Summary of research progress on industrial flue gas desulfurization technology

•The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Separation and purification technology Ročník 281; s. 119849
Hlavní autori: Li, Xueke, Han, Jinru, Liu, Yan, Dou, Zhihe, Zhang, Ting-an
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.01.2022
Predmet:
ISSN:1383-5866, 1873-3794
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies are reviewed.•The current development problems and future research directions of desulfurization technology are pointed out. Through the purification technology of flue gas desulfurization, ultralow emissions of SO2 flue gas in industrial flue gas can be achieved. This article involves dry desulfurization, semi-dry desulfurization, and wet desulfurization technologies. The research progress of these technologies since they were first proposed is summarized, and the problems existing in these desulfurization technologies are analyzed. The theory of mass transfer and absorption in flue gas desulfurization is summarized, and the optimal desulfurization process parameters for the operation of desulfurization technology are obtained. A high added value production of desulfurization technology can be realized by studying the recycling of desulfurization products. This paper summarizes the characteristics and the latest research progress of various desulfurization technologies, and aims to provide help for the better development of desulfurization technologies. It also provides suggestions for the future research direction of desulfurization technology.
AbstractList •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are compared.•The research status of desulfurization technology is described.•The mass transfer mechanisms of several desulfurization technologies are reviewed.•The current development problems and future research directions of desulfurization technology are pointed out. Through the purification technology of flue gas desulfurization, ultralow emissions of SO2 flue gas in industrial flue gas can be achieved. This article involves dry desulfurization, semi-dry desulfurization, and wet desulfurization technologies. The research progress of these technologies since they were first proposed is summarized, and the problems existing in these desulfurization technologies are analyzed. The theory of mass transfer and absorption in flue gas desulfurization is summarized, and the optimal desulfurization process parameters for the operation of desulfurization technology are obtained. A high added value production of desulfurization technology can be realized by studying the recycling of desulfurization products. This paper summarizes the characteristics and the latest research progress of various desulfurization technologies, and aims to provide help for the better development of desulfurization technologies. It also provides suggestions for the future research direction of desulfurization technology.
ArticleNumber 119849
Author Liu, Yan
Dou, Zhihe
Han, Jinru
Li, Xueke
Zhang, Ting-an
Author_xml – sequence: 1
  givenname: Xueke
  surname: Li
  fullname: Li, Xueke
– sequence: 2
  givenname: Jinru
  surname: Han
  fullname: Han, Jinru
– sequence: 3
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  email: liuyan@smm.neu.edu.cn
– sequence: 4
  givenname: Zhihe
  surname: Dou
  fullname: Dou, Zhihe
– sequence: 5
  givenname: Ting-an
  surname: Zhang
  fullname: Zhang, Ting-an
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6TYsWM7LJBQxUuqYAGsraljt67SOLITpPL1pIQVC1jNjHTPSPfM0KQJjUXokpIFJVRc7RbJtm0fFznJ6YLSUvHyBE2pkixjsuSTYWeKZYUS4gzNUtoRQiVV-RQ9v_b7PcQDDg5HmyxEs8VtDJvhSDg02DdVn7roocau7i3eQMKVTX3t-ug_ofNDprNm24Q6bA7n6NRBnezFz5yj9_u7t-Vjtnp5eFrerjLDiOiySjoOUCgD3JSlKtekACmFlLzkCgThigknHIiK5esil44qxUFxCW4IQ8XmiI9_TQwpRet0G_2xh6ZEH53onR6d6KMTPToZsOtfmPHdd4cugq__g29G2A7FPryNOhlvG2MrH63pdBX83w--AAyBg9E
CitedBy_id crossref_primary_10_1016_j_powtec_2022_117211
crossref_primary_10_1016_j_cej_2025_166003
crossref_primary_10_3390_su16156686
crossref_primary_10_1016_j_jenvman_2024_121532
crossref_primary_10_1016_j_jece_2025_119004
crossref_primary_10_1016_j_scitotenv_2024_172492
crossref_primary_10_1016_j_psep_2022_07_038
crossref_primary_10_1016_j_seppur_2025_133106
crossref_primary_10_1021_acs_energyfuels_5c00262
crossref_primary_10_1016_j_jandt_2023_08_003
crossref_primary_10_1021_acs_energyfuels_4c06274
crossref_primary_10_1038_s41467_023_36362_x
crossref_primary_10_1016_j_jece_2024_114907
crossref_primary_10_15377_2409_983X_2024_11_5
crossref_primary_10_1016_j_colsurfa_2024_134865
crossref_primary_10_3390_su17136137
crossref_primary_10_1080_00986445_2024_2361421
crossref_primary_10_3390_app142311364
crossref_primary_10_1016_j_seppur_2024_128425
crossref_primary_10_1039_D5GC01651G
crossref_primary_10_3390_pr13051496
crossref_primary_10_1016_j_fuel_2025_134786
crossref_primary_10_1016_j_fuel_2024_133116
crossref_primary_10_1016_j_jece_2024_114064
crossref_primary_10_3390_en17051052
crossref_primary_10_1016_j_powtec_2025_121447
crossref_primary_10_3390_ma16010303
crossref_primary_10_1016_j_ces_2025_121211
crossref_primary_10_1021_acs_energyfuels_4c06318
crossref_primary_10_3390_app15095105
crossref_primary_10_1016_j_nanoms_2025_04_001
crossref_primary_10_3389_fenvs_2022_978559
crossref_primary_10_1007_s11356_022_23837_5
crossref_primary_10_1016_j_jhazmat_2024_134490
crossref_primary_10_1002_cjce_24717
crossref_primary_10_1016_j_jelechem_2025_119345
crossref_primary_10_1016_j_jclepro_2022_134205
crossref_primary_10_3390_technologies10050099
crossref_primary_10_1016_j_fuel_2023_129239
crossref_primary_10_1016_j_cej_2024_149190
crossref_primary_10_1016_j_rineng_2025_103970
crossref_primary_10_1016_j_jece_2023_109973
crossref_primary_10_1016_j_seppur_2024_129463
crossref_primary_10_1016_j_ultsonch_2022_106043
crossref_primary_10_1063_5_0169153
crossref_primary_10_1016_j_cjche_2023_03_011
crossref_primary_10_1002_srin_202200904
crossref_primary_10_1016_j_cherd_2024_10_009
crossref_primary_10_1016_j_jcrysgro_2024_127583
crossref_primary_10_1007_s11356_024_32923_9
crossref_primary_10_1016_j_icheatmasstransfer_2025_109684
crossref_primary_10_1080_09593330_2024_2385066
crossref_primary_10_1016_j_cherd_2022_09_045
crossref_primary_10_1007_s13762_025_06681_1
crossref_primary_10_1016_j_seppur_2022_122980
crossref_primary_10_1007_s11164_025_05504_9
crossref_primary_10_1016_j_jece_2024_112356
crossref_primary_10_1016_j_cep_2025_110464
crossref_primary_10_1007_s11356_024_35646_z
crossref_primary_10_1080_09593330_2023_2283810
crossref_primary_10_1007_s11356_023_28818_w
crossref_primary_10_1016_j_wasman_2023_02_002
crossref_primary_10_3390_ma17153628
crossref_primary_10_5937_podrad2501123M
crossref_primary_10_1002_tqem_70174
crossref_primary_10_1080_15567036_2023_2284844
crossref_primary_10_1016_j_heliyon_2024_e34789
crossref_primary_10_1016_j_cej_2025_165375
crossref_primary_10_2166_wst_2025_049
crossref_primary_10_1016_j_jece_2024_114762
crossref_primary_10_1016_j_mtsust_2023_100475
crossref_primary_10_1016_j_psep_2022_01_041
crossref_primary_10_1088_1742_6596_3092_1_012021
crossref_primary_10_1007_s11696_024_03775_x
crossref_primary_10_1061_JOEEDU_EEENG_7476
crossref_primary_10_1177_1478422X251347338
crossref_primary_10_1016_j_cej_2025_159785
crossref_primary_10_3390_ma17102227
crossref_primary_10_1016_j_scitotenv_2023_169857
crossref_primary_10_1016_j_seppur_2024_130558
crossref_primary_10_1016_j_cej_2024_152053
crossref_primary_10_1016_j_scitotenv_2023_166108
crossref_primary_10_1016_j_egyr_2023_04_032
crossref_primary_10_1016_j_jenvman_2024_120184
crossref_primary_10_1016_j_seppur_2024_128238
crossref_primary_10_1016_j_cej_2025_168411
crossref_primary_10_1016_j_conbuildmat_2024_139780
crossref_primary_10_1016_j_ceramint_2025_03_051
crossref_primary_10_1016_j_fuel_2025_135964
crossref_primary_10_1016_j_jhazmat_2022_129827
crossref_primary_10_3390_app13137370
crossref_primary_10_3390_ma17051138
crossref_primary_10_3390_separations10060356
crossref_primary_10_1016_j_jssc_2024_124709
crossref_primary_10_1016_j_ces_2025_122593
crossref_primary_10_1016_j_psep_2024_07_119
crossref_primary_10_1016_j_scitotenv_2024_174631
crossref_primary_10_1109_TASE_2024_3398776
crossref_primary_10_1002_ep_14608
crossref_primary_10_1016_j_jhazmat_2024_134065
crossref_primary_10_1016_j_seppur_2025_134113
crossref_primary_10_3390_cryst15030223
crossref_primary_10_1016_j_jclepro_2024_142023
crossref_primary_10_1016_j_applthermaleng_2025_126339
crossref_primary_10_3390_chemengineering9040067
crossref_primary_10_1016_j_seppur_2024_127255
crossref_primary_10_1016_j_joei_2023_101313
crossref_primary_10_1016_j_molliq_2023_121937
crossref_primary_10_3390_en17194799
crossref_primary_10_1016_j_procir_2024_12_137
crossref_primary_10_1016_j_ces_2023_118536
crossref_primary_10_1021_acs_iecr_5c01746
crossref_primary_10_1016_S1003_6326_22_66026_6
crossref_primary_10_1016_j_jece_2024_113298
crossref_primary_10_1016_j_seppur_2025_134062
crossref_primary_10_1007_s11814_022_1253_6
crossref_primary_10_1016_j_cherd_2024_07_008
crossref_primary_10_1016_j_jece_2025_117038
crossref_primary_10_1061_JOEEDU_EEENG_7179
crossref_primary_10_1016_j_seppur_2025_133133
crossref_primary_10_1080_00986445_2025_2503009
crossref_primary_10_1016_j_conbuildmat_2023_132304
crossref_primary_10_1016_j_electacta_2024_144008
crossref_primary_10_1016_j_conbuildmat_2023_134692
crossref_primary_10_1016_j_jece_2022_107298
crossref_primary_10_1080_10934529_2023_2174334
crossref_primary_10_1016_j_aej_2025_04_001
crossref_primary_10_3390_en17246382
crossref_primary_10_1016_j_cej_2025_161163
crossref_primary_10_1016_j_psep_2024_04_043
crossref_primary_10_3390_ma18020394
crossref_primary_10_1016_j_cej_2024_149276
crossref_primary_10_1016_j_icheatmasstransfer_2022_106275
crossref_primary_10_1002_app_57385
crossref_primary_10_1016_j_apcatb_2025_125077
crossref_primary_10_1080_15567036_2023_2276900
crossref_primary_10_1016_j_cjche_2022_09_021
crossref_primary_10_1016_j_conbuildmat_2025_141971
crossref_primary_10_1016_j_jece_2025_115385
crossref_primary_10_1002_aic_70001
crossref_primary_10_1016_j_petsci_2024_09_021
crossref_primary_10_1080_14680629_2025_2479577
crossref_primary_10_1016_j_conbuildmat_2023_131840
crossref_primary_10_1016_j_jcis_2024_02_098
crossref_primary_10_1007_s11696_025_04040_5
crossref_primary_10_1016_j_psep_2024_03_042
crossref_primary_10_3390_toxics13050396
crossref_primary_10_1016_j_cemconres_2024_107619
crossref_primary_10_1016_j_desal_2022_116057
crossref_primary_10_1016_j_matchemphys_2024_129287
crossref_primary_10_1016_j_seppur_2023_125411
crossref_primary_10_1016_j_fuproc_2023_107983
crossref_primary_10_1016_j_seppur_2024_127513
crossref_primary_10_1016_j_cjche_2024_05_017
crossref_primary_10_1016_j_conbuildmat_2025_140996
crossref_primary_10_1016_j_ecmx_2025_101201
crossref_primary_10_3390_gels11030193
crossref_primary_10_1016_j_chemosphere_2022_135683
crossref_primary_10_1016_j_jhazmat_2024_133834
crossref_primary_10_1016_j_ces_2023_119329
crossref_primary_10_1016_j_energy_2025_134840
crossref_primary_10_1016_j_jtice_2024_105902
crossref_primary_10_1007_s00449_023_02895_0
crossref_primary_10_1016_j_isci_2025_113476
crossref_primary_10_1007_s11696_023_02997_9
crossref_primary_10_1016_j_fuel_2022_125353
crossref_primary_10_1016_j_seta_2023_103489
crossref_primary_10_1016_j_cej_2024_155883
crossref_primary_10_1007_s11356_022_23860_6
crossref_primary_10_1021_acs_jpcb_5c01441
crossref_primary_10_1016_j_compositesb_2025_112340
crossref_primary_10_1016_j_jes_2022_09_008
crossref_primary_10_1016_j_engappai_2025_110294
crossref_primary_10_3390_en16041971
crossref_primary_10_1016_j_fuel_2023_128408
crossref_primary_10_1016_j_mcat_2025_115366
crossref_primary_10_1007_s11837_025_07254_w
crossref_primary_10_1016_j_chemosphere_2022_137592
crossref_primary_10_1016_j_cej_2023_143096
Cites_doi 10.1021/ie030446z
10.1016/j.fuel.2020.118564
10.1016/j.seppur.2013.02.012
10.1016/j.cej.2012.02.022
10.1016/j.apenergy.2010.03.023
10.1016/j.seppur.2019.115873
10.1016/j.desal.2020.114654
10.1002/chin.200506102
10.4028/www.scientific.net/AMR.634-638.198
10.1016/j.applthermaleng.2014.01.032
10.1016/j.cep.2020.107957
10.1016/j.ces.2006.12.069
10.1016/S0008-6223(03)00205-7
10.1016/0032-5910(94)02969-U
10.1021/ie00040a032
10.1002/anie.200353437
10.1016/j.cej.2012.10.091
10.1016/j.cep.2011.05.008
10.1021/es000229e
10.1016/S0255-2701(99)00107-5
10.1039/C6NJ03563A
10.1016/j.cej.2020.124678
10.1016/j.conbuildmat.2021.122963
10.1016/j.cjche.2020.05.001
10.1016/j.jhazmat.2019.02.059
10.1016/j.proenv.2011.12.156
10.1016/j.jclepro.2020.120026
10.1016/j.cej.2019.02.059
10.1016/S0032-5910(96)03243-3
10.1021/ie050457n
10.1016/j.cep.2020.107935
10.1016/j.psep.2017.03.033
10.1016/j.psep.2021.04.032
10.1016/j.ces.2013.04.011
10.1002/aic.14793
10.1016/j.powtec.2020.09.047
10.1016/j.enconman.2009.06.012
10.1016/j.envpol.2018.12.001
10.1016/j.jhazmat.2009.02.156
10.1016/j.cattod.2015.03.046
10.1016/j.seppur.2009.09.018
10.1021/ef049975l
10.1021/ie102554f
10.1016/S0255-2701(99)00077-X
10.1252/kakoronbunshu.24.279
10.1016/j.cej.2014.09.085
10.1016/j.fuproc.2014.07.002
10.1016/j.fuproc.2015.05.002
10.1016/j.jhazmat.2017.08.060
10.1016/S1004-9541(12)60373-5
10.1016/j.cej.2014.04.040
10.1016/j.fuproc.2010.07.020
10.1016/j.powtec.2021.01.044
10.1016/j.wasman.2020.12.007
10.1016/j.fuel.2012.07.050
10.1016/j.wasman.2008.11.014
10.1016/j.powtec.2018.11.017
10.1016/j.cej.2014.11.038
10.1016/j.jclepro.2018.09.145
10.1016/j.cherd.2010.08.014
10.1016/j.jes.2020.04.018
10.1007/s11771-019-4019-5
10.1016/j.cep.2021.108372
10.1016/j.cemconcomp.2020.103760
10.1016/j.resconrec.2016.04.005
10.1016/S1093-0191(00)00003-4
10.1016/j.cherd.2019.06.011
10.1097/JOM.0000000000000135
10.1252/kakoronbunshu.22.1400
10.1002/ep.670200410
10.1016/j.fuel.2017.08.107
10.1021/ie100988r
10.1080/10473289.1992.10466964
10.1016/j.apr.2015.05.005
10.1016/j.molliq.2013.12.019
10.1016/S0016-2361(02)00133-3
10.1021/es702208e
10.1080/10588330490269840
10.1016/j.enconman.2017.03.078
10.1016/j.jes.2019.08.002
10.1016/j.fuel.2010.08.016
10.1021/jp9108859
10.1016/j.powtec.2010.09.013
10.1016/0009-2509(81)80124-8
10.1016/j.agee.2018.01.009
10.1016/j.apt.2014.06.018
10.1016/j.jaerosci.2011.05.005
10.1016/j.applthermaleng.2020.115102
10.1016/j.fuel.2020.118945
10.1016/0255-2701(84)80007-0
10.1016/j.cep.2017.03.001
10.1021/ie300163v
10.1016/j.powtec.2021.05.024
10.1016/j.cherd.2019.03.043
10.1016/j.fuel.2020.119714
10.1016/j.cej.2019.122257
10.1016/j.jclepro.2020.122497
10.1016/j.psep.2015.10.018
10.1016/j.cjche.2020.08.004
10.1016/j.apsusc.2021.149478
10.1021/ie990699l
10.1002/cjce.5450770222
10.1016/j.cej.2018.06.177
10.1002/ceat.201100690
10.1021/ie0603619
10.1016/S0032-5910(99)00199-0
10.1016/j.jhazmat.2007.07.042
10.1016/j.cej.2017.08.127
10.1016/S0008-6223(97)00190-5
10.1016/j.jhazmat.2008.03.097
10.1016/S0196-8904(02)00230-3
10.1126/science.1090313
10.1021/acssuschemeng.9b01933
10.1016/j.fuel.2020.117215
10.1016/j.envres.2012.07.003
10.1016/j.wasman.2004.11.005
10.1016/0032-5910(92)88003-Z
10.1016/j.jhazmat.2020.122270
10.1002/ceat.270100114
10.1016/j.fuel.2014.12.065
10.1021/acs.energyfuels.6b01006
10.1016/0032-5910(95)03003-R
10.1039/c3ra22450c
10.1016/j.cep.2020.108069
10.1016/j.cep.2019.107793
10.1016/j.apcatb.2020.119143
10.1021/jp1124074
10.1016/j.jece.2018.102831
10.1021/jp063547u
10.1016/j.geoderma.2018.01.033
10.1016/j.cej.2013.03.084
10.1016/j.molcata.2007.07.036
10.1039/b609714f
10.1080/00022470.1979.10470925
10.1016/j.jhazmat.2009.04.075
10.1039/b110838g
10.1016/j.jes.2020.10.012
10.1016/j.jclepro.2020.122212
10.1016/j.joei.2017.02.010
10.1016/j.fuel.2019.116178
10.1016/j.cej.2017.12.151
10.1002/ep.670220118
10.1016/S0009-2509(00)00090-7
10.1016/j.cej.2010.08.041
10.1016/j.seppur.2021.118546
10.1021/acs.iecr.6b02588
10.1016/B978-0-08-031869-1.50038-7
10.1016/j.egypro.2014.11.675
10.1016/j.ijheatmasstransfer.2006.03.013
10.1002/cjce.5450770206
10.1016/j.powtec.2005.03.017
10.1021/es0706899
10.1016/j.cej.2017.06.180
10.1016/j.psep.2021.03.020
10.1016/j.conbuildmat.2020.119519
10.1016/j.ifacol.2015.12.412
10.1021/ed075p1603
10.1080/10643380500326374
10.1016/j.joei.2014.09.002
10.1016/j.toxlet.2010.03.013
10.1016/j.fuproc.2008.04.004
10.1021/acs.energyfuels.6b02884
10.1021/es001104c
10.1016/S0016-2361(00)00130-7
10.1016/j.energy.2021.120585
10.1002/aic.690420123
10.1016/j.seppur.2020.116915
10.1016/j.jes.2020.01.020
10.1016/j.fuel.2020.119209
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2021.119849
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2021_119849
S1383586621015562
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c306t-d7f4aa58ca4c9989b05a776774948a604836f6fa6d32b527f1884a847af89bad3
ISICitedReferencesCount 209
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714424100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-5866
IngestDate Sat Nov 29 07:01:03 EST 2025
Tue Nov 18 22:08:23 EST 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dry method
Desulfurization
Wet method
Semi-dry method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-d7f4aa58ca4c9989b05a776774948a604836f6fa6d32b527f1884a847af89bad3
ParticipantIDs crossref_primary_10_1016_j_seppur_2021_119849
crossref_citationtrail_10_1016_j_seppur_2021_119849
elsevier_sciencedirect_doi_10_1016_j_seppur_2021_119849
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Linek, Vacek (b0650) 1981; 36
Anderson, Dixon, Maginn, Brennecke (b0970) 2006; 110
Li, Zhang, Li, Ren, Yang, Jiang, Zhang (b0380) 2019; 225
Jin, Hou, Wu, Ren, Lei (b0955) 2011; 115
Hao, Ma, Yong, Yang (b0150) 2012; 215
Xu, Guo, Kaneko, Kato (b0320) 2000; 4
Lei, Wu, Jie, Li, Ping (b1060) 2019; 26
Jia, Qin, Fan, Wang (b0830) 2010; 164
Yan, Peng, Wang (b0355) 2003; 23
Huang, Wu, Yang (b0900) 2020; 379
Hanjitsuwan, Injorhor, Phoongernkham, Damrongwiriyanupap, Li, Sukontasukkul, Chindaprasirt (b0560) 2020; 114
Deng, Jiang, Liu (b0990) 2017; 41
Tokumura, Baba, Znad, Kawase, Takeda (b0755) 2006; 45
Mohammadi, Foroutan (b1020) 2014; 193
N.Q. Yan, Y. Shi, Z.B. Wu, Y.P. Li, S. Li, T.E. Tan, Process of Dual-Alkali FGD in a Rotating-Stream-Tray Scrubbe, Environ. Sci. 05 (1998) 72-74. CNKI:SUN:HJKZ.0.1998-05-019.
Chen, You, Wang, Liu (b0415) 2019; 343
H.G. He, In-furnace Sorbent Injection-based Desulfurization Technolog, Therm Power Generat 5 (1989) 7-9+6. CNKI:SUN:RLFD.0.1989-05-001.
Neathery (b0205) 1996; 42
Chen, Lin, Yu, Ding, He, Li (b1030) 2015; 61
Wang, Li, Lei (b0775) 2013; 97
Zhou, Zhang, Wang, Wang (b0260) 2005; 44
Chen, You, Wang, Xie (b0420) 2020; 171
Wang, Lu, Li, Wang, Xu (b0800) 2018; 338
Wang, Zhao, Ye, Su (b0425) 2020; 247
Sipos (b0655) 1998; 75
Hill, Zank (b0215) 2000; 39
Li, Deng, Wen, Tian, Li (b0875) 2019; 146
Zhang, Chang, Liu, Li (b0220) 2019; 04
Cai, Liu, Zhu, Zou, Tao, Tian (b0280) 2020; 96
Feng, Kai, Gao, Gong, Ma, Zhou (b0335) 2019; 31
Ma, Feng, Zhao, Peng, Fu (b0430) 2020; 153
Wu, Ni, Guan (b0605) 2008; 152
Thriel, Schäper, Kleinbeck, Kiesswetter, Blaszkewicz, Golka, Nies, Heimsoth, Brüning (b0010) 2010; 196
Wei, Li, Fan, Yuan (b0090) 2006; 26
Fang, Xing, Liu, Guo, Qi, Liu, Wang (b0695) 2021; 551
Hao, Mao, Mao, Wang, Gong, Zhang, Zhao (b0910) 2019; 365
Liu, Li, Li (b0175) 2003; 12
Bromley (b0745) 1972; 7
Cui, Lu, Song, Tang, Li, Dong (b0510) 2021; 285
Cao (b0025) 2013; 32
Chandara, Azizli, Ahmad, Sakai (b0535) 2009; 29
Liu, Wu, Liu, Li, Luo, Chu, Zou, Chen (b1035) 2020; 148
Wang, Siyu, Liu, Cui, Liu, Zhang (b0845) 2018; 331
Zhou, Peng, Xian, Zhang (b0130) 2011; 205
S. Han, B.H. Song, S.Y. Lu, Y.J. Han, W.X. Wang, Z.Y. Yang, Application of Magnesium Process of FGD Technology in Coal-fired Power Plant, Technol. Eng. Appl. (06) (2008) 56-59. CNKI: SUN: ZHBY.0.2008-06-020.
Jia, Yin, Yalin, Ding, Sheng (b0840) 2015; 6
Wu, Yan, Chen (b0155) 2018; 351
Ma, Kaneko, Tashimo, Yoshida, Kato (b0305) 2000; 55
Wang, Zhu, Zhang, Zhang, Wang, Zhao (b0860) 2015; 88
Liu, Zhao, Gao, Baleta, Li, Li, Shen, Zheng, Gao (b0855) 2021; 149
Dou, Pan, Jin, Wang, Li (b0470) 2009; 50
H.Y. Zhang, Industrial Application of Technology of Using Zinc Oxide Method to Abosorb low-concentration SO2 Fume, Nonferrous Metals Des., (03) (2003) 51-55. DOI:CNKI:SUN:YJSS.0.2003-03-012.
Yi, Xiang, Huo, Luo, Ni, Cen (b0450) 2008; 89
Zermeño, Niubó, Formosa, Guembe, Aparicio, Chimenos (b0640) 2015; 262
Shen, Guo, Kang, Zeng, Yin, Tian, Lu (b0675) 2012; 51
Wei, Sheng, Tian (b0120) 2006; 49
Mo, Wu, Cheng, Guan, Zhao (b0600) 2007; 02
Vidal, Ollero (b0770) 2001; 35
Guo, Kato (b0285) 1998; 24
Zhang, Lin, Bing, Wang, Ma (b0360) 2010; 2010
Getler, Shelton, Furlong (b0210) 1979; 29
He, Zheng, Yan, Tong, Chen, Chen (b0815) 2003; 44
Tian, Kai, Min (b0565) 2020; 265
Pan, Shi, Xu (b0050) 1991; 12
Wang, Li, Zhu, Jing, Wang (b0370) 2015; 264
Li, Wang, Xing, Qi, Zhang, Liu, Zhang, Ma, Wang (b0850) 2021; 103
Chen, Huang, Wong, Wang, Thach, Chen, Kan (b0020) 2012; 118
Pang, Li, Jin, Wei, Li (b1050) 2013; 634–638
Yang, Kim (b0230) 2000; 34
Wang, Zhang (b0245) 2011; 11
Ying, Li, Zhang, Hui, Wang, Li, Zhang (b0950) 2011; 175
Skopec, Hrdlika, Vodika (b0195) 2021; 283
Du, Yi, Tang, Zhao, Gao, Yu, Yang, Yang, Xie, Ma (b0270) 2020; 230
Yang, Jing, Lu, Zhu, Liu (b0540) 2020; 257
Rogers, Seddon (b0930) 2003; 302
Bai, Jin, Yu, Zhu (b0135) 1992; 71
Zhang, He, Wang, Huang, Li, Kumar, Cen (b0180) 2017; 210
Jiang, Keener, Khang (b0340) 1995; 85
Wypiór, Krzyyńska (b0505) 2020; 281
Qiao, Qu, Gu, Tang, Si, Romero, Yao (b0485) 2019; 258
Huang, Lu, Wu, Hu, Zhang (b1000) 2013; 215–216
Oikawa, Yongsiri, Takeda, Harimoto (b0760) 2003; 22
Gao, Han, Li, Jiang, Liu, Wu, Chang, Zhang (b1015) 2005; 36
Zhang, Hou, Ren, Zhang, Wu (b0940) 2019; 7
Li, Liu, Wang, Gao (b1005) 2017; 31
Cao, Zhang, Liu, Zhang, Lv (b0735) 2020; 3
J.J. Yang, Optimization and Upgrading of Semi-dry Desulfurization Process of Circulating Fluidized Bed for Ultra Clean Emission, J. Environ. Eng. Technol. (04) (2016) 371-376. CNKI:SUN:HKWZ.0.2016-04-010.
Bao, Yang, Sun, Geng, Yan, Shen (b0590) 2011; 50
Kaiser (b0055) 2000; 39
Ragipani, Escobar, Prentice, Bustillos, Simonetti, Sant, Wanga (b0405) 2021; 121
Srivastava, Jozewicz, Singer (b0445) 2001; 20
Yu (b0585) 2001; 03
Tong, Ma, Zhang, Li, Hao (b0680) 2015; 258
Marocco, Mora (b0060) 2013; 108
Bian, Qi, Xin, Shu, Feng, Li (b0795) 2016; 101
Fang, Liao, Zhang, Teng, Xue (b0400) 2017; 342
Sedman, Hall, Jozewicz, Singer, Maxwell (b0255) 1992; 42
Wang, Chen, Li, Zhuo, Xu (b0525) 2017; 121
Zhou, Ding, Tang, Xie, Wang, Zhang, Ni (b0395) 2017; 327
Katolicky, Jicha (b0235) 2013; 36
Qu, Qi, Zhang, Li, Wang (b0490) 2021; 29
Guo, Noriaki, Kato (b0290) 1996; 22
W. Song, J. Zhou, B. Wang, S. Li, J. Han, New insight into investigation of reduction of desulfurization ash by pyrite for clean generation SO
Ma, Kaneko, Xu, Kato (b0310) 2001; 80
Velden, Baeyens, Smolders (b0125) 2007; 62
Li, Qiao, Ni (b0550) 2020; 269
Jie Liu, Mengxuan Deng, Junsheng Yuan, Zhiyong Ji, Yingying Zhao, Xiaofu Guo, An aeration membrane absorption seawater flue gas desulfurization process intensified by combining dual-phase flow and oxidation reaction, Chem. Eng. Process. - Process Intensificat. 153 (2020) 107935. 10.1016/j.cep.2020.107935.
Cotton, Patchigolla, Oakey (b0920) 2014; 63
Zhao, Wang, Li, Liu, Zhuo, Zhang, Jing, Xu (b0530) 2018; 261
Hou, Qi, You, Xu (b0095) 2005; 19
Li, Dong, Li, Feng, Zhang, Li, Ren, Lu (b0885) 2020; 155
Sanders, Keener, Wang (b0250) 1995; 34
Li, Jiang (b0570) 2021; 286
Yingying Zhao, Lurong Wang, Zhiyong Ji, Jie Liu, Xiaofu Guo, Fei Li, Shizhao Wang, Junsheng Yuan, Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis, Desalination 494 (2020) 114654. 10.1016/j.desal.2020.114654.
Anthony, Berry, Blondin (b0045) 2005; 25
Bi, Grace (b0110) 2010; 77
L.C. Feng, Z.M. Yi, Study on the Technology of Desulphuration of Flue Gas with Magnesium Oxide. 1996. Sichuan Environ. (04) (1996) CNKI:SUN:SCHJ.0.1996-04-011.
Li, Wu, Liu, Zhu, Liu, Zhao (b1065) 2020; 392
Chen, Chen, Chiang (b0915) 2020; 393
Zeng, Gao, Zhang, Dong, Zhang, Zhang (b0985) 2014; 251
Xing, Liu, Qi, Wang, Wang, Zhang (b0685) 2020; 275
Jia, Yin, Yalin, Chen, Ding (b0865) 2017; 116
Cheng, Zhou, Yang, Wu, Fan (b0905) 2020; 88
Pandey, Biswas, Chakrabarti, Devotta (b0005) 2005; 356
G.Q. Dong, J. Wang, The Prospect on Technology and Application of FGD by Magnesium Oxide Scrubbing. Inorg. Chem. Ind. (01) (2005) 11-12. CNKI:SUN:WJYG.0.2005-01-004.
Sun, Zhang, Zhu (b0145) 2021
Zhao, Zhang, Gao, Baleta, Liu, Li, Weng, Dai, Zheng, Gao (b0435) 2021; 150
Chen, Hwang (b0365) 2005; 154
Du, Yue, Wu, Ma, Hui (b0330) 2021; 383
Zermeño, Formosa, Aparicio, Guembe, Chimenos (b0645) 2015; 138
Córdoba (b0500) 2015; 144
Alobaid, Peters, Epple (b0160) 2021; 228
Xu, Wang, Yuan, Shao, Fan (b0325) 2021; 378
Zhao, Wang, Li, Liu, Zhuo, Chen, Wang, Xu, Sun (b0520) 2018; 321
Qin, Dong, Cui, Yao, Ma (b0410) 2019; 148
Yan, Bao, Yang, Fan, Shen (b0890) 2011; 42
Klingspor, Strmberg, Karlsson, Bjerle (b0295) 1984; 18
Huang, Riisager, Berg, Fehrmann (b0960) 2008; 279
Wilkes (b0925) 2002; 4
Junjie Bian, Shu Zhang, Jingwei Zhang, Xin Min, Chunhu Li, Supported manganese dioxide catalyst for seawater flue gas desulfurization application 189-190 (2012) 57-61. 10.1016/j.cej.2012.02.022.
Feng, Zhao, Wang, Xia, Zhang, Huan, Ma (b0185) 2016; 30
Xiang, Sun, Wei, Wang, Boczkaj, Yoon, Chen (b0440) 2021; 163
Yang (b1045) 2012
Rubio, Teresa, Ana, Mastral (b0170) 1998; 36
Mo, Wu, Cheng, Li, Guan, Zhao (b0595) 2006; 06
Hui, Ge, Dou, Pan, Zhou (b0670) 2009; 23
Zhu, Ye, Bai, Wu, Liu, Yang (b0460) 2015; 129
Zheng, Kiil, Johnsson, Qin (b0275) 2002; 81
Vidal, Ollero, Gutiérrez Ortiz, Villanueva (b0765) 2007; 41
Zhou, Zhu, Peng, Liu, Zhang, Zhang (b0265) 2009; 170
L.M. Huang, Application and improvement of zinc oxide method desulphurization technology in lead and zinc smelters, Sulphuric Acid Industry (05) (2015) 42-45. CNKI:SUN:LSGY.0.2015-05-017.
Rahimi, Hatamipour, Gholami (b0315) 2011; 89
Gisi, Molino, Notarnicola (b0480) 2017; 109
Gu, Chen (b0555) 2020; 271
Yan, Lu, Guo, Wang, Ji (b0700) 2014; 25
Zhang, You, Zhao, Chen, Qi (b0345) 2008; 42
Huang, Wu, Yang (b0895) 2020; 92
Zhou, Wei, Zhu, Wang, Wu (b0375) 2020; 290
Zhang, Xing, Liu, Qi, Wang (b0690) 2021; 266
Castro, Medeiros, Araújo, Cruz, Ribeiro, Oliveirac (b0385) 2017; 143
Gao, Ding, Du, Wu, Fang, Luo, Cen (b0825) 2010; 87
Korpela, Majanne, Salminen, Laari, Björkqvist (b0240) 2015; 48
Wang, Yao, Peng (b0835) 2020; 28
Sakai, Matsumoto, Sadakata (b0515) 2004; 13
Sun, Xie, Huang, Li, Li, Cui, Xu, Qu, Yan (b0610) 2021; 288
Niu, Zhang, Li, Guo (b0200) 2021; 293
Karlsson, Klingspor (b0225) 1987; 10
Ren, Hou, Wu, Liu, Chen (b1025) 2010; 114
Rashid (b1010) 2020; 321
Xie, Li, Guo, Gao, Yu (b0975) 2012; 20
Shen, Chen, Tong, Guo, Ni, Lu (b0635) 2013; 105
Bai, Shibuya, Masuda, Nishio, Kato (b0105) 1995; 84
Jiang, Li, Wang, Xu, Chu (b0545) 2018; 205
Ye, An, Zhang, Wang, Guo, Yu (b0880) 2021; 389
Zhang, Wang, Zhu, Wang, Zhang (b0870) 2018; 91
Nyman (b0750) 1991; 89
253 (2020) 120026. 10.1016/j.jclepro.2020.120026.
Xiaoping Wang, Sulfite oxidation in seawater flue gas desulfurization by plate falling film corona-streamer discharge, 2013.
F.Z. Wang, Technical Analysis of Flue Gas Desulfurization Technology Using Zinc Oxide as Absorbent for Zinc Smelters, Energy Saving Nonferrous Metall. (05) (2013) 44-48. CNKI:SUN:YJJN.0.2013-05-012.
Li, Li, He (b0740) 2019; 7
X.M. Wang, Technology about dry desulfurization and semi-dry desulfurization, Electric Power Environ Protect 34(01) (2018) 45-48. CNKI:SUN:DLHB.0.2018-01-010.
Wang, Ma, Zhang,
Li (10.1016/j.seppur.2021.119849_b0885) 2020; 155
Jiang (10.1016/j.seppur.2021.119849_b0545) 2018; 205
Zhang (10.1016/j.seppur.2021.119849_b0345) 2008; 42
Liu (10.1016/j.seppur.2021.119849_b0070) 2004; 43
Sanders (10.1016/j.seppur.2021.119849_b0250) 1995; 34
Castro (10.1016/j.seppur.2021.119849_b0385) 2017; 143
10.1016/j.seppur.2021.119849_b0350
Zhang (10.1016/j.seppur.2021.119849_b0180) 2017; 210
Rahimi (10.1016/j.seppur.2021.119849_b0315) 2011; 89
Xiang (10.1016/j.seppur.2021.119849_b0440) 2021; 163
Dou (10.1016/j.seppur.2021.119849_b0470) 2009; 50
Karlsson (10.1016/j.seppur.2021.119849_b0225) 1987; 10
Yang (10.1016/j.seppur.2021.119849_b1045) 2012
Zhang (10.1016/j.seppur.2021.119849_b0140) 2010; 49
Xie (10.1016/j.seppur.2021.119849_b0975) 2012; 20
Feng (10.1016/j.seppur.2021.119849_b0185) 2016; 30
Cai (10.1016/j.seppur.2021.119849_b0280) 2020; 96
10.1016/j.seppur.2021.119849_b0580
10.1016/j.seppur.2021.119849_b0465
Pan (10.1016/j.seppur.2021.119849_b0050) 1991; 12
Zhao (10.1016/j.seppur.2021.119849_b0530) 2018; 261
Yan (10.1016/j.seppur.2021.119849_b0355) 2003; 23
Li (10.1016/j.seppur.2021.119849_b0550) 2020; 269
Vidal (10.1016/j.seppur.2021.119849_b0765) 2007; 41
Gupta (10.1016/j.seppur.2021.119849_b0115) 2000; 108
Li (10.1016/j.seppur.2021.119849_b0875) 2019; 146
Mo (10.1016/j.seppur.2021.119849_b0600) 2007; 02
Pandey (10.1016/j.seppur.2021.119849_b0005) 2005; 356
Zhang (10.1016/j.seppur.2021.119849_b0730) 2002; 02
Feng (10.1016/j.seppur.2021.119849_b0080) 2020; 267
Wang (10.1016/j.seppur.2021.119849_b0245) 2011; 11
Jia (10.1016/j.seppur.2021.119849_b0830) 2010; 164
10.1016/j.seppur.2021.119849_b0575
Rogers (10.1016/j.seppur.2021.119849_b0930) 2003; 302
Guo (10.1016/j.seppur.2021.119849_b0630) 2011; 90
Ng (10.1016/j.seppur.2021.119849_b0945) 2021; 127061
Nyman (10.1016/j.seppur.2021.119849_b0750) 1991; 89
Jiang (10.1016/j.seppur.2021.119849_b0495) 2019; 246
Zhang (10.1016/j.seppur.2021.119849_b1070) 2021; 272
Wang (10.1016/j.seppur.2021.119849_b0835) 2020; 28
Du (10.1016/j.seppur.2021.119849_b0270) 2020; 230
Bao (10.1016/j.seppur.2021.119849_b0590) 2011; 50
Shi (10.1016/j.seppur.2021.119849_b0785) 2009; 70
Hanjitsuwan (10.1016/j.seppur.2021.119849_b0560) 2020; 114
Tokumura (10.1016/j.seppur.2021.119849_b0755) 2006; 45
Huang (10.1016/j.seppur.2021.119849_b0965) 2006; 38
Lei (10.1016/j.seppur.2021.119849_b1060) 2019; 26
Yang (10.1016/j.seppur.2021.119849_b0230) 2000; 34
Chandara (10.1016/j.seppur.2021.119849_b0535) 2009; 29
Chen (10.1016/j.seppur.2021.119849_b0020) 2012; 118
Tian (10.1016/j.seppur.2021.119849_b0980) 2013; 3
Ma (10.1016/j.seppur.2021.119849_b0430) 2020; 153
10.1016/j.seppur.2021.119849_b0790
Niu (10.1016/j.seppur.2021.119849_b0200) 2021; 293
Wei (10.1016/j.seppur.2021.119849_b0090) 2006; 26
Shen (10.1016/j.seppur.2021.119849_b0635) 2013; 105
Linek (10.1016/j.seppur.2021.119849_b0650) 1981; 36
Wypiór (10.1016/j.seppur.2021.119849_b0505) 2020; 281
Huang (10.1016/j.seppur.2021.119849_b0895) 2020; 92
Li (10.1016/j.seppur.2021.119849_b1065) 2020; 392
Huang (10.1016/j.seppur.2021.119849_b0960) 2008; 279
Zhou (10.1016/j.seppur.2021.119849_b0260) 2005; 44
Zhang (10.1016/j.seppur.2021.119849_b0165) 2000; 05
Cao (10.1016/j.seppur.2021.119849_b0735) 2020; 3
Wilkes (10.1016/j.seppur.2021.119849_b0925) 2002; 4
10.1016/j.seppur.2021.119849_b0780
Wang (10.1016/j.seppur.2021.119849_b0370) 2015; 264
Wei (10.1016/j.seppur.2021.119849_b1040) 2012
Kallinikos (10.1016/j.seppur.2021.119849_b0455) 2010; 91
Wu (10.1016/j.seppur.2021.119849_b0605) 2008; 152
Chen (10.1016/j.seppur.2021.119849_b0420) 2020; 171
Zhang (10.1016/j.seppur.2021.119849_b0360) 2010; 2010
Hao (10.1016/j.seppur.2021.119849_b0910) 2019; 365
Cui (10.1016/j.seppur.2021.119849_b0510) 2021; 285
Yan (10.1016/j.seppur.2021.119849_b0665) 2014; 65
Zeng (10.1016/j.seppur.2021.119849_b0985) 2014; 251
Zheng (10.1016/j.seppur.2021.119849_b0275) 2002; 81
Li (10.1016/j.seppur.2021.119849_b0740) 2019; 7
Yan (10.1016/j.seppur.2021.119849_b0890) 2011; 42
Bai (10.1016/j.seppur.2021.119849_b0135) 1992; 71
Chen (10.1016/j.seppur.2021.119849_b0415) 2019; 343
Zhao (10.1016/j.seppur.2021.119849_b0520) 2018; 321
Tian (10.1016/j.seppur.2021.119849_b0565) 2020; 265
Yan (10.1016/j.seppur.2021.119849_b0700) 2014; 25
Feng (10.1016/j.seppur.2021.119849_b0335) 2019; 31
Guo (10.1016/j.seppur.2021.119849_b0290) 1996; 22
cr-split#-10.1016/j.seppur.2021.119849_b0625.2
Ye (10.1016/j.seppur.2021.119849_b0880) 2021; 389
cr-split#-10.1016/j.seppur.2021.119849_b0625.1
Bi (10.1016/j.seppur.2021.119849_b0110) 2010; 77
Korpela (10.1016/j.seppur.2021.119849_b0240) 2015; 48
Wei (10.1016/j.seppur.2021.119849_b0120) 2006; 49
Jia (10.1016/j.seppur.2021.119849_b0840) 2015; 6
Wang (10.1016/j.seppur.2021.119849_b0775) 2013; 97
Fang (10.1016/j.seppur.2021.119849_b0695) 2021; 551
Bian (10.1016/j.seppur.2021.119849_b0795) 2016; 101
Zermeño (10.1016/j.seppur.2021.119849_b0645) 2015; 138
Fang (10.1016/j.seppur.2021.119849_b0400) 2017; 342
Anthony (10.1016/j.seppur.2021.119849_b0045) 2005; 25
Guo (10.1016/j.seppur.2021.119849_b0285) 1998; 24
Chen (10.1016/j.seppur.2021.119849_b0365) 2005; 154
Wang (10.1016/j.seppur.2021.119849_b0525) 2017; 121
Yang (10.1016/j.seppur.2021.119849_b0540) 2020; 257
Zhou (10.1016/j.seppur.2021.119849_b0130) 2011; 205
Ma (10.1016/j.seppur.2021.119849_b0300) 1999; 77
Zhou (10.1016/j.seppur.2021.119849_b0265) 2009; 170
Du (10.1016/j.seppur.2021.119849_b0330) 2021; 383
10.1016/j.seppur.2021.119849_b0615
Gao (10.1016/j.seppur.2021.119849_b0825) 2010; 87
Hill (10.1016/j.seppur.2021.119849_b0215) 2000; 39
Córdoba (10.1016/j.seppur.2021.119849_b0500) 2015; 144
Deng (10.1016/j.seppur.2021.119849_b0990) 2017; 41
Pang (10.1016/j.seppur.2021.119849_b1050) 2013; 634–638
Xing (10.1016/j.seppur.2021.119849_b0685) 2020; 275
Ishizuka (10.1016/j.seppur.2021.119849_b0065) 2000; 39
Ma (10.1016/j.seppur.2021.119849_b0310) 2001; 80
Ren (10.1016/j.seppur.2021.119849_b1025) 2010; 114
Wu (10.1016/j.seppur.2021.119849_b0935) 2010; 43
10.1016/j.seppur.2021.119849_b0620
Yi (10.1016/j.seppur.2021.119849_b0450) 2008; 89
Shale (10.1016/j.seppur.2021.119849_b0820) 1971; 67
Wang (10.1016/j.seppur.2021.119849_b0425) 2020; 247
Mohammadi (10.1016/j.seppur.2021.119849_b1020) 2014; 193
Hui (10.1016/j.seppur.2021.119849_b0670) 2009; 23
He (10.1016/j.seppur.2021.119849_b0815) 2003; 44
10.1016/j.seppur.2021.119849_b0725
Zhang (10.1016/j.seppur.2021.119849_b0220) 2019; 04
Mo (10.1016/j.seppur.2021.119849_b0595) 2006; 06
Sun (10.1016/j.seppur.2021.119849_b0610) 2021; 288
Wang (10.1016/j.seppur.2021.119849_b0845) 2018; 331
Sakai (10.1016/j.seppur.2021.119849_b0515) 2004; 13
Shen (10.1016/j.seppur.2021.119849_b0675) 2012; 51
Dahlan (10.1016/j.seppur.2021.119849_b0075) 2009; 161
Zhao (10.1016/j.seppur.2021.119849_b0435) 2021; 150
Zhang (10.1016/j.seppur.2021.119849_b0870) 2018; 91
Cao (10.1016/j.seppur.2021.119849_b0025) 2013; 32
Zhou (10.1016/j.seppur.2021.119849_b0375) 2020; 290
Hao (10.1016/j.seppur.2021.119849_b0150) 2012; 215
Gu (10.1016/j.seppur.2021.119849_b0555) 2020; 271
Wei (10.1016/j.seppur.2021.119849_b0100) 1997; 91
Nie (10.1016/j.seppur.2021.119849_b1055) 2019; 369
Anderson (10.1016/j.seppur.2021.119849_b0970) 2006; 110
10.1016/j.seppur.2021.119849_b0040
Gisi (10.1016/j.seppur.2021.119849_b0480) 2017; 109
Bai (10.1016/j.seppur.2021.119849_b0105) 1995; 84
Neathery (10.1016/j.seppur.2021.119849_b0205) 1996; 42
Graf (10.1016/j.seppur.2021.119849_b0085) 1986
Zhang (10.1016/j.seppur.2021.119849_b0190) 2020; 10
Qin (10.1016/j.seppur.2021.119849_b0410) 2019; 148
Cheng (10.1016/j.seppur.2021.119849_b0905) 2020; 88
Qu (10.1016/j.seppur.2021.119849_b0490) 2021; 29
10.1016/j.seppur.2021.119849_b0720
Xu (10.1016/j.seppur.2021.119849_b0325) 2021; 378
Liu (10.1016/j.seppur.2021.119849_b0175) 2003; 12
Zhang (10.1016/j.seppur.2021.119849_b0995) 2016; 55
Sedman (10.1016/j.seppur.2021.119849_b0255) 1992; 42
Kaiser (10.1016/j.seppur.2021.119849_b0055) 2000; 39
Thriel (10.1016/j.seppur.2021.119849_b0010) 2010; 196
10.1016/j.seppur.2021.119849_b0390
Getler (10.1016/j.seppur.2021.119849_b0210) 1979; 29
10.1016/j.seppur.2021.119849_b0030
Skopec (10.1016/j.seppur.2021.119849_b0195) 2021; 283
Oikawa (10.1016/j.seppur.2021.119849_b0760) 2003; 22
10.1016/j.seppur.2021.119849_b0035
Ragipani (10.1016/j.seppur.2021.119849_b0405) 2021; 121
Li (10.1016/j.seppur.2021.119849_b1005) 2017; 31
Rashid (10.1016/j.seppur.2021.119849_b1010) 2020; 321
10.1016/j.seppur.2021.119849_b0710
10.1016/j.seppur.2021.119849_b0810
Chen (10.1016/j.seppur.2021.119849_b0915) 2020; 393
Jiang (10.1016/j.seppur.2021.119849_b0340) 1995; 85
Martin (10.1016/j.seppur.2021.119849_b0015) 2014; 56
Marocco (10.1016/j.seppur.2021.119849_b0060) 2013; 108
Jia (10.1016/j.seppur.2021.119849_b0865) 2017; 116
Li (10.1016/j.seppur.2021.119849_b0570) 2021; 286
Tong (10.1016/j.seppur.2021.119849_b0680) 2015; 258
Wang (10.1016/j.seppur.2021.119849_b0860) 2015; 88
Klingspor (10.1016/j.seppur.2021.119849_b0295) 1984; 18
Srivastava (10.1016/j.seppur.2021.119849_b0445) 2001; 20
Wang (10.1016/j.seppur.2021.119849_b0660) 2013; 258–259
Sun (10.1016/j.seppur.2021.119849_b0145) 2021
Zhou (10.1016/j.seppur.2021.119849_b0395) 2017; 327
Xu (10.1016/j.seppur.2021.119849_b0320) 2000; 4
Ying (10.1016/j.seppur.2021.119849_b0950) 2011; 175
Zhang (10.1016/j.seppur.2021.119849_b0940) 2019; 7
Zhu (10.1016/j.seppur.2021.119849_b0460) 2015; 129
10.1016/j.seppur.2021.119849_b0805
Wu (10.1016/j.seppur.2021.119849_b0155) 2018; 351
Zermeño (10.1016/j.seppur.2021.119849_b0640) 2015; 262
Bromley (10.1016/j.seppur.2021.119849_b0745) 1972; 7
Jin (10.1016/j.seppur.2021.119849_b0955) 2011; 115
Vidal (10.1016/j.seppur.2021.119849_b0770) 2001; 35
Chen (10.1016/j.seppur.2021.119849_b1030) 2015; 61
Zhang (10.1016/j.seppur.2021.119849_b0690) 2021; 266
Alobaid (10.1016/j.seppur.2021.119849_b0160) 2021; 228
Scheidema (10.1016/j.seppur.2021.119849_b0705) 2011; 50
Rubio (10.1016/j.seppur.2021.119849_b0170) 1998; 36
Velden (10.1016/j.seppur.2021.119849_b0125) 2007; 62
Li (10.1016/j.seppur.2021.119849_b0380) 2019; 225
Liu (10.1016/j.seppur.2021.119849_b1035) 2020; 148
Cotton (10.1016/j.seppur.2021.119849_b0920) 2014; 63
Sipos (10.1016/j.seppur.2021.119849_b0655) 1998; 75
Liu (10.1016/j.seppur.2021.119849_b0855) 2021; 14
References_xml – volume: 38
  start-page: 4027
  year: 2006
  end-page: 4029
  ident: b0965
  article-title: Reversible physical absorption of SO2 by ionic liquids
  publication-title: Chem. Commun.
– volume: 43
  start-page: 184
  year: 2004
  end-page: 189
  ident: b0070
  article-title: Effect of NaOH Addition on the Reactivities of Iron Blast Furnace Slag/Hydrated Lime Sorbents for Low-Temperature Flue Gas Desulfurization
  publication-title: Ind. Eng. Chem. Res.
– volume: 164
  start-page: 132
  year: 2010
  end-page: 138
  ident: b0830
  article-title: Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process
  publication-title: Chem. Eng. J.
– volume: 272
  year: 2021
  ident: b1070
  article-title: Research on red mud-limestone modified desulfurization mechanism and engineering application
  publication-title: Sep. Purif. Technol.
– volume: 80
  start-page: 673
  year: 2001
  end-page: 680
  ident: b0310
  article-title: Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed
  publication-title: Fuel
– reference: K.M. Zhang, Sustainable development has gradually changed from passive to conscious, Low Carbon World 04 (2012) 52-53. CNKI:SUN:DTSJ.0.2012-04-015.
– volume: 24
  start-page: 279
  year: 1998
  end-page: 284
  ident: b0285
  article-title: The Effect of Operating Conditions on SO2 Removal in Semi-Dry Desulfurization Process by Powder-Particle Spouted Bed
  publication-title: Kagaku Kogaku Ronbunshu
– volume: 6
  start-page: 997
  year: 2015
  end-page: 1003
  ident: b0840
  article-title: A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system
  publication-title: Atmos. Pollut. Res.
– volume: 22
  start-page: 1400
  year: 1996
  end-page: 1407
  ident: b0290
  article-title: Process Development of Effective Semi-Dry Flue Gas Desulfurization by Powder-Particle Spouted Bed [J]
  publication-title: Kagaku Kogaku Ronbunshu
– volume: 155
  year: 2020
  ident: b0885
  article-title: A numerical study of the ammonia desulfurization in the spray scattering tower
  publication-title: Chem. Eng. Process.
– volume: 228
  year: 2021
  ident: b0160
  article-title: Experimental measurements for Polish lignite combustion in a 1 MWth circulating fluidized bed during load changes
  publication-title: Energy
– reference: Jie Liu, Mengxuan Deng, Junsheng Yuan, Zhiyong Ji, Yingying Zhao, Xiaofu Guo, An aeration membrane absorption seawater flue gas desulfurization process intensified by combining dual-phase flow and oxidation reaction, Chem. Eng. Process. - Process Intensificat. 153 (2020) 107935. 10.1016/j.cep.2020.107935.
– volume: 12
  start-page: 62
  year: 1991
  end-page: 68
  ident: b0050
  article-title: Overview of desulphurization technologies by in-furnace calcuium-based sorbent injection and main influence factors on SO2 capture
  publication-title: Chinese J. Environ. Sci.
– volume: 108
  start-page: 21
  year: 2000
  end-page: 31
  ident: b0115
  article-title: Evaluation of the gas–solid suspension density in CFB risers with exit effects
  publication-title: Powder Technol.
– volume: 11
  start-page: 1023
  year: 2011
  end-page: 1208
  ident: b0245
  article-title: Effect of Humidification Water on Semi-dry Flue Gas Desulfurization
  publication-title: Proc. Environ. Sci.
– volume: 392
  start-page: 12270
  year: 2020
  ident: b1065
  article-title: Simultaneous removal of SO2 and no using a novel method with red mud as absorbent combined with O
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 1390
  year: 2000
  end-page: 1396
  ident: b0065
  article-title: Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 104
  year: 1987
  end-page: 112
  ident: b0225
  article-title: Tentative modelling of spray-dry scrubbing of SO2
  publication-title: Chem. Eng. Technol.
– volume: 246
  start-page: 249
  year: 2019
  end-page: 256
  ident: b0495
  article-title: A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet
  publication-title: Environ. Pollut.
– volume: 264
  start-page: 479
  year: 2015
  end-page: 486
  ident: b0370
  article-title: Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 77
  year: 1972
  end-page: 84
  ident: b0745
  article-title: Use of sea water to scrub sulfur dioxide from stack gases
  publication-title: Int. J. Sulfur Chem.
– volume: 81
  start-page: 1899
  year: 2002
  end-page: 1905
  ident: b0275
  article-title: Use of spray dry absorption product in wet flue gas desulphurization plants: pilot-scale experiments
  publication-title: Fuel
– volume: 321
  year: 2020
  ident: b1010
  article-title: Ionic liquids: innovative fluids for sustainable gas separation from industrial waste stream
  publication-title: J. Mol. Liq.
– volume: 30
  start-page: 6578
  year: 2016
  end-page: 6584
  ident: b0185
  article-title: Reduction of SO2 with CO to Elemental Sulfur in Activated Carbon Bed
  publication-title: Energy Fuels
– volume: 42
  start-page: 259
  year: 1996
  end-page: 268
  ident: b0205
  article-title: Model for Flue-Gas Desulfurization in a Circulating Dry Scrubber
  publication-title: AIChE J.
– volume: 265
  year: 2020
  ident: b0565
  article-title: Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders
  publication-title: Constr. Build. Mater.
– volume: 77
  start-page: 356
  year: 1999
  end-page: 362
  ident: b0300
  article-title: Removal of SO2 from flue gas using a new semidry flue gas desulfurization process with a powder-particle spouted bed
  publication-title: Can. J. Chem. Eng.
– volume: 257
  year: 2020
  ident: b0540
  article-title: Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials
  publication-title: Constr. Build. Mater.
– volume: 36
  start-page: 263
  year: 1998
  end-page: 268
  ident: b0170
  article-title: Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars
  publication-title: Carbon
– volume: 383
  start-page: 471
  year: 2021
  end-page: 483
  ident: b0330
  article-title: Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed
  publication-title: Powder Technol.
– volume: 205
  start-page: 589
  year: 2018
  end-page: 598
  ident: b0545
  article-title: Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete
  publication-title: J. Cleaner Prod.
– volume: 210
  start-page: 738
  year: 2017
  end-page: 747
  ident: b0180
  article-title: Multi-stage semi-coke activation for the removal of SO2 and NO
  publication-title: Fuel
– volume: 50
  start-page: 9550
  year: 2011
  end-page: 9556
  ident: b0705
  article-title: Decomposition Thermodynamics of Magnesium Sulfate
  publication-title: Ind. Eng. Chem. Res.
– volume: 129
  start-page: 15
  year: 2015
  end-page: 23
  ident: b0460
  article-title: A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization
  publication-title: Fuel Process. Technol.
– volume: 258
  year: 2019
  ident: b0485
  article-title: An investigation on data mining and operating optimization for wet flue gas desulfurization systems
  publication-title: Fuel
– volume: 31
  start-page: 323
  year: 2019
  end-page: 331
  ident: b0335
  article-title: Numerical simulation of semi-dry flue gas desulfurization process in the powder-particle spouted bed. 2020
  publication-title: Adv. Powder Technol.
– volume: 85
  start-page: 115
  year: 1995
  end-page: 126
  ident: b0340
  article-title: The use of a circulating fluidized bed absorber for the control of sulfur dioxide emissions by calcium oxide sorbent via in situ hydration
  publication-title: Powder Technol.
– volume: 89
  start-page: 52
  year: 1991
  end-page: 54
  ident: b0750
  article-title: Seawater Scrubbing Removes SO2 from Refinery Flue Gases
  publication-title: Oil Gas J.
– volume: 127061
  year: 2021
  ident: b0945
  article-title: A Review on Dry-based and Wet-based Catalytic Sulphur Dioxide (SO2) Reduction Technologies
  publication-title: J. Hazard. Mater.
– volume: 293
  year: 2021
  ident: b0200
  article-title: Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO
  publication-title: Fuel
– volume: 343
  start-page: 122
  year: 2019
  end-page: 128
  ident: b0415
  article-title: Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device
  publication-title: Powder Technol.
– volume: 286
  year: 2021
  ident: b0570
  article-title: Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete
  publication-title: Constr. Build. Mater.
– volume: 121
  start-page: 82
  year: 2017
  end-page: 92
  ident: b0525
  article-title: Research on saline-alkali soil amelioration with FGD gypsum
  publication-title: Resour. Conserv. Recycl.
– volume: 225
  year: 2019
  ident: b0380
  article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum
  publication-title: Fuel
– reference: L.M. Huang, Application and improvement of zinc oxide method desulphurization technology in lead and zinc smelters, Sulphuric Acid Industry (05) (2015) 42-45. CNKI:SUN:LSGY.0.2015-05-017.
– volume: 50
  start-page: 2547
  year: 2009
  end-page: 2553
  ident: b0470
  article-title: Prediction of SO
  publication-title: Energy Convers. Manage.
– volume: 65
  start-page: 487
  year: 2014
  end-page: 494
  ident: b0665
  article-title: Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization
  publication-title: Appl. Therm. Eng.
– reference: Junjie Bian, Shu Zhang, Jingwei Zhang, Xin Min, Chunhu Li, Supported manganese dioxide catalyst for seawater flue gas desulfurization application 189-190 (2012) 57-61. 10.1016/j.cej.2012.02.022.
– reference: L.C. Feng, Z.M. Yi, Study on the Technology of Desulphuration of Flue Gas with Magnesium Oxide. 1996. Sichuan Environ. (04) (1996) CNKI:SUN:SCHJ.0.1996-04-011.
– volume: 90
  start-page: 7
  year: 2011
  end-page: 10
  ident: b0630
  article-title: Dissolution rate of magnesium hydrate for wet flue gas desulfurization
  publication-title: Fuel
– volume: 258
  start-page: 70
  year: 2015
  end-page: 74
  ident: b0680
  article-title: Experimental investigation of MgSO3 oxidation process by catalysis in the magnesium desulfurization
  publication-title: Catal. Today
– volume: 144
  start-page: 274
  year: 2015
  end-page: 286
  ident: b0500
  article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs
  publication-title: Fuel
– volume: 41
  start-page: 2090
  year: 2017
  end-page: 2097
  ident: b0990
  article-title: Investigation of furoate based ionic liquid as efficient SO2 absorbent
  publication-title: New J. Chem.
– volume: 36
  start-page: 3083
  year: 2005
  end-page: 3089
  ident: b1015
  article-title: Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reaction
  publication-title: ChemInform
– volume: 153
  year: 2020
  ident: b0430
  article-title: Jet absorption and desulfurization technology of sulfur waste gas in the acrylonitrile apparatus
  publication-title: Chem. Eng. Process.
– volume: 29
  start-page: 1675
  year: 2009
  end-page: 1679
  ident: b0535
  article-title: Use of waste gypsum to replace natural gypsum as set retarders in portland cement
  publication-title: Waste Manage.
– volume: 36
  start-page: 1747
  year: 1981
  end-page: 1768
  ident: b0650
  article-title: Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas—liquid contactors
  publication-title: Chem. Eng. Sci.
– volume: 50
  start-page: 828
  year: 2011
  end-page: 835
  ident: b0590
  article-title: Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 103
  start-page: 207
  year: 2021
  end-page: 218
  ident: b0850
  article-title: Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization
  publication-title: J. Environ. Sci.
– volume: 4
  start-page: 9
  year: 2000
  end-page: 18
  ident: b0320
  article-title: A new semi-dry desulfurization process using a powder-particle spouted bed
  publication-title: Adv. Environ. Res.
– volume: 302
  year: 2003
  ident: b0930
  article-title: Ionic liquids-solvents of the future?
  publication-title: Science
– volume: 88
  start-page: 284
  year: 2015
  end-page: 291
  ident: b0860
  article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower
  publication-title: J. Energy Inst.
– volume: 290
  year: 2020
  ident: b0375
  article-title: Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directional growth control
  publication-title: J. Cleaner Prod.
– volume: 44
  start-page: 2175
  year: 2003
  end-page: 2188
  ident: b0815
  article-title: Temperature impact on SO2 removal efficiency by ammonia gas scrubbing
  publication-title: Energy Convers. Manage.
– volume: 91
  start-page: 619
  year: 2018
  end-page: 629
  ident: b0870
  article-title: Full-scale simulation of flow field in ammonia-based wet flue gas desulfurization double tower
  publication-title: J. Energy Inst.
– volume: 285
  year: 2021
  ident: b0510
  article-title: Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization
  publication-title: Fuel
– volume: 63
  start-page: 6404
  year: 2014
  end-page: 6412
  ident: b0920
  article-title: Engineering Scale-up Challenges, and Effects of SO2 on the Calcium Looping Cycle for Post Combustion CO2 Capture
  publication-title: Energy Procedia
– volume: 279
  start-page: 170
  year: 2008
  end-page: 176
  ident: b0960
  article-title: Tuning ionic liquids for high gas solubility and reversible gas sorption
  publication-title: J. Mol. Catal. A: Chem.
– volume: 55
  start-page: 11012
  year: 2016
  end-page: 11021
  ident: b0995
  article-title: Cyano-containing protic ionic liquids for highly selective absorption of SO2 from CO2: Experimental study and theoretical analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 26
  start-page: 467
  year: 2019
  end-page: 478
  ident: b1060
  article-title: Removal of SO
  publication-title: J. Central South Univ.
– volume: 91
  start-page: 189
  year: 1997
  end-page: 195
  ident: b0100
  article-title: Mass flux profiles in a high density circulating fluidized bed
  publication-title: Powder Technol.
– volume: 114
  start-page: 2175
  year: 2010
  end-page: 2179
  ident: b1025
  article-title: Properties of ionic liquids absorbing SO2 and the mechanism of the absorption
  publication-title: J. Phys. Chem. B
– volume: 34
  start-page: 302
  year: 1995
  end-page: 307
  ident: b0250
  article-title: Heated Fly Ash/Hydrated Lime Slurries for SO2 Removal in Spray Dryer Absorbers
  publication-title: Ind. Eng. Chem. Res.
– volume: 261
  start-page: 115
  year: 2018
  end-page: 124
  ident: b0530
  article-title: Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China
  publication-title: Agric. Ecosyst. Environ.
– volume: 23
  start-page: 2552
  year: 2009
  end-page: 2556
  ident: b0670
  article-title: Thermogravimetric Kinetics of MgSO3·6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization
  publication-title: Energy Fuels
– volume: 379
  year: 2020
  ident: b0900
  article-title: Study on the ammonia emission characteristics in an ammonia-based WFGD system
  publication-title: Chem. Eng. J.
– volume: 215
  start-page: 2012
  year: 2012
  ident: b0150
  article-title: Composite fluidization in a circulating fluidized bed for flue gas desulfurization
  publication-title: Powder Technol.
– volume: 10
  start-page: 22
  year: 2020
  end-page: 27
  ident: b0190
  article-title: Effect of activated coke diameter on SO
  publication-title: Water Conserv. Electric Power Mach.
– volume: 36
  start-page: 156
  year: 2013
  end-page: 166
  ident: b0235
  article-title: Influence of the Lime Slurry Droplet Spectrum on the Efficiency of Semi-Dry Flue Gas Desulfurization
  publication-title: Chem. Eng. Technol.
– volume: 351
  start-page: 1104
  year: 2018
  end-page: 1114
  ident: b0155
  article-title: Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization
  publication-title: Chem. Eng. J.
– volume: 378
  start-page: 191
  year: 2021
  end-page: 201
  ident: b0325
  article-title: Numerical simulation of semi-dry desulfurization spouted bed using the discrete element method (DEM)
  publication-title: Powder Technol.
– volume: 369
  start-page: 503
  year: 2019
  end-page: 511
  ident: b1055
  article-title: Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation
  publication-title: J. Hazard. Mater.
– volume: 96
  start-page: 64
  year: 2020
  end-page: 71
  ident: b0280
  article-title: Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas
  publication-title: J. Environ. Sci.
– volume: 06
  start-page: 718
  year: 2006
  end-page: 723
  ident: b0595
  article-title: Experimental and Theoretical Studies on Desulfurization Efficiency of Dual-alkali FGD System in a RST Scrubber
  publication-title: Chinese J. Process Eng.
– volume: 267
  year: 2020
  ident: b0080
  article-title: Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization
  publication-title: Fuel
– volume: 149
  start-page: 610
  year: 2021
  end-page: 618
  ident: b0855
  article-title: Process optimization of S (IV) oxidation in flue gas desulfurization scrubbers
  publication-title: Process Saf. Environ. Prot.
– volume: 84
  start-page: 75
  year: 1995
  end-page: 81
  ident: b0105
  article-title: Distinction between upward and downward flows in circulating fluidized beds
  publication-title: Powder Technol.
– volume: 04
  start-page: 14
  year: 2019
  end-page: 18
  ident: b0220
  article-title: Application of SDS Dry Desulfurization and SCR Medium and Low Temperature Denitration Technology in Coke Oven Flue Gas Treatment
  publication-title: Chem. Equipment Technol.
– reference: 253 (2020) 120026. 10.1016/j.jclepro.2020.120026.
– reference: X.M. Wang, Technology about dry desulfurization and semi-dry desulfurization, Electric Power Environ Protect 34(01) (2018) 45-48. CNKI:SUN:DLHB.0.2018-01-010.
– volume: 205
  start-page: 208
  year: 2011
  end-page: 216
  ident: b0130
  article-title: Hydrodynamics of gas–solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization
  publication-title: Powder Technol.
– volume: 20
  start-page: 140
  year: 2012
  end-page: 145
  ident: b0975
  article-title: Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization
  publication-title: Chin. J. Chem. Eng.
– volume: 193
  start-page: 60
  year: 2014
  end-page: 68
  ident: b1020
  article-title: Molecular investigation of SO2 gas absorption by ionic liquids: effects of anion type
  publication-title: J. Mol. Liq.
– volume: 161
  start-page: 570
  year: 2009
  end-page: 574
  ident: b0075
  article-title: Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature
  publication-title: J. Hazard. Mater.
– volume: 150
  start-page: 453
  year: 2021
  end-page: 463
  ident: b0435
  article-title: Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system
  publication-title: Process Saf. Environ. Prot.
– volume: 365
  start-page: 282
  year: 2019
  end-page: 290
  ident: b0910
  article-title: Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 11464
  year: 2010
  end-page: 11470
  ident: b0140
  article-title: Effect of Internal Structure on Flue Gas Desulfurization with Rapidly Hydrated Sorbent in a Circulating Fluidized Bed at Moderate Temperatures
  publication-title: Ind. Eng. Chem. Res.
– volume: 230
  year: 2020
  ident: b0270
  article-title: Desulfurization and denitrification experiments in SDA system: A new high-efficient semi-dry process by NaClO2
  publication-title: Sep. Purif. Technol.
– volume: 03
  start-page: 25
  year: 2001
  end-page: 27
  ident: b0585
  article-title: Research on Main Influence Factors of Flue Gas Desulfurization by Sodium-Calcium Dual-alkali Scrubbi
  publication-title: Environ. Sci. Technol.
– volume: 247
  year: 2020
  ident: b0425
  article-title: Wet flue gas desulfurization using micro vortex flow scrubber: Characteristics, modeling and simulation
  publication-title: Sep. Purif. Technol.
– volume: 29
  start-page: 1270
  year: 1979
  end-page: 1274
  ident: b0210
  article-title: Modeling the Spray Absorption Process for SO2 Removal
  publication-title: J. Air Pollution Control Assoc.
– reference: Xiaoping Wang, Sulfite oxidation in seawater flue gas desulfurization by plate falling film corona-streamer discharge, 2013.
– volume: 42
  start-page: 1705
  year: 2008
  end-page: 1710
  ident: b0345
  article-title: Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization
  publication-title: Environ. Sci. Technol.
– volume: 87
  start-page: 2647
  year: 2010
  end-page: 2651
  ident: b0825
  article-title: Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization
  publication-title: Appl. Energy
– volume: 331
  start-page: 416
  year: 2018
  end-page: 424
  ident: b0845
  article-title: Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 1709
  year: 2014
  end-page: 1714
  ident: b0700
  article-title: Research on the thermal decomposition and kinetics of byproducts from MgO wet flue gas desulfurization
  publication-title: Adv. Powder Technol.
– volume: 170
  start-page: 436
  year: 2009
  end-page: 442
  ident: b0265
  article-title: The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process
  publication-title: J. Hazard. Mater.
– volume: 196
  start-page: 42
  year: 2010
  end-page: 50
  ident: b0010
  article-title: Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2)
  publication-title: Toxicol. Lett.
– volume: 89
  start-page: 1025
  year: 2008
  end-page: 1032
  ident: b0450
  article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants
  publication-title: Fuel Process. Technol.
– volume: 23
  start-page: 173
  year: 2003
  end-page: 177
  ident: b0355
  article-title: Investigation on flue gas desulfurization in a circulating fluidized bed
  publication-title: Proc. CSEE
– reference: N.Q. Yan, Y. Shi, Z.B. Wu, Y.P. Li, S. Li, T.E. Tan, Process of Dual-Alkali FGD in a Rotating-Stream-Tray Scrubbe, Environ. Sci. 05 (1998) 72-74. CNKI:SUN:HJKZ.0.1998-05-019.
– volume: 143
  start-page: 173
  year: 2017
  end-page: 187
  ident: b0385
  article-title: Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates
  publication-title: Energy Convers. Manage.
– volume: 356
  start-page: 571
  year: 2005
  end-page: 622
  ident: b0005
  article-title: Flue gas desulfurization: physicochemical and biotechnological approaches
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 18
  start-page: 239
  year: 1984
  end-page: 247
  ident: b0295
  article-title: Similarities between lime and limestone in wet—dry scrubbing
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 275
  year: 2020
  ident: b0685
  article-title: Superior energy-saving catalyst of Mn@ZIF67 for reclaiming byproduct in wet magnesia desulfurization
  publication-title: Appl. Catal. B
– reference: W. Song, J. Zhou, B. Wang, S. Li, J. Han, New insight into investigation of reduction of desulfurization ash by pyrite for clean generation SO
– volume: 163
  year: 2021
  ident: b0440
  article-title: Numerical investigation on distribution characteristics of oxidation air in a lime slurry desulfurization system with rotary jet agitators
  publication-title: Chem. Eng. Process.
– volume: 42
  start-page: 103
  year: 1992
  end-page: 110
  ident: b0255
  article-title: Current Status of the ADVACATE Process for Flue Gas Desulfurization
  publication-title: J. Air Waste Manag. Assoc.
– volume: 262
  start-page: 268
  year: 2015
  end-page: 277
  ident: b0640
  article-title: Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by-products
  publication-title: Chem. Eng. J.
– volume: 269
  year: 2020
  ident: b0550
  article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag
  publication-title: J. Cleaner Prod.
– volume: 25
  start-page: 265
  year: 2005
  end-page: 279
  ident: b0045
  article-title: LIFAC ash-strategies for management
  publication-title: Waste Manage.
– volume: 30
  start-page: 2251
  year: 2004
  end-page: 2260
  ident: b0715
  article-title: Study on utilizing zinc and lead-bearing metallurgical dust as sulfur absorbent during briquette combustion. 2005
  publication-title: Energy
– volume: 288
  year: 2021
  ident: b0610
  article-title: Novel product-adjustable technology using Wellman-Lord method coupled with sodium-alkali for SO
  publication-title: Fuel
– volume: 118
  start-page: 101
  year: 2012
  end-page: 106
  ident: b0020
  article-title: Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES)
  publication-title: Environ. Res.
– reference: F.Z. Wang, Technical Analysis of Flue Gas Desulfurization Technology Using Zinc Oxide as Absorbent for Zinc Smelters, Energy Saving Nonferrous Metall. (05) (2013) 44-48. CNKI:SUN:YJJN.0.2013-05-012.
– volume: 97
  start-page: 7
  year: 2013
  end-page: 15
  ident: b0775
  article-title: Model study of sulfite oxidation in seawater flue gas desulfurization by cylindrical wetted-wall corona-streamer discharge
  publication-title: Chem. Eng. Sci.
– volume: 13
  start-page: 65
  year: 2004
  end-page: 80
  ident: b0515
  article-title: Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content in Corn Grains
  publication-title: Soil Sediment Contam.
– start-page: 317
  year: 1986
  end-page: 327
  ident: b0085
  article-title: First operating experience with a dry flue gas desulfurization (FGD) process using a circulating fluid bed (FGD-CFB)
  publication-title: Circulat. Fluidized Bed Technol.
– volume: 49
  start-page: 3338
  year: 2006
  end-page: 3342
  ident: b0120
  article-title: Characterizing particle dispersion by image analysis in ICFB
  publication-title: Int. J. Heat Mass Transf.
– volume: 12
  start-page: 2217
  year: 2003
  end-page: 2223
  ident: b0175
  article-title: SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions
  publication-title: Carbon
– volume: 56
  start-page: 33
  year: 2014
  end-page: 39
  ident: b0015
  article-title: Community health risk assessment of primary aluminum smelter emissions
  publication-title: J. Occup. Environ. Med.
– volume: 77
  start-page: 223
  year: 2010
  end-page: 230
  ident: b0110
  article-title: Flow Patterns in High-Velocity Fluidized Beds and Pneumatic Conveying
  publication-title: Can. J. Chem. Eng.
– volume: 148
  start-page: 280
  year: 2019
  end-page: 290
  ident: b0410
  article-title: Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers
  publication-title: Chem. Eng. Res. Des.
– volume: 138
  start-page: 30
  year: 2015
  end-page: 36
  ident: b0645
  article-title: Transposition of wet flue gas desulfurization using MgO by-products: From laboratory discontinuous batch reactor to pilot scrubber
  publication-title: Fuel Process. Technol.
– reference: Yingying Zhao, Lurong Wang, Zhiyong Ji, Jie Liu, Xiaofu Guo, Fei Li, Shizhao Wang, Junsheng Yuan, Collaborative disposal of problematic calcium ions in seawater and carbon and sulfur pollutants in flue gas by bipolar membrane electrodialysis, Desalination 494 (2020) 114654. 10.1016/j.desal.2020.114654.
– volume: 55
  start-page: 4643
  year: 2000
  end-page: 4652
  ident: b0305
  article-title: Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed
  publication-title: Chem. Eng. Sci.
– volume: 91
  start-page: 1794
  year: 2010
  end-page: 1802
  ident: b0455
  article-title: Simulation of the operation of an industrial wet flue gas desulfurization system
  publication-title: Fuel Process. Technol.
– reference: R.K. Srivastava, Controlling SO2 Emissions: A Review of Technologies. U.S. Environmental Protection Agency Office of Research and Development Washington, D.C. 20460, 2000, pp. 3-19.
– volume: 251
  start-page: 248
  year: 2014
  end-page: 256
  ident: b0985
  article-title: Efficient and reversible capture of SO2 by pyridinium-based ionic liquids
  publication-title: Chem. Eng. J.
– volume: 148
  start-page: 107793
  year: 2020
  ident: b1035
  article-title: Desulfurization intensification by ionic liquid in a rotating packed bed
  publication-title: Chem. Eng. Process. - Process Intensification
– volume: 551
  start-page: 149478
  year: 2021
  ident: b0695
  article-title: Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization
  publication-title: Appl. Surf. Sci.
– volume: 389
  start-page: 178
  year: 2021
  end-page: 188
  ident: b0880
  article-title: Process simulation on atomization and evaporation of desulfurization wastewater and its application
  publication-title: Powder Technol.
– volume: 22
  start-page: 67
  year: 2003
  end-page: 73
  ident: b0760
  article-title: Seawater flue gas desulfurization: its technical implications and performance results
  publication-title: Environ. Prog.
– volume: 75
  start-page: 1603
  year: 1998
  end-page: 1605
  ident: b0655
  article-title: Inhibition of Sulfite Oxidation by Phenols: Screening Antioxidant Behavior with a Clark Oxygen Sensor
  publication-title: J. Chem. Ed.
– volume: 634–638
  start-page: 198
  year: 2013
  end-page: 203
  ident: b1050
  article-title: Analysis of alumina red mud wet flue gas desulfurization (FGD) technology
  publication-title: Adv. Mater. Res.
– volume: 283
  year: 2021
  ident: b0195
  article-title: Dry additive desulfurization in oxyfuel bubbling fluidized bed combustor
  publication-title: Fuel
– volume: 338
  start-page: 184
  year: 2018
  end-page: 190
  ident: b0800
  article-title: Integrated electrochemical-aerating oxidation in recovery system of seawater flue gas desulfurization
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  ident: b0740
  article-title: Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid
  publication-title: J. Environ. Chem. Eng.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0735
  article-title: Research on the oxidation characteristics of zinc sulfite in the zinc oxide desulfurization process
  publication-title: Environ. Technol.
– volume: 393
  year: 2020
  ident: b0915
  article-title: Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 2139
  year: 2007
  end-page: 2153
  ident: b0125
  article-title: Solids mixing in the riser of a circulating fluidized bed
  publication-title: Chem. Eng. Sci.
– volume: 44
  start-page: 8830
  year: 2005
  end-page: 8836
  ident: b0260
  article-title: Study on a Novel Semidry Flue Gas Desulfurization with Multifluid Alkaline Spray Generator
  publication-title: Ind. Eng. Chem. Res.
– volume: 146
  start-page: 117
  year: 2019
  end-page: 129
  ident: b0875
  article-title: Evaporation experiment and numerical simulation study of desulfurization wastewater in high-temperature raw gas
  publication-title: Chem. Eng. Res. Des.
– volume: 281
  year: 2020
  ident: b0505
  article-title: Effect of ammonia and ammonium compounds on wet-limestone flue gas desulfurization process from a coal-based power plant – Preliminary industrial scale study
  publication-title: Fuel
– reference: H.Y. Zhang, Industrial Application of Technology of Using Zinc Oxide Method to Abosorb low-concentration SO2 Fume, Nonferrous Metals Des., (03) (2003) 51-55. DOI:CNKI:SUN:YJSS.0.2003-03-012.
– reference: K.H. Wang, R.J. Biolchini, K.L. Legatski, Sodium-Limestone Double Alkali Flue Gas Desulfurization Method [P], US Pat.: 4 410500, 1983-10-18, 1983.
– volume: 70
  start-page: 212
  year: 2009
  end-page: 218
  ident: b0785
  article-title: Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process
  publication-title: Sep. Purif. Technol.
– volume: 258–259
  start-page: 61
  year: 2013
  end-page: 69
  ident: b0660
  article-title: Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid
  publication-title: J. Hazard. Mater.
– volume: 26
  start-page: 12
  year: 2006
  end-page: 18
  ident: b0090
  article-title: Numerical simulation study on the optimization of gas–solid two-phase flows in a desulfurization tower
  publication-title: Proc. CSEE
– volume: 101
  start-page: 117
  year: 2016
  end-page: 123
  ident: b0795
  article-title: Modified clinoptilolite catalysts for seawater flue gas desulfurization application: Preparation, characterization and kinetic evaluation
  publication-title: Process Saf. Environ. Prot.
– volume: 154
  start-page: 14
  year: 2005
  end-page: 23
  ident: b0365
  article-title: Flue gas desulfurization in an internally circulating fluidized bed reactor
  publication-title: Powder Technol.
– volume: 28
  start-page: 2457
  year: 2020
  end-page: 2466
  ident: b0835
  article-title: Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption
  publication-title: Chin. J. Chem. Eng.
– volume: 31
  start-page: 1771
  year: 2017
  end-page: 1777
  ident: b1005
  article-title: Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas
  publication-title: Energy Fuels
– volume: 67
  start-page: 52
  year: 1971
  end-page: 57
  ident: b0820
  article-title: Removal of sulfur and nitrogen oxides from stack gases by ammonia
  publication-title: Chem. Eng. Prog. Symp. Ser.
– volume: 41
  start-page: 7114
  year: 2007
  end-page: 7119
  ident: b0765
  article-title: Catalytic Seawater flue gas desulfurization process: An experimental pilot plant study
  publication-title: Environ. Sci. Technol.
– volume: 342
  start-page: 436
  year: 2017
  end-page: 445
  ident: b0400
  article-title: A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater
  publication-title: J. Hazard. Mater.
– volume: 115
  start-page: 6585
  year: 2011
  end-page: 6591
  ident: b0955
  article-title: Solubilities and thermodynamic properties of SO2 in ionic liquids
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 73
  year: 2005
  end-page: 78
  ident: b0095
  article-title: Dry Desulfurization in a Circulating Fluidized Bed (CFB) with Chain Reactions at Moderate Temperatures
  publication-title: Energy Fuels
– reference: H.G. He, In-furnace Sorbent Injection-based Desulfurization Technolog, Therm Power Generat 5 (1989) 7-9+6. CNKI:SUN:RLFD.0.1989-05-001.
– reference: G.Q. Dong, J. Wang, The Prospect on Technology and Application of FGD by Magnesium Oxide Scrubbing. Inorg. Chem. Ind. (01) (2005) 11-12. CNKI:SUN:WJYG.0.2005-01-004.
– volume: 45
  start-page: 6339
  year: 2006
  end-page: 6348
  ident: b0755
  article-title: Neutralization of the Acidified Seawater Effluent from the Flue Gas Desulfurization Process: Experimental Investigation, Dynamic Modeling and Simulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 327
  start-page: 914
  year: 2017
  end-page: 923
  ident: b0395
  article-title: Utilization of semi-dry sintering flue gas desulfurized ash for SO
  publication-title: Chem. Eng. J.
– year: 2012
  ident: b1045
  publication-title: Experimental Study of Red Mud for Industrial Flue Gas Desulfurization
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 4
  ident: b0360
  article-title: Experimental Study of SO2 Removal by Powder Activated Carbon in Fluidized Bed Reactor
  publication-title: Asia-Pacific Power and Energy Engineering Conference IEEE
– volume: 88
  start-page: 72
  year: 2020
  end-page: 80
  ident: b0905
  article-title: Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system
  publication-title: J. Environ. Sci.
– volume: 29
  start-page: 13
  year: 2021
  end-page: 26
  ident: b0490
  article-title: Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process
  publication-title: Chin. J. Chem. Eng.
– volume: 108
  start-page: 205
  year: 2013
  end-page: 214
  ident: b0060
  article-title: CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime
  publication-title: Sep. Purif. Technol.
– volume: 152
  start-page: 757
  year: 2008
  end-page: 764
  ident: b0605
  article-title: Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process
  publication-title: J. Hazard. Mater.
– volume: 35
  start-page: 2792
  year: 2001
  end-page: 2796
  ident: b0770
  article-title: A kinetic study of the oxidation of S(IV) in seawater
  publication-title: Environ. Sci. Technol.
– volume: 171
  year: 2020
  ident: b0420
  article-title: A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery
  publication-title: Appl. Therm. Eng.
– reference: S. Han, B.H. Song, S.Y. Lu, Y.J. Han, W.X. Wang, Z.Y. Yang, Application of Magnesium Process of FGD Technology in Coal-fired Power Plant, Technol. Eng. Appl. (06) (2008) 56-59. CNKI: SUN: ZHBY.0.2008-06-020.
– volume: 92
  start-page: 95
  year: 2020
  end-page: 105
  ident: b0895
  article-title: Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. 2020
  publication-title: J. Environ. Sci.
– volume: 02
  start-page: 49
  year: 2002
  end-page: 53
  ident: b0730
  article-title: The Study on Reaction of Zinc Sulfite by Blasting Air
  publication-title: Nat. Sci. J. Xiangtan Univ.
– volume: 39
  start-page: 425
  year: 2000
  end-page: 432
  ident: b0055
  article-title: Modeling a dry-scrubbing flue gas cleaning process
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 121
  start-page: 117
  year: 2021
  end-page: 126
  ident: b0405
  article-title: Selective sulfur removal from semi-dry flue gas desulfurization coal fly ash for concrete and carbon dioxide capture applications
  publication-title: Waste Manage.
– volume: 105
  start-page: 578
  year: 2013
  end-page: 584
  ident: b0635
  article-title: Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct
  publication-title: Fuel
– volume: 61
  start-page: 2028
  year: 2015
  end-page: 2034
  ident: b1030
  article-title: Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas
  publication-title: AIChE J.
– year: 2021
  ident: b0145
  article-title: Numerical investigations on gas–solid flow in circulating fluidized bed risers using a new cluster-based drag model
  publication-title: Particuology
– volume: 39
  start-page: 45
  year: 2000
  end-page: 52
  ident: b0215
  article-title: Flue gas desulphurization by spray dry absorption
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 34
  start-page: 4582
  year: 2000
  end-page: 4586
  ident: b0230
  article-title: Experimental Study on the Spray Characteristics in the Spray Drying Absorber
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 10931
  year: 2019
  end-page: 10936
  ident: b0940
  article-title: Efficient regeneration of SO2-absorbed functional ionic liquids with H2S via the liquid-phase claus reaction
  publication-title: ACS Sustainable Chem. Eng.
– volume: 05
  start-page: 4
  year: 2000
  end-page: 6
  ident: b0165
  article-title: Studies on Sulfur Dioxide Adsorption on the Improved Active Coke
  publication-title: Environ. Protect. Sci.
– volume: 32
  start-page: 73
  year: 2013
  end-page: 74
  ident: b0025
  article-title: SO
  publication-title: Environ. Sci. Survey
– volume: 321
  start-page: 52
  year: 2018
  end-page: 60
  ident: b0520
  article-title: Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. 2018
  publication-title: Geoderma
– year: 2012
  ident: b1040
  publication-title: Research of Industrial Flue Gas Desulfurization by Alumina Red Mud
– volume: 42
  start-page: 604
  year: 2011
  end-page: 614
  ident: b0890
  article-title: The formation and removal characteristics of aerosols in ammonia-based wet flue gas desulfurization
  publication-title: J. Aerosol Sci.
– volume: 266
  year: 2021
  ident: b0690
  article-title: Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet desulfurization using one-pot synthesized Co-TUD-1/S
  publication-title: Sep. Purif. Technol.
– volume: 110
  start-page: 15059
  year: 2006
  end-page: 15062
  ident: b0970
  article-title: Measurement of SO2 solubility in ionic liquids
  publication-title: J. Phys. Chem. B
– volume: 71
  start-page: 51
  year: 1992
  end-page: 58
  ident: b0135
  article-title: The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds
  publication-title: Powder Technol.
– volume: 43
  start-page: 2415
  year: 2010
  end-page: 2417
  ident: b0935
  article-title: Desulfurization of flue gas: SO2 absorption by an ionic liquid
  publication-title: Angew. Chem. Int. Ed.
– volume: 271
  year: 2020
  ident: b0555
  article-title: Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement
  publication-title: J. Cleaner Prod.
– volume: 175
  start-page: 324
  year: 2011
  end-page: 329
  ident: b0950
  article-title: Guanidinium-based ionic liquids for sulfur dioxide sorption
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 60
  year: 2017
  end-page: 67
  ident: b0865
  article-title: Simulation of the absorption of SO2 by ammonia in a spray scrubber
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 20
  start-page: 219
  year: 2001
  end-page: 228
  ident: b0445
  article-title: SO2 Scrubbing Technologies: A Review
  publication-title: Environ. Prog.
– volume: 3
  start-page: 3572
  year: 2013
  end-page: 3577
  ident: b0980
  article-title: Absorption of SO2 by thermal-stable functional ionic liquids with lactate anion
  publication-title: RSC Adv.
– volume: 109
  start-page: 117
  year: 2017
  end-page: 129
  ident: b0480
  article-title: Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study
  publication-title: Process Saf. Environ. Prot.
– volume: 4
  start-page: 73
  year: 2002
  end-page: 80
  ident: b0925
  article-title: A short history of ionic liquids-from molten salts to neoteric solvents
  publication-title: Green Chem.
– volume: 02
  start-page: 100
  year: 2007
  end-page: 105
  ident: b0600
  article-title: Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system
  publication-title: J. Environ. Sci.
– reference: J.J. Yang, Optimization and Upgrading of Semi-dry Desulfurization Process of Circulating Fluidized Bed for Ultra Clean Emission, J. Environ. Eng. Technol. (04) (2016) 371-376. CNKI:SUN:HKWZ.0.2016-04-010.
– volume: 48
  start-page: 403
  year: 2015
  end-page: 408
  ident: b0240
  article-title: Monitoring of spraying in semi-dry desulfurization processes in coal fired power plants
  publication-title: Ifac Papersonline
– volume: 51
  start-page: 4192
  year: 2012
  end-page: 4198
  ident: b0675
  article-title: Kinetics and Mechanism of Sulfite Oxidation in the Magnesium-Based Wet Flue Gas Desulfurization Process
  publication-title: Ind. Eng. Chem. Res.
– volume: 215–216
  start-page: 36
  year: 2013
  end-page: 44
  ident: b1000
  article-title: Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids
  publication-title: Chem. Eng. J.
– volume: 168
  start-page: 1059
  year: 2009
  end-page: 1064
  ident: b0475
  article-title: Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite
  publication-title: J. Hazard. Mater.
– volume: 114
  year: 2020
  ident: b0560
  article-title: Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive
  publication-title: Cem. Concr. Compos.
– volume: 89
  start-page: 777
  year: 2011
  end-page: 784
  ident: b0315
  article-title: Non-isothermal modeling of the flue gas desulphurization process using a semi-dry spouted bed reactor
  publication-title: Chem. Eng. Res. Des.
– volume: 43
  start-page: 184
  issue: 1
  year: 2004
  ident: 10.1016/j.seppur.2021.119849_b0070
  article-title: Effect of NaOH Addition on the Reactivities of Iron Blast Furnace Slag/Hydrated Lime Sorbents for Low-Temperature Flue Gas Desulfurization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030446z
– volume: 281
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0505
  article-title: Effect of ammonia and ammonium compounds on wet-limestone flue gas desulfurization process from a coal-based power plant – Preliminary industrial scale study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118564
– volume: 175
  start-page: 324
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0950
  article-title: Guanidinium-based ionic liquids for sulfur dioxide sorption
  publication-title: Chem. Eng. J.
– volume: 108
  start-page: 205
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0060
  article-title: CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.02.012
– ident: 10.1016/j.seppur.2021.119849_b0790
  doi: 10.1016/j.cej.2012.02.022
– volume: 87
  start-page: 2647
  issue: 8
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0825
  article-title: Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.03.023
– volume: 230
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0270
  article-title: Desulfurization and denitrification experiments in SDA system: A new high-efficient semi-dry process by NaClO2
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115873
– ident: 10.1016/j.seppur.2021.119849_b0810
  doi: 10.1016/j.desal.2020.114654
– volume: 290
  issue: 3
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0375
  article-title: Calcium sulfate whisker one-step preparation using semi-dry flue gas desulfurization ash and directional growth control
  publication-title: J. Cleaner Prod.
– volume: 36
  start-page: 3083
  issue: 6
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b1015
  article-title: Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reaction
  publication-title: ChemInform
  doi: 10.1002/chin.200506102
– volume: 634–638
  start-page: 198
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b1050
  article-title: Analysis of alumina red mud wet flue gas desulfurization (FGD) technology
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.634-638.198
– volume: 225
  issue: 1
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0380
  article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum
  publication-title: Fuel
– volume: 65
  start-page: 487
  issue: 1–2
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b0665
  article-title: Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.01.032
– volume: 153
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0430
  article-title: Jet absorption and desulfurization technology of sulfur waste gas in the acrylonitrile apparatus
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2020.107957
– volume: 62
  start-page: 2139
  issue: 8
  year: 2007
  ident: 10.1016/j.seppur.2021.119849_b0125
  article-title: Solids mixing in the riser of a circulating fluidized bed
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.12.069
– volume: 12
  start-page: 2217
  year: 2003
  ident: 10.1016/j.seppur.2021.119849_b0175
  article-title: SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00205-7
– volume: 84
  start-page: 75
  issue: 1
  year: 1995
  ident: 10.1016/j.seppur.2021.119849_b0105
  article-title: Distinction between upward and downward flows in circulating fluidized beds
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(94)02969-U
– volume: 34
  start-page: 302
  issue: 1
  year: 1995
  ident: 10.1016/j.seppur.2021.119849_b0250
  article-title: Heated Fly Ash/Hydrated Lime Slurries for SO2 Removal in Spray Dryer Absorbers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00040a032
– volume: 43
  start-page: 2415
  issue: 18
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0935
  article-title: Desulfurization of flue gas: SO2 absorption by an ionic liquid
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200353437
– ident: 10.1016/j.seppur.2021.119849_b0040
– volume: 215–216
  start-page: 36
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b1000
  article-title: Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.10.091
– volume: 50
  start-page: 828
  issue: 8
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0590
  article-title: Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2011.05.008
– volume: 35
  start-page: 2792
  issue: 13
  year: 2001
  ident: 10.1016/j.seppur.2021.119849_b0770
  article-title: A kinetic study of the oxidation of S(IV) in seawater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000229e
– volume: 39
  start-page: 425
  issue: 5
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0055
  article-title: Modeling a dry-scrubbing flue gas cleaning process
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/S0255-2701(99)00107-5
– volume: 41
  start-page: 2090
  issue: 5
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0990
  article-title: Investigation of furoate based ionic liquid as efficient SO2 absorbent
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ03563A
– volume: 393
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0915
  article-title: Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124678
– volume: 286
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0570
  article-title: Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122963
– volume: 28
  start-page: 2457
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0835
  article-title: Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.05.001
– volume: 369
  start-page: 503
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b1055
  article-title: Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.02.059
– volume: 11
  start-page: 1023
  issue: B
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0245
  article-title: Effect of Humidification Water on Semi-dry Flue Gas Desulfurization
  publication-title: Proc. Environ. Sci.
  doi: 10.1016/j.proenv.2011.12.156
– ident: 10.1016/j.seppur.2021.119849_b0390
  doi: 10.1016/j.jclepro.2020.120026
– volume: 365
  start-page: 282
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0910
  article-title: Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.059
– volume: 91
  start-page: 189
  issue: 3
  year: 1997
  ident: 10.1016/j.seppur.2021.119849_b0100
  article-title: Mass flux profiles in a high density circulating fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(96)03243-3
– volume: 44
  start-page: 8830
  issue: 23
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b0260
  article-title: Study on a Novel Semidry Flue Gas Desulfurization with Multifluid Alkaline Spray Generator
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050457n
– volume: 89
  start-page: 52
  issue: 26
  year: 1991
  ident: 10.1016/j.seppur.2021.119849_b0750
  article-title: Seawater Scrubbing Removes SO2 from Refinery Flue Gases
  publication-title: Oil Gas J.
– volume: 03
  start-page: 25
  year: 2001
  ident: 10.1016/j.seppur.2021.119849_b0585
  article-title: Research on Main Influence Factors of Flue Gas Desulfurization by Sodium-Calcium Dual-alkali Scrubbi
  publication-title: Environ. Sci. Technol.
– ident: 10.1016/j.seppur.2021.119849_b0805
  doi: 10.1016/j.cep.2020.107935
– volume: 26
  start-page: 12
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0090
  article-title: Numerical simulation study on the optimization of gas–solid two-phase flows in a desulfurization tower
  publication-title: Proc. CSEE
– volume: 02
  start-page: 49
  year: 2002
  ident: 10.1016/j.seppur.2021.119849_b0730
  article-title: The Study on Reaction of Zinc Sulfite by Blasting Air
  publication-title: Nat. Sci. J. Xiangtan Univ.
– volume: 109
  start-page: 117
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0480
  article-title: Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2017.03.033
– volume: 150
  start-page: 453
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0435
  article-title: Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.04.032
– volume: 97
  start-page: 7
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0775
  article-title: Model study of sulfite oxidation in seawater flue gas desulfurization by cylindrical wetted-wall corona-streamer discharge
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.04.011
– volume: 61
  start-page: 2028
  issue: 6
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b1030
  article-title: Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas
  publication-title: AIChE J.
  doi: 10.1002/aic.14793
– ident: 10.1016/j.seppur.2021.119849_b0710
– volume: 378
  start-page: 191
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0325
  article-title: Numerical simulation of semi-dry desulfurization spouted bed using the discrete element method (DEM)
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.09.047
– volume: 50
  start-page: 2547
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0470
  article-title: Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.06.012
– volume: 246
  start-page: 249
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0495
  article-title: A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.12.001
– volume: 168
  start-page: 1059
  issue: 2–3
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0475
  article-title: Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.156
– volume: 258
  start-page: 70
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0680
  article-title: Experimental investigation of MgSO3 oxidation process by catalysis in the magnesium desulfurization
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.03.046
– volume: 70
  start-page: 212
  issue: 2
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0785
  article-title: Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.09.018
– volume: 19
  start-page: 73
  issue: 1
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b0095
  article-title: Dry Desulfurization in a Circulating Fluidized Bed (CFB) with Chain Reactions at Moderate Temperatures
  publication-title: Energy Fuels
  doi: 10.1021/ef049975l
– volume: 50
  start-page: 9550
  issue: 16
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0705
  article-title: Decomposition Thermodynamics of Magnesium Sulfate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102554f
– volume: 39
  start-page: 45
  issue: 1
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0215
  article-title: Flue gas desulphurization by spray dry absorption
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/S0255-2701(99)00077-X
– volume: 24
  start-page: 279
  issue: 2
  year: 1998
  ident: 10.1016/j.seppur.2021.119849_b0285
  article-title: The Effect of Operating Conditions on SO2 Removal in Semi-Dry Desulfurization Process by Powder-Particle Spouted Bed
  publication-title: Kagaku Kogaku Ronbunshu
  doi: 10.1252/kakoronbunshu.24.279
– year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0145
  article-title: Numerical investigations on gas–solid flow in circulating fluidized bed risers using a new cluster-based drag model
  publication-title: Particuology
– volume: 262
  start-page: 268
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0640
  article-title: Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by-products
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.085
– volume: 02
  start-page: 100
  year: 2007
  ident: 10.1016/j.seppur.2021.119849_b0600
  article-title: Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system
  publication-title: J. Environ. Sci.
– volume: 127061
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0945
  article-title: A Review on Dry-based and Wet-based Catalytic Sulphur Dioxide (SO2) Reduction Technologies
  publication-title: J. Hazard. Mater.
– volume: 129
  start-page: 15
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0460
  article-title: A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.07.002
– volume: 138
  start-page: 30
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0645
  article-title: Transposition of wet flue gas desulfurization using MgO by-products: From laboratory discontinuous batch reactor to pilot scrubber
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.05.002
– volume: 321
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b1010
  article-title: Ionic liquids: innovative fluids for sustainable gas separation from industrial waste stream
  publication-title: J. Mol. Liq.
– volume: 342
  start-page: 436
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0400
  article-title: A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.08.060
– volume: 20
  start-page: 140
  issue: 1
  year: 2012
  ident: 10.1016/j.seppur.2021.119849_b0975
  article-title: Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(12)60373-5
– volume: 251
  start-page: 248
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b0985
  article-title: Efficient and reversible capture of SO2 by pyridinium-based ionic liquids
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.040
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0735
  article-title: Research on the oxidation characteristics of zinc sulfite in the zinc oxide desulfurization process
  publication-title: Environ. Technol.
– volume: 91
  start-page: 1794
  issue: 12
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0455
  article-title: Simulation of the operation of an industrial wet flue gas desulfurization system
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2010.07.020
– volume: 383
  start-page: 471
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0330
  article-title: Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.01.044
– volume: 121
  start-page: 117
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0405
  article-title: Selective sulfur removal from semi-dry flue gas desulfurization coal fly ash for concrete and carbon dioxide capture applications
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2020.12.007
– ident: 10.1016/j.seppur.2021.119849_b0580
– volume: 105
  start-page: 578
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0635
  article-title: Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.07.050
– ident: 10.1016/j.seppur.2021.119849_b0350
– volume: 29
  start-page: 1675
  issue: 5
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0535
  article-title: Use of waste gypsum to replace natural gypsum as set retarders in portland cement
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2008.11.014
– volume: 343
  start-page: 122
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0415
  article-title: Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.11.017
– volume: 264
  start-page: 479
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0370
  article-title: Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.11.038
– volume: 205
  start-page: 589
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0545
  article-title: Utilization of flue gas desulfurization gypsum as an activation agent for high-volume slag concrete
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.09.145
– volume: 89
  start-page: 777
  issue: 6
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0315
  article-title: Non-isothermal modeling of the flue gas desulphurization process using a semi-dry spouted bed reactor
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.08.014
– volume: 96
  start-page: 64
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0280
  article-title: Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.04.018
– volume: 26
  start-page: 467
  issue: 2
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b1060
  article-title: Removal of SO2 from flue gas using bayer red mud: influence factors and mechanism
  publication-title: J. Central South Univ.
  doi: 10.1007/s11771-019-4019-5
– year: 2012
  ident: 10.1016/j.seppur.2021.119849_b1045
– volume: 10
  start-page: 22
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0190
  article-title: Effect of activated coke diameter on SO2 adsorption in fixed-bed and entrained-flow reactors
  publication-title: Water Conserv. Electric Power Mach.
– ident: 10.1016/j.seppur.2021.119849_b0030
– volume: 163
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0440
  article-title: Numerical investigation on distribution characteristics of oxidation air in a lime slurry desulfurization system with rotary jet agitators
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2021.108372
– volume: 114
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0560
  article-title: Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103760
– volume: 121
  start-page: 82
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0525
  article-title: Research on saline-alkali soil amelioration with FGD gypsum
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.04.005
– volume: 4
  start-page: 9
  issue: 1
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0320
  article-title: A new semi-dry desulfurization process using a powder-particle spouted bed
  publication-title: Adv. Environ. Res.
  doi: 10.1016/S1093-0191(00)00003-4
– volume: 148
  start-page: 280
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0410
  article-title: Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.06.011
– volume: 56
  start-page: 33
  issue: 5
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b0015
  article-title: Community health risk assessment of primary aluminum smelter emissions
  publication-title: J. Occup. Environ. Med.
  doi: 10.1097/JOM.0000000000000135
– volume: 22
  start-page: 1400
  issue: 6
  year: 1996
  ident: 10.1016/j.seppur.2021.119849_b0290
  article-title: Process Development of Effective Semi-Dry Flue Gas Desulfurization by Powder-Particle Spouted Bed [J]
  publication-title: Kagaku Kogaku Ronbunshu
  doi: 10.1252/kakoronbunshu.22.1400
– volume: 20
  start-page: 219
  issue: 4
  year: 2001
  ident: 10.1016/j.seppur.2021.119849_b0445
  article-title: SO2 Scrubbing Technologies: A Review
  publication-title: Environ. Prog.
  doi: 10.1002/ep.670200410
– volume: 210
  start-page: 738
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0180
  article-title: Multi-stage semi-coke activation for the removal of SO2 and NO
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.107
– volume: 49
  start-page: 11464
  issue: 22
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0140
  article-title: Effect of Internal Structure on Flue Gas Desulfurization with Rapidly Hydrated Sorbent in a Circulating Fluidized Bed at Moderate Temperatures
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100988r
– volume: 42
  start-page: 103
  issue: 1
  year: 1992
  ident: 10.1016/j.seppur.2021.119849_b0255
  article-title: Current Status of the ADVACATE Process for Flue Gas Desulfurization
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.1992.10466964
– volume: 6
  start-page: 997
  issue: 6
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0840
  article-title: A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2015.05.005
– volume: 193
  start-page: 60
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b1020
  article-title: Molecular investigation of SO2 gas absorption by ionic liquids: effects of anion type
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2013.12.019
– volume: 81
  start-page: 1899
  issue: 15
  year: 2002
  ident: 10.1016/j.seppur.2021.119849_b0275
  article-title: Use of spray dry absorption product in wet flue gas desulphurization plants: pilot-scale experiments
  publication-title: Fuel
  doi: 10.1016/S0016-2361(02)00133-3
– volume: 42
  start-page: 1705
  issue: 5
  year: 2008
  ident: 10.1016/j.seppur.2021.119849_b0345
  article-title: Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702208e
– volume: 13
  start-page: 65
  year: 2004
  ident: 10.1016/j.seppur.2021.119849_b0515
  article-title: Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content in Corn Grains
  publication-title: Soil Sediment Contam.
  doi: 10.1080/10588330490269840
– volume: 143
  start-page: 173
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0385
  article-title: Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.03.078
– volume: 23
  start-page: 173
  issue: 11
  year: 2003
  ident: 10.1016/j.seppur.2021.119849_b0355
  article-title: Investigation on flue gas desulfurization in a circulating fluidized bed
  publication-title: Proc. CSEE
– volume: 88
  start-page: 72
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0905
  article-title: Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.08.002
– ident: 10.1016/j.seppur.2021.119849_b0465
– ident: 10.1016/j.seppur.2021.119849_b0035
– volume: 90
  start-page: 7
  issue: 1
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0630
  article-title: Dissolution rate of magnesium hydrate for wet flue gas desulfurization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.08.016
– ident: 10.1016/j.seppur.2021.119849_b0575
– volume: 114
  start-page: 2175
  issue: 6
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b1025
  article-title: Properties of ionic liquids absorbing SO2 and the mechanism of the absorption
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9108859
– volume: 32
  start-page: 73
  issue: 2
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0025
  article-title: SO2 Pollution and Its Hazards and Control Technology in China
  publication-title: Environ. Sci. Survey
– volume: 205
  start-page: 208
  issue: 1–3
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0130
  article-title: Hydrodynamics of gas–solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.09.013
– volume: 36
  start-page: 1747
  issue: 11
  year: 1981
  ident: 10.1016/j.seppur.2021.119849_b0650
  article-title: Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas—liquid contactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(81)80124-8
– volume: 261
  start-page: 115
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0530
  article-title: Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.01.009
– volume: 25
  start-page: 1709
  issue: 6
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b0700
  article-title: Research on the thermal decomposition and kinetics of byproducts from MgO wet flue gas desulfurization
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2014.06.018
– volume: 42
  start-page: 604
  issue: 9
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0890
  article-title: The formation and removal characteristics of aerosols in ammonia-based wet flue gas desulfurization
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2011.05.005
– volume: 31
  start-page: 323
  issue: 1
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0335
  article-title: Numerical simulation of semi-dry flue gas desulfurization process in the powder-particle spouted bed. 2020
  publication-title: Adv. Powder Technol.
– volume: 171
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0420
  article-title: A novel technical route based on wet flue gas desulfurization process for flue gas dehumidification, water and heat recovery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115102
– volume: 283
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0195
  article-title: Dry additive desulfurization in oxyfuel bubbling fluidized bed combustor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118945
– volume: 293
  issue: 5
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0200
  article-title: Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature
  publication-title: Fuel
– volume: 18
  start-page: 239
  issue: 5
  year: 1984
  ident: 10.1016/j.seppur.2021.119849_b0295
  article-title: Similarities between lime and limestone in wet—dry scrubbing
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/0255-2701(84)80007-0
– volume: 116
  start-page: 60
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0865
  article-title: Simulation of the absorption of SO2 by ammonia in a spray scrubber
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2017.03.001
– volume: 51
  start-page: 4192
  issue: 11
  year: 2012
  ident: 10.1016/j.seppur.2021.119849_b0675
  article-title: Kinetics and Mechanism of Sulfite Oxidation in the Magnesium-Based Wet Flue Gas Desulfurization Process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300163v
– volume: 06
  start-page: 718
  issue: 05
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0595
  article-title: Experimental and Theoretical Studies on Desulfurization Efficiency of Dual-alkali FGD System in a RST Scrubber
  publication-title: Chinese J. Process Eng.
– volume: 265
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0565
  article-title: Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders
  publication-title: Constr. Build. Mater.
– volume: 389
  start-page: 178
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0880
  article-title: Process simulation on atomization and evaporation of desulfurization wastewater and its application
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.05.024
– volume: 146
  start-page: 117
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0875
  article-title: Evaporation experiment and numerical simulation study of desulfurization wastewater in high-temperature raw gas
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.03.043
– volume: 288
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0610
  article-title: Novel product-adjustable technology using Wellman-Lord method coupled with sodium-alkali for SO2 removal and regeneration from smelting gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119714
– volume: 379
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0900
  article-title: Study on the ammonia emission characteristics in an ammonia-based WFGD system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122257
– volume: 271
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0555
  article-title: Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122497
– volume: 101
  start-page: 117
  year: 2016
  ident: 10.1016/j.seppur.2021.119849_b0795
  article-title: Modified clinoptilolite catalysts for seawater flue gas desulfurization application: Preparation, characterization and kinetic evaluation
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2015.10.018
– volume: 29
  start-page: 13
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0490
  article-title: Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.08.004
– volume: 551
  start-page: 149478
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0695
  article-title: Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149478
– volume: 39
  start-page: 1390
  issue: 5
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0065
  article-title: Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990699l
– volume: 77
  start-page: 356
  issue: 2
  year: 1999
  ident: 10.1016/j.seppur.2021.119849_b0300
  article-title: Removal of SO2 from flue gas using a new semidry flue gas desulfurization process with a powder-particle spouted bed
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450770222
– volume: 351
  start-page: 1104
  issue: 1
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0155
  article-title: Hydrodynamics of activated char in a novel multistage circulating fluidized bed for dry desulfurization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.177
– volume: 36
  start-page: 156
  issue: 1
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0235
  article-title: Influence of the Lime Slurry Droplet Spectrum on the Efficiency of Semi-Dry Flue Gas Desulfurization
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100690
– volume: 45
  start-page: 6339
  issue: 18
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0755
  article-title: Neutralization of the Acidified Seawater Effluent from the Flue Gas Desulfurization Process: Experimental Investigation, Dynamic Modeling and Simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0603619
– volume: 108
  start-page: 21
  issue: 1
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0115
  article-title: Evaluation of the gas–solid suspension density in CFB risers with exit effects
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(99)00199-0
– volume: 30
  start-page: 2251
  issue: 11/12
  year: 2004
  ident: 10.1016/j.seppur.2021.119849_b0715
  article-title: Study on utilizing zinc and lead-bearing metallurgical dust as sulfur absorbent during briquette combustion. 2005
  publication-title: Energy
– volume: 152
  start-page: 757
  issue: 2
  year: 2008
  ident: 10.1016/j.seppur.2021.119849_b0605
  article-title: Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.042
– volume: 331
  start-page: 416
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0845
  article-title: Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.127
– volume: 36
  start-page: 263
  issue: 3
  year: 1998
  ident: 10.1016/j.seppur.2021.119849_b0170
  article-title: Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00190-5
– ident: #cr-split#-10.1016/j.seppur.2021.119849_b0625.1
– volume: 161
  start-page: 570
  issue: 1
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0075
  article-title: Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.03.097
– volume: 44
  start-page: 2175
  issue: 13
  year: 2003
  ident: 10.1016/j.seppur.2021.119849_b0815
  article-title: Temperature impact on SO2 removal efficiency by ammonia gas scrubbing
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(02)00230-3
– volume: 302
  year: 2003
  ident: 10.1016/j.seppur.2021.119849_b0930
  article-title: Ionic liquids-solvents of the future?
  publication-title: Science
  doi: 10.1126/science.1090313
– volume: 7
  start-page: 10931
  issue: 12
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0940
  article-title: Efficient regeneration of SO2-absorbed functional ionic liquids with H2S via the liquid-phase claus reaction
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01933
– volume: 7
  start-page: 77
  issue: 1
  year: 1972
  ident: 10.1016/j.seppur.2021.119849_b0745
  article-title: Use of sea water to scrub sulfur dioxide from stack gases
  publication-title: Int. J. Sulfur Chem.
