a 1 MWth circulating fluidized bed during load changes publication-title: Energy doi: 10.1016/j.energy.2021.120585 – volume: 42 start-page: 259 issue: 1 year: 1996 ident: 10.1016/j.seppur.2021.119849_b0205 article-title: Model for Flue-Gas Desulfurization in a Circulating Dry Scrubber publication-title: AIChE J. doi: 10.1002/aic.690420123 – volume: 247 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0425 article-title: Wet flue gas desulfurization using micro vortex flow scrubber: Characteristics, modeling and simulation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116915 – volume: 92 start-page: 95 year: 2020 ident: 10.1016/j.seppur.2021.119849_b0895 article-title: Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. 2020 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.01.020 – volume: 285 year: 2021 ident: 10.1016/j.seppur.2021.119849_b0510 article-title: Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization publication-title: Fuel doi: 10.1016/j.fuel.2020.119209 |
| SSID | ssj0017182 |
| Score | 2.6914792 |
| SecondaryResourceType | review_article |
| Snippet | •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119849 |
| SubjectTerms | Desulfurization Dry method Semi-dry method Wet method |
| Title | Summary of research progress on industrial flue gas desulfurization technology |
| URI | https://dx.doi.org/10.1016/j.seppur.2021.119849 |
| Volume | 281 |
| WOSCitedRecordID | wos000714424100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3794 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017182 issn: 1383-5866 databaseCode: AIEXJ dateStart: 19970519 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBYlyaE9hCRtaZq06JCbEcT7knQMISHJwQScgG-LVivVbsPa2N6Qn9-ZHa3XtUtf0MtihOS1NR-jmdHMN4ydSW29Ok-VcP3YiiQrUlHEUopEZ1EEBoWUkppNyMFAjUb6Ply0L5p2ArKq1MuLnv1XUcMYCBtLZ_9C3KsvhQH4DEKHJ4gdnn8k-CGVo6EVGJh8xpSFhTqtSWxcNevA_iS9L2bRK92ifvL1PBRl9pY_BtyD8Tp0RBQeEphnMN-HkN_mCkzxafIERrX71mGHoq13k2ped9Pq5hjoUAo2fXNlMp6M3XpQIsLsDkFlmRQp26qWaZQreMMiVVmgvqYxJWNQctTouNXIEXVx2dLuFGjAYvwZ_EVw7qM-qHytiPR0gzd7iK_Dt4FTC0YTntO7kUw1qL7di9ur0d3qsgmO5-ZSvP15bYVlkwa4_a6fWzBrVsnDAdsP7gS_IBgcsleuOmJv1kgm37JBAASfet4CgreA4NOKd4DgCAgOgOAbgOCdeN-xx-urh8sbEbpoCAvu4FKU0ifGpMqaxIJvrYvz1CCFk0RiIJNhS4HMZ95kZRwVaSR9X6nEgNFiPEw2Zfye7VTTyn1gPJauQLYlK51OyjQuDLJFel0oJP039pjF7c7kNlDMY6eTp7zNJfya037muJ857ecxE6tVM6JY-c182W56HsxEMv9ywMkvV37855Un7HUH81O2s5zX7hPbs8_LyWL-OQDqO2_AkGE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Summary+of+research+progress+on+industrial+flue+gas+desulfurization+technology&rft.jtitle=Separation+and+purification+technology&rft.au=Li%2C+Xueke&rft.au=Han%2C+Jinru&rft.au=Liu%2C+Yan&rft.au=Dou%2C+Zhihe&rft.date=2022-01-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=281&rft_id=info:doi/10.1016%2Fj.seppur.2021.119849&rft.externalDocID=S1383586621015562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |