A kernel recursive minimum error entropy adaptive filter

The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy crite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 193; S. 108410
Hauptverfasser: Wang, Gang, Yang, Xinyue, Wu, Lei, Fu, Zhenting, Ma, Xiangjie, He, Yuanhang, Peng, Bei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2022
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy criterion, called kernel recursive minimum error entropy algorithm. The proposed new algorithm achieves better recovery performance in predicting the Mackey–Glass time series, equalizing the nonlinear channel under heavy tailed alpha-stable environments and processing EEG data.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2021.108410