A kernel recursive minimum error entropy adaptive filter

The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy crite...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal processing Ročník 193; s. 108410
Hlavní autori: Wang, Gang, Yang, Xinyue, Wu, Lei, Fu, Zhenting, Ma, Xiangjie, He, Yuanhang, Peng, Bei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2022
Predmet:
ISSN:0165-1684, 1872-7557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy criterion, called kernel recursive minimum error entropy algorithm. The proposed new algorithm achieves better recovery performance in predicting the Mackey–Glass time series, equalizing the nonlinear channel under heavy tailed alpha-stable environments and processing EEG data.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2021.108410