– volume: 267
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0080
  article-title: Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117215
– volume: 118
  start-page: 101
  year: 2012
  ident: 10.1016/j.seppur.2021.119849_b0020
  article-title: Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China air pollution and health effects study (CAPES)
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.07.003
– volume: 25
  start-page: 265
  issue: 3
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b0045
  article-title: LIFAC ash-strategies for management
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2004.11.005
– volume: 05
  start-page: 4
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0165
  article-title: Studies on Sulfur Dioxide Adsorption on the Improved Active Coke
  publication-title: Environ. Protect. Sci.
– ident: #cr-split#-10.1016/j.seppur.2021.119849_b0625.2
– volume: 23
  start-page: 2552
  issue: 3
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0670
  article-title: Thermogravimetric Kinetics of MgSO3·6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization
  publication-title: Energy Fuels
– volume: 71
  start-page: 51
  year: 1992
  ident: 10.1016/j.seppur.2021.119849_b0135
  article-title: The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(92)88003-Z
– volume: 392
  start-page: 12270
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b1065
  article-title: Simultaneous removal of SO2 and no using a novel method with red mud as absorbent combined with O3 oxidation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122270
– volume: 10
  start-page: 104
  year: 1987
  ident: 10.1016/j.seppur.2021.119849_b0225
  article-title: Tentative modelling of spray-dry scrubbing of SO2
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.270100114
– volume: 144
  start-page: 274
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0500
  article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.12.065
– ident: 10.1016/j.seppur.2021.119849_b0620
– volume: 30
  start-page: 6578
  issue: 8
  year: 2016
  ident: 10.1016/j.seppur.2021.119849_b0185
  article-title: Reduction of SO2 with CO to Elemental Sulfur in Activated Carbon Bed
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b01006
– volume: 85
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.seppur.2021.119849_b0340
  article-title: The use of a circulating fluidized bed absorber for the control of sulfur dioxide emissions by calcium oxide sorbent via in situ hydration
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(95)03003-R
– volume: 12
  start-page: 62
  issue: 5
  year: 1991
  ident: 10.1016/j.seppur.2021.119849_b0050
  article-title: Overview of desulphurization technologies by in-furnace calcuium-based sorbent injection and main influence factors on SO2 capture
  publication-title: Chinese J. Environ. Sci.
– volume: 67
  start-page: 52
  issue: No.115
  year: 1971
  ident: 10.1016/j.seppur.2021.119849_b0820
  article-title: Removal of sulfur and nitrogen oxides from stack gases by ammonia
  publication-title: Chem. Eng. Prog. Symp. Ser.
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0360
  article-title: Experimental Study of SO2 Removal by Powder Activated Carbon in Fluidized Bed Reactor
  publication-title: Asia-Pacific Power and Energy Engineering Conference IEEE
– volume: 3
  start-page: 3572
  issue: 11
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0980
  article-title: Absorption of SO2 by thermal-stable functional ionic liquids with lactate anion
  publication-title: RSC Adv.
  doi: 10.1039/c3ra22450c
– volume: 155
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0885
  article-title: A numerical study of the ammonia desulfurization in the spray scattering tower
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2020.108069
– volume: 148
  start-page: 107793
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b1035
  article-title: Desulfurization intensification by ionic liquid in a rotating packed bed
  publication-title: Chem. Eng. Process. - Process Intensification
  doi: 10.1016/j.cep.2019.107793
– volume: 275
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0685
  article-title: Superior energy-saving catalyst of Mn@ZIF67 for reclaiming byproduct in wet magnesia desulfurization
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119143
– volume: 115
  start-page: 6585
  issue: 20
  year: 2011
  ident: 10.1016/j.seppur.2021.119849_b0955
  article-title: Solubilities and thermodynamic properties of SO2 in ionic liquids
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1124074
– volume: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0740
  article-title: Intensifying effects of zinc oxide wet flue gas desulfurization process with citric acid
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.102831
– volume: 110
  start-page: 15059
  issue: 31
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0970
  article-title: Measurement of SO2 solubility in ionic liquids
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063547u
– volume: 321
  start-page: 52
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0520
  article-title: Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. 2018
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.033
– ident: 10.1016/j.seppur.2021.119849_b0780
  doi: 10.1016/j.cej.2013.03.084
– volume: 279
  start-page: 170
  issue: 2
  year: 2008
  ident: 10.1016/j.seppur.2021.119849_b0960
  article-title: Tuning ionic liquids for high gas solubility and reversible gas sorption
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2007.07.036
– volume: 38
  start-page: 4027
  issue: 38
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0965
  article-title: Reversible physical absorption of SO2 by ionic liquids
  publication-title: Chem. Commun.
  doi: 10.1039/b609714f
– ident: 10.1016/j.seppur.2021.119849_b0725
– volume: 29
  start-page: 1270
  issue: 12
  year: 1979
  ident: 10.1016/j.seppur.2021.119849_b0210
  article-title: Modeling the Spray Absorption Process for SO2 Removal
  publication-title: J. Air Pollution Control Assoc.
  doi: 10.1080/00022470.1979.10470925
– volume: 170
  start-page: 436
  issue: 1
  year: 2009
  ident: 10.1016/j.seppur.2021.119849_b0265
  article-title: The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.04.075
– volume: 4
  start-page: 73
  issue: 2
  year: 2002
  ident: 10.1016/j.seppur.2021.119849_b0925
  article-title: A short history of ionic liquids-from molten salts to neoteric solvents
  publication-title: Green Chem.
  doi: 10.1039/b110838g
– year: 2012
  ident: 10.1016/j.seppur.2021.119849_b1040
– volume: 103
  start-page: 207
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0850
  article-title: Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.10.012
– volume: 269
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0550
  article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122212
– volume: 04
  start-page: 14
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0220
  article-title: Application of SDS Dry Desulfurization and SCR Medium and Low Temperature Denitration Technology in Coke Oven Flue Gas Treatment
  publication-title: Chem. Equipment Technol.
– volume: 91
  start-page: 619
  issue: 4
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0870
  article-title: Full-scale simulation of flow field in ammonia-based wet flue gas desulfurization double tower
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2017.02.010
– volume: 258
  year: 2019
  ident: 10.1016/j.seppur.2021.119849_b0485
  article-title: An investigation on data mining and operating optimization for wet flue gas desulfurization systems
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116178
– volume: 338
  start-page: 184
  year: 2018
  ident: 10.1016/j.seppur.2021.119849_b0800
  article-title: Integrated electrochemical-aerating oxidation in recovery system of seawater flue gas desulfurization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.151
– volume: 22
  start-page: 67
  issue: 1
  year: 2003
  ident: 10.1016/j.seppur.2021.119849_b0760
  article-title: Seawater flue gas desulfurization: its technical implications and performance results
  publication-title: Environ. Prog.
  doi: 10.1002/ep.670220118
– volume: 55
  start-page: 4643
  issue: 20
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0305
  article-title: Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00090-7
– volume: 164
  start-page: 132
  issue: 1
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0830
  article-title: Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.08.041
– volume: 266
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0690
  article-title: Synchronous catalysis of sulfite oxidation and abatement of Hg2+ in wet desulfurization using one-pot synthesized Co-TUD-1/S
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118546
– volume: 55
  start-page: 11012
  year: 2016
  ident: 10.1016/j.seppur.2021.119849_b0995
  article-title: Cyano-containing protic ionic liquids for highly selective absorption of SO2 from CO2: Experimental study and theoretical analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b02588
– start-page: 317
  year: 1986
  ident: 10.1016/j.seppur.2021.119849_b0085
  article-title: First operating experience with a dry flue gas desulfurization (FGD) process using a circulating fluid bed (FGD-CFB)
  publication-title: Circulat. Fluidized Bed Technol.
  doi: 10.1016/B978-0-08-031869-1.50038-7
– volume: 63
  start-page: 6404
  year: 2014
  ident: 10.1016/j.seppur.2021.119849_b0920
  article-title: Engineering Scale-up Challenges, and Effects of SO2 on the Calcium Looping Cycle for Post Combustion CO2 Capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.675
– volume: 49
  start-page: 3338
  year: 2006
  ident: 10.1016/j.seppur.2021.119849_b0120
  article-title: Characterizing particle dispersion by image analysis in ICFB
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.03.013
– volume: 215
  start-page: 2012
  issue: 46–53
  year: 2012
  ident: 10.1016/j.seppur.2021.119849_b0150
  article-title: Composite fluidization in a circulating fluidized bed for flue gas desulfurization
  publication-title: Powder Technol.
– volume: 77
  start-page: 223
  issue: 2
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0110
  article-title: Flow Patterns in High-Velocity Fluidized Beds and Pneumatic Conveying
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450770206
– volume: 154
  start-page: 14
  issue: 1
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b0365
  article-title: Flue gas desulfurization in an internally circulating fluidized bed reactor
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2005.03.017
– volume: 41
  start-page: 7114
  issue: 20
  year: 2007
  ident: 10.1016/j.seppur.2021.119849_b0765
  article-title: Catalytic Seawater flue gas desulfurization process: An experimental pilot plant study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0706899
– volume: 327
  start-page: 914
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b0395
  article-title: Utilization of semi-dry sintering flue gas desulfurized ash for SO2 generation during sulfuric acid production using boiling furnace
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.180
– volume: 149
  start-page: 610
  issue: 3
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0855
  article-title: Process optimization of S (IV) oxidation in flue gas desulfurization scrubbers
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.03.020
– volume: 257
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0540
  article-title: Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119519
– volume: 48
  start-page: 403
  issue: 30
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0240
  article-title: Monitoring of spraying in semi-dry desulfurization processes in coal fired power plants
  publication-title: Ifac Papersonline
  doi: 10.1016/j.ifacol.2015.12.412
– volume: 272
  issue: 1
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b1070
  article-title: Research on red mud-limestone modified desulfurization mechanism and engineering application
  publication-title: Sep. Purif. Technol.
– volume: 75
  start-page: 1603
  issue: 12
  year: 1998
  ident: 10.1016/j.seppur.2021.119849_b0655
  article-title: Inhibition of Sulfite Oxidation by Phenols: Screening Antioxidant Behavior with a Clark Oxygen Sensor
  publication-title: J. Chem. Ed.
  doi: 10.1021/ed075p1603
– ident: 10.1016/j.seppur.2021.119849_b0615
– volume: 356
  start-page: 571
  issue: 6
  year: 2005
  ident: 10.1016/j.seppur.2021.119849_b0005
  article-title: Flue gas desulfurization: physicochemical and biotechnological approaches
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326374
– volume: 88
  start-page: 284
  issue: 3
  year: 2015
  ident: 10.1016/j.seppur.2021.119849_b0860
  article-title: Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2014.09.002
– volume: 196
  start-page: 42
  year: 2010
  ident: 10.1016/j.seppur.2021.119849_b0010
  article-title: Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2)
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.03.013
– volume: 89
  start-page: 1025
  issue: 11
  year: 2008
  ident: 10.1016/j.seppur.2021.119849_b0450
  article-title: A model for performance optimization of wet flue gas desulfurization systems of power plants
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2008.04.004
– volume: 31
  start-page: 1771
  issue: 2
  year: 2017
  ident: 10.1016/j.seppur.2021.119849_b1005
  article-title: Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02884
– ident: 10.1016/j.seppur.2021.119849_b0720
– volume: 34
  start-page: 4582
  issue: 21
  year: 2000
  ident: 10.1016/j.seppur.2021.119849_b0230
  article-title: Experimental Study on the Spray Characteristics in the Spray Drying Absorber
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001104c
– volume: 258–259
  start-page: 61
  year: 2013
  ident: 10.1016/j.seppur.2021.119849_b0660
  article-title: Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid
  publication-title: J. Hazard. Mater.
– volume: 80
  start-page: 673
  issue: 5
  year: 2001
  ident: 10.1016/j.seppur.2021.119849_b0310
  article-title: Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed
  publication-title: Fuel
  doi: 10.1016/S0016-2361(00)00130-7
– volume: 228
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0160
  article-title: Experimental measurements for Polish lignite combustion in a 1 MWth circulating fluidized bed during load changes
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120585
– volume: 42
  start-page: 259
  issue: 1
  year: 1996
  ident: 10.1016/j.seppur.2021.119849_b0205
  article-title: Model for Flue-Gas Desulfurization in a Circulating Dry Scrubber
  publication-title: AIChE J.
  doi: 10.1002/aic.690420123
– volume: 247
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0425
  article-title: Wet flue gas desulfurization using micro vortex flow scrubber: Characteristics, modeling and simulation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116915
– volume: 92
  start-page: 95
  year: 2020
  ident: 10.1016/j.seppur.2021.119849_b0895
  article-title: Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. 2020
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.01.020
– volume: 285
  year: 2021
  ident: 10.1016/j.seppur.2021.119849_b0510
  article-title: Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119209
SSID ssj0017182
Score 2.6914792
SecondaryResourceType review_article
Snippet •The ultra-low emission purification technologies of SO2 in flue gas are described.•The advantages and disadvantages of several desulfurization methods are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119849
SubjectTerms Desulfurization
Dry method
Semi-dry method
Wet method
Title Summary of research progress on industrial flue gas desulfurization technology
URI https://dx.doi.org/10.1016/j.seppur.2021.119849
Volume 281
WOSCitedRecordID wos000714424100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017182
  issn: 1383-5866
  databaseCode: AIEXJ
  dateStart: 19970519
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBYlyaE9hCRtaZq06JCbEcT7knQMISHJwQScgG-LVivVbsPa2N6Qn9-ZHa3XtUtf0MtihOS1NR-jmdHMN4ydSW29Ok-VcP3YiiQrUlHEUopEZ1EEBoWUkppNyMFAjUb6Ply0L5p2ArKq1MuLnv1XUcMYCBtLZ_9C3KsvhQH4DEKHJ4gdnn8k-CGVo6EVGJh8xpSFhTqtSWxcNevA_iS9L2bRK92ifvL1PBRl9pY_BtyD8Tp0RBQeEphnMN-HkN_mCkzxafIERrX71mGHoq13k2ped9Pq5hjoUAo2fXNlMp6M3XpQIsLsDkFlmRQp26qWaZQreMMiVVmgvqYxJWNQctTouNXIEXVx2dLuFGjAYvwZ_EVw7qM-qHytiPR0gzd7iK_Dt4FTC0YTntO7kUw1qL7di9ur0d3qsgmO5-ZSvP15bYVlkwa4_a6fWzBrVsnDAdsP7gS_IBgcsleuOmJv1kgm37JBAASfet4CgreA4NOKd4DgCAgOgOAbgOCdeN-xx-urh8sbEbpoCAvu4FKU0ifGpMqaxIJvrYvz1CCFk0RiIJNhS4HMZ95kZRwVaSR9X6nEgNFiPEw2Zfye7VTTyn1gPJauQLYlK51OyjQuDLJFel0oJP039pjF7c7kNlDMY6eTp7zNJfya037muJ857ecxE6tVM6JY-c182W56HsxEMv9ywMkvV37855Un7HUH81O2s5zX7hPbs8_LyWL-OQDqO2_AkGE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Summary+of+research+progress+on+industrial+flue+gas+desulfurization+technology&rft.jtitle=Separation+and+purification+technology&rft.au=Li%2C+Xueke&rft.au=Han%2C+Jinru&rft.au=Liu%2C+Yan&rft.au=Dou%2C+Zhihe&rft.date=2022-01-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=281&rft_id=info:doi/10.1016%2Fj.seppur.2021.119849&rft.externalDocID=S1383586621015562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon