A kernel recursive minimum error entropy adaptive filter
The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy crite...
Uloženo v:
| Vydáno v: | Signal processing Ročník 193; s. 108410 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2022
|
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The minimum error entropy, a currently useful alternative criterion, is widely adopted in the signal processing domain against impulsive noise. In this brief, we propose a novel algorithm to blend the advantages of both the kernel recursive least squares algorithm and the minimum error entropy criterion, called kernel recursive minimum error entropy algorithm. The proposed new algorithm achieves better recovery performance in predicting the Mackey–Glass time series, equalizing the nonlinear channel under heavy tailed alpha-stable environments and processing EEG data. |
|---|---|
| ISSN: | 0165-1684 1872-7557 |
| DOI: | 10.1016/j.sigpro.2021.108410 |