A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm

The commonly used density-based spatial clustering method (DBSCAN) connects contiguous regions with sufficiently large densities when processing datasets to efficiently discover clusters of different shapes and densities and outliers. However, the algorithm has the problem that radius of neighborhoo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer communications Ročník 174; s. 205 - 214
Hlavní autori: Wang, Limin, Wang, Honghuan, Han, Xuming, Zhou, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2021
Predmet:
ISSN:0140-3664, 1873-703X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The commonly used density-based spatial clustering method (DBSCAN) connects contiguous regions with sufficiently large densities when processing datasets to efficiently discover clusters of different shapes and densities and outliers. However, the algorithm has the problem that radius of neighborhood (Eps) argument requires to be selected manually. For datasets with higher dimensionality and larger data volume, the selection of Eps parameters can be difficult thus leading to poor clustering quality. To solve the above problem, we propose a novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm (BSA-DBSCAN). We use the global search capability of the bird swarm method to select the best Eps parameter neighborhood values. We can avoid manual intervention and realize adaptive parameter optimization in the clustering process. To further explore the clustering performance of BSA-DBSCAN method, we test the synthetic datasets and the real-world datasets respectively and perform images analysis on the clustering evaluation index values. The simulation experiments show that the improved method in this paper can reasonably search the Eps parameter value and can obtain the higher accuracy of clustering.
AbstractList The commonly used density-based spatial clustering method (DBSCAN) connects contiguous regions with sufficiently large densities when processing datasets to efficiently discover clusters of different shapes and densities and outliers. However, the algorithm has the problem that radius of neighborhood (Eps) argument requires to be selected manually. For datasets with higher dimensionality and larger data volume, the selection of Eps parameters can be difficult thus leading to poor clustering quality. To solve the above problem, we propose a novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm (BSA-DBSCAN). We use the global search capability of the bird swarm method to select the best Eps parameter neighborhood values. We can avoid manual intervention and realize adaptive parameter optimization in the clustering process. To further explore the clustering performance of BSA-DBSCAN method, we test the synthetic datasets and the real-world datasets respectively and perform images analysis on the clustering evaluation index values. The simulation experiments show that the improved method in this paper can reasonably search the Eps parameter value and can obtain the higher accuracy of clustering.
Author Wang, Limin
Wang, Honghuan
Han, Xuming
Zhou, Wei
Author_xml – sequence: 1
  givenname: Limin
  surname: Wang
  fullname: Wang, Limin
  email: wlm_new@163.com
  organization: School of Internet Finance and Information Engineering, Guangdong University of Finance, Guangzhou, 510521, PR China
– sequence: 2
  givenname: Honghuan
  surname: Wang
  fullname: Wang, Honghuan
  email: whh3242337842@163.com
  organization: School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, PR China
– sequence: 3
  givenname: Xuming
  orcidid: 0000-0002-6213-5600
  surname: Han
  fullname: Han, Xuming
  email: hanxuming@ccut.edu.cn
  organization: College of Information Science and Technology, Jinan University, Guangzhou 510632, PR China
– sequence: 4
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  email: 2020200125@mails.cust.edu.cn
  organization: School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, PR China
BookMark eNqFkN9KwzAUxoMouE3fwIu8QOtJ07WdF8IY_oOBNwrehSw5nRltU5LYMZ_ezHrlhULgI-ec38c535ScdrZDQq4YpAxYcb1LlW3jSzPIWAo8jXJCJqwqeVICfzslE2A5JLwo8nMy9X4HAHlZ8gkZlrSzAzZUatkHMyDV2HkTDslGetTU9zIY2VDVfPiAznRbamsq-74xKnZsR_cmvEcP45GOSKxtjIvoXrqW2ujams9xVjZb6-J8e0HOatl4vPzRGXm9v3tZPSbr54en1XKdKA5FSHReI2Rc4wJwA7oo5CJunWc1llnNiyxn8YOqmFdQAagqZ3OZ1axkC80Xcs75jNyMvspZ7x3WQpnwvUtw0jSCgTgmKHZiTFAcExTARZQI57_g3plWusN_2O2IYTxsMOiEVwY7hdo4VEFoa_42-ALDZJFe
CitedBy_id crossref_primary_10_1088_1361_6501_ad5901
crossref_primary_10_1007_s11227_022_04634_w
crossref_primary_10_1371_journal_pone_0274532
crossref_primary_10_1016_j_ress_2023_109827
crossref_primary_10_1109_ACCESS_2024_3445650
crossref_primary_10_1016_j_eswa_2023_122445
crossref_primary_10_1007_s40745_024_00525_4
crossref_primary_10_3390_e25050782
crossref_primary_10_1109_ACCESS_2024_3440518
crossref_primary_10_1016_j_scs_2021_103598
crossref_primary_10_3390_agronomy14122909
crossref_primary_10_1016_j_apm_2023_03_021
crossref_primary_10_3390_sym15081498
crossref_primary_10_1051_jnwpu_20234110198
crossref_primary_10_1108_GS_05_2023_0043
crossref_primary_10_1049_itr2_12166
crossref_primary_10_1002_ima_22848
crossref_primary_10_1007_s11042_023_17624_8
crossref_primary_10_1016_j_knosys_2024_112436
crossref_primary_10_1007_s10115_023_02038_7
crossref_primary_10_1016_j_est_2024_113393
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_1016_j_knosys_2025_113084
crossref_primary_10_3390_pr9112055
crossref_primary_10_1088_1361_6501_ad66f0
Cites_doi 10.1016/j.isatra.2019.01.026
10.1126/science.1242072
10.1016/j.patrec.2011.02.001
10.1126/science.1136800
10.1109/TEVC.2015.2504383
10.1007/s10462-019-09704-9
10.1016/j.inffus.2015.08.005
10.1080/0952813X.2015.1042530
10.1016/j.comcom.2020.12.022
10.1016/j.eswa.2011.01.135
10.4304/jcp.3.2.72-79
10.1109/TKDE.2013.109
10.1016/j.ins.2014.01.015
10.1016/j.cmpb.2010.12.012
10.1109/TII.2016.2628747
10.1016/j.jocs.2019.06.004
10.1016/j.patrec.2018.01.020
10.1016/j.comcom.2020.01.026
10.1109/TIP.2016.2559803
10.1016/j.patrec.2009.08.008
10.1016/j.knosys.2017.07.010
10.1016/j.comcom.2020.12.019
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2021.03.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 214
ExternalDocumentID 10_1016_j_comcom_2021_03_021
S0140366421001237
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-d4fe023de90eb0d66a977342fe72f36241342ec6580800c8415a2f1719d39a533
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658251200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Tue Nov 18 22:51:07 EST 2025
Sat Nov 29 07:23:55 EST 2025
Fri Feb 23 02:43:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
Eps parameter
Adaptive parameter optimization
Bird swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-d4fe023de90eb0d66a977342fe72f36241342ec6580800c8415a2f1719d39a533
ORCID 0000-0002-6213-5600
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2021_03_021
crossref_primary_10_1016_j_comcom_2021_03_021
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_03_021
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Frey, Dueck (b29) 2007; 315
Li, Nguyen, Yang, Mavrovouniotis, Yang (b17) 2016; 20
Hou, Gao, Li (b19) 2016; 25
Meng, Gao, Lu, Liu, Zhang (b22) 2016; 28
Xiong, Chen, Zhang, Zhang (b26) 2012; 9
Hua, Jing, Yi, Wang, Xin (b10) 2011; 38
Chen, Zhang (b1) 2014; 275
Yaohui, Zhengming, Fang (b16) 2017; 133
Xiong, Chen, Zhang, Zhang (b12) 2012; 9
He, Tan, Luo, Mao, Ma, Feng, Fan (b8) 2011
Li, Bi, Wang, Han (b13) 2021; 167
Varo Altay, Alatas (b23) 2020; 53
Mnasri, Nasri, van den Bossche, Val (b15) 2019; 91
Hua, Jing, Yi, Wang, Xin (b20) 2011; 38
Francis, Villagrasa, Clairand (b21) 2011; 101
Borah, Bhattacharyya (b27) 2008; 3
Zhou, Wang, Li (b11) 2012; 9
Xindong, Gong-Qing, Xingquan, Wei (b2) 2014; 26
Chen, Liu, Qiu, Lai (b25) 2011; 32
Ester, Kriegel, Sander, Xu (b7) 1996
Shi, Han, Yan (b18) 2018; 104
Yang, Jiang, Shang, Norouzi (b4) 2021; 167
Rodriguez, Laio (b30) 2014; 344
Wu, Wilamowski (b3) 2016; 13
Pulabaigari, Veluru (b9) 2009; 30
Bello-Orgaz, Jung, Camacho (b5) 2016; 28
Ghasemi (b14) 2016
Peter, Antonysamy (b28) 2010; 10
Mukherjee, Goswami, Yang, Yan, Daneshmand (b6) 2020; 152
Yang, Chen, Huang (b24) 2019; 35
Wu (10.1016/j.comcom.2021.03.021_b3) 2016; 13
Zhou (10.1016/j.comcom.2021.03.021_b11) 2012; 9
Yaohui (10.1016/j.comcom.2021.03.021_b16) 2017; 133
Hua (10.1016/j.comcom.2021.03.021_b20) 2011; 38
Bello-Orgaz (10.1016/j.comcom.2021.03.021_b5) 2016; 28
Hou (10.1016/j.comcom.2021.03.021_b19) 2016; 25
Shi (10.1016/j.comcom.2021.03.021_b18) 2018; 104
Mukherjee (10.1016/j.comcom.2021.03.021_b6) 2020; 152
Meng (10.1016/j.comcom.2021.03.021_b22) 2016; 28
Pulabaigari (10.1016/j.comcom.2021.03.021_b9) 2009; 30
Peter (10.1016/j.comcom.2021.03.021_b28) 2010; 10
Francis (10.1016/j.comcom.2021.03.021_b21) 2011; 101
Ghasemi (10.1016/j.comcom.2021.03.021_b14) 2016
Xindong (10.1016/j.comcom.2021.03.021_b2) 2014; 26
Chen (10.1016/j.comcom.2021.03.021_b25) 2011; 32
Xiong (10.1016/j.comcom.2021.03.021_b26) 2012; 9
Li (10.1016/j.comcom.2021.03.021_b13) 2021; 167
Chen (10.1016/j.comcom.2021.03.021_b1) 2014; 275
Ester (10.1016/j.comcom.2021.03.021_b7) 1996
Rodriguez (10.1016/j.comcom.2021.03.021_b30) 2014; 344
Hua (10.1016/j.comcom.2021.03.021_b10) 2011; 38
Yang (10.1016/j.comcom.2021.03.021_b24) 2019; 35
Li (10.1016/j.comcom.2021.03.021_b17) 2016; 20
Mnasri (10.1016/j.comcom.2021.03.021_b15) 2019; 91
Yang (10.1016/j.comcom.2021.03.021_b4) 2021; 167
He (10.1016/j.comcom.2021.03.021_b8) 2011
Frey (10.1016/j.comcom.2021.03.021_b29) 2007; 315
Varo Altay (10.1016/j.comcom.2021.03.021_b23) 2020; 53
Borah (10.1016/j.comcom.2021.03.021_b27) 2008; 3
Xiong (10.1016/j.comcom.2021.03.021_b12) 2012; 9
References_xml – volume: 20
  start-page: 590
  year: 2016
  end-page: 605
  ident: b17
  article-title: An adaptive multipopulation framework for locating and tracking multiple optima
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 1
  year: 2016
  end-page: 15
  ident: b22
  article-title: A new bio-inspired optimisation algorithm: Bird swarm algorithm
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 28
  start-page: 45
  year: 2016
  end-page: 59
  ident: b5
  article-title: Social big data: Recent achievements and new challenges
  publication-title: Inf. Fusion
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b29
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 35
  start-page: 57
  year: 2019
  end-page: 65
  ident: b24
  article-title: An adaptive bird swarm algorithm with irregular random flight and its application
  publication-title: J. Comput. Sci.
– volume: 275
  start-page: 314
  year: 2014
  end-page: 347
  ident: b1
  article-title: Data-intensive applications, challenges, techniques and technologies: A survey on big data
  publication-title: Inform. Sci.
– volume: 167
  start-page: 75
  year: 2021
  end-page: 84
  ident: b13
  article-title: A method of two-stage clustering learning based on improved dbscan and density peak algorithm
  publication-title: Comput. Commun.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b30
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– start-page: 1
  year: 2016
  end-page: 8
  ident: b14
  article-title: Particle swarm optimization approach for forecasting backbreak induced by bench blasting
  publication-title: Neural Comput. Appl.
– volume: 53
  start-page: 1373
  year: 2020
  end-page: 1414
  ident: b23
  article-title: Bird swarm algorithms with chaotic mapping
  publication-title: Artif. Intell. Rev.
– volume: 38
  start-page: 9373
  year: 2011
  end-page: 9381
  ident: b20
  article-title: A new hybrid method based on partitioning-based dbscan and ant clustering
  publication-title: Expert Syst. Appl.
– volume: 133
  start-page: 208
  year: 2017
  end-page: 220
  ident: b16
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowl.-Based Syst.
– volume: 38
  start-page: 9373
  year: 2011
  end-page: 9381
  ident: b10
  article-title: A new hybrid method based on partitioning-based dbscan and ant clustering
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 1967
  year: 2012
  end-page: 1973
  ident: b11
  article-title: Research on adaptive parameters determination in dbscan algorithm
  publication-title: J. Inf. Comput. Sci.
– volume: 10
  start-page: 210
  year: 2010
  end-page: 214
  ident: b28
  article-title: Heterogeneous density based spatial clustering of application with noise
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 25
  start-page: 3182
  year: 2016
  end-page: 3193
  ident: b19
  article-title: Dsets-dbscan: A parameter-free clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 2739
  year: 2012
  end-page: 2749
  ident: b12
  article-title: Multi-density dbscan algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: 3
  start-page: 72
  year: 2008
  end-page: 79
  ident: b27
  article-title: DDSC: A density differentiated spatial clustering technique
  publication-title: J. Comput.
– volume: 26
  start-page: 97
  year: 2014
  end-page: 107
  ident: b2
  article-title: Data mining with big data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 167
  start-page: 63
  year: 2021
  end-page: 74
  ident: b4
  article-title: Systematic review on next-generation web-based software architecture clustering models
  publication-title: Comput. Commun.
– volume: 30
  start-page: 1477
  year: 2009
  end-page: 1488
  ident: b9
  article-title: Rough-dbscan: A fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
– volume: 101
  start-page: 265
  year: 2011
  end-page: 270
  ident: b21
  article-title: Simulation of dna damage clustering after proton irradiation using an adapted dbscan algorithm
  publication-title: Comput. Methods Programs Biomed.
– volume: 32
  start-page: 973
  year: 2011
  end-page: 986
  ident: b25
  article-title: Apscan: A parameter free algorithm for clustering
  publication-title: Pattern Recognit. Lett.
– start-page: 473
  year: 2011
  end-page: 480
  ident: b8
  article-title: Mr-dbscan: An efficient parallel density-based clustering algorithm using mapreduce
  publication-title: Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS ’11
– volume: 152
  start-page: 119
  year: 2020
  end-page: 125
  ident: b6
  article-title: Dynamic clustering method based on power demand and information volume for intelligent and green IoT
  publication-title: Comput. Commun.
– volume: 13
  start-page: 1620
  year: 2016
  end-page: 1628
  ident: b3
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
– volume: 9
  start-page: 2739
  year: 2012
  end-page: 2749
  ident: b26
  article-title: Multi-density dbscan algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: 91
  start-page: 262
  year: 2019
  end-page: 280
  ident: b15
  article-title: A new multi-agent particle swarm algorithm based on birds accents for the 3d indoor deployment problem
  publication-title: ISA Trans.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b7
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96
– volume: 104
  start-page: 37
  year: 2018
  end-page: 44
  ident: b18
  article-title: Adaptive clustering algorithm based on k nn and density
  publication-title: Pattern Recognit. Lett.
– volume: 91
  start-page: 262
  year: 2019
  ident: 10.1016/j.comcom.2021.03.021_b15
  article-title: A new multi-agent particle swarm algorithm based on birds accents for the 3d indoor deployment problem
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.01.026
– start-page: 226
  year: 1996
  ident: 10.1016/j.comcom.2021.03.021_b7
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1016/j.comcom.2021.03.021_b30
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 32
  start-page: 973
  year: 2011
  ident: 10.1016/j.comcom.2021.03.021_b25
  article-title: Apscan: A parameter free algorithm for clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.02.001
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.comcom.2021.03.021_b29
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 9
  start-page: 2739
  year: 2012
  ident: 10.1016/j.comcom.2021.03.021_b12
  article-title: Multi-density dbscan algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: 20
  start-page: 590
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b17
  article-title: An adaptive multipopulation framework for locating and tracking multiple optima
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504383
– volume: 53
  start-page: 1373
  year: 2020
  ident: 10.1016/j.comcom.2021.03.021_b23
  article-title: Bird swarm algorithms with chaotic mapping
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09704-9
– volume: 28
  start-page: 45
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b5
  article-title: Social big data: Recent achievements and new challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.08.005
– volume: 28
  start-page: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b22
  article-title: A new bio-inspired optimisation algorithm: Bird swarm algorithm
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2015.1042530
– volume: 10
  start-page: 210
  year: 2010
  ident: 10.1016/j.comcom.2021.03.021_b28
  article-title: Heterogeneous density based spatial clustering of application with noise
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 167
  start-page: 63
  year: 2021
  ident: 10.1016/j.comcom.2021.03.021_b4
  article-title: Systematic review on next-generation web-based software architecture clustering models
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.12.022
– start-page: 473
  year: 2011
  ident: 10.1016/j.comcom.2021.03.021_b8
  article-title: Mr-dbscan: An efficient parallel density-based clustering algorithm using mapreduce
– volume: 38
  start-page: 9373
  year: 2011
  ident: 10.1016/j.comcom.2021.03.021_b10
  article-title: A new hybrid method based on partitioning-based dbscan and ant clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.135
– start-page: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b14
  article-title: Particle swarm optimization approach for forecasting backbreak induced by bench blasting
  publication-title: Neural Comput. Appl.
– volume: 3
  start-page: 72
  year: 2008
  ident: 10.1016/j.comcom.2021.03.021_b27
  article-title: DDSC: A density differentiated spatial clustering technique
  publication-title: J. Comput.
  doi: 10.4304/jcp.3.2.72-79
– volume: 26
  start-page: 97
  year: 2014
  ident: 10.1016/j.comcom.2021.03.021_b2
  article-title: Data mining with big data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.109
– volume: 275
  start-page: 314
  year: 2014
  ident: 10.1016/j.comcom.2021.03.021_b1
  article-title: Data-intensive applications, challenges, techniques and technologies: A survey on big data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.01.015
– volume: 101
  start-page: 265
  year: 2011
  ident: 10.1016/j.comcom.2021.03.021_b21
  article-title: Simulation of dna damage clustering after proton irradiation using an adapted dbscan algorithm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.12.012
– volume: 9
  start-page: 2739
  year: 2012
  ident: 10.1016/j.comcom.2021.03.021_b26
  article-title: Multi-density dbscan algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: 9
  start-page: 1967
  year: 2012
  ident: 10.1016/j.comcom.2021.03.021_b11
  article-title: Research on adaptive parameters determination in dbscan algorithm
  publication-title: J. Inf. Comput. Sci.
– volume: 13
  start-page: 1620
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b3
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2628747
– volume: 38
  start-page: 9373
  year: 2011
  ident: 10.1016/j.comcom.2021.03.021_b20
  article-title: A new hybrid method based on partitioning-based dbscan and ant clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.135
– volume: 35
  start-page: 57
  year: 2019
  ident: 10.1016/j.comcom.2021.03.021_b24
  article-title: An adaptive bird swarm algorithm with irregular random flight and its application
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2019.06.004
– volume: 104
  start-page: 37
  year: 2018
  ident: 10.1016/j.comcom.2021.03.021_b18
  article-title: Adaptive clustering algorithm based on k nn and density
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.01.020
– volume: 152
  start-page: 119
  year: 2020
  ident: 10.1016/j.comcom.2021.03.021_b6
  article-title: Dynamic clustering method based on power demand and information volume for intelligent and green IoT
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.01.026
– volume: 25
  start-page: 3182
  year: 2016
  ident: 10.1016/j.comcom.2021.03.021_b19
  article-title: Dsets-dbscan: A parameter-free clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2559803
– volume: 30
  start-page: 1477
  year: 2009
  ident: 10.1016/j.comcom.2021.03.021_b9
  article-title: Rough-dbscan: A fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.08.008
– volume: 133
  start-page: 208
  year: 2017
  ident: 10.1016/j.comcom.2021.03.021_b16
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.010
– volume: 167
  start-page: 75
  year: 2021
  ident: 10.1016/j.comcom.2021.03.021_b13
  article-title: A method of two-stage clustering learning based on improved dbscan and density peak algorithm
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.12.019
SSID ssj0004773
Score 2.423658
Snippet The commonly used density-based spatial clustering method (DBSCAN) connects contiguous regions with sufficiently large densities when processing datasets to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Adaptive parameter optimization
Bird swarm optimization algorithm
DBSCAN
Eps parameter
Title A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.comcom.2021.03.021
Volume 174
WOSCitedRecordID wos000658251200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-703X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004773
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydoftUOyJtntAh90MD7bkRNYxGFpkw1Ds0GG-GbItdykcO3DirP03_amlHo7VZtgL2MUJBNMWxC_iR4akEHpHGckBCsDcJjzzIxZkfpwVxBdgDbO8oONA6ELhz-zsLE4S_mU0uulrYTYVq-v46oov_6uqYQyUrUpn_0Ld24fCAHwHpcMV1A7XP1L81Kubjaw8UYilzgsqVI76-tpXBqvwViqFWjUFqTrVI8EmPTv_Y5vQbN3MV9IzIjCWzVsQ_SHahdfAUxe2etMT1UXTwv0Ll-T2J0WofPWh-mRL3r_ZELWqrarvD86a-uJ7N0B2ZgK0SbfobayOcjedTg6UczdqQZzsKhNK2ymnsdFNMAoT09b8vTQ7csyoD9tScmfLZpG76QZjx34TU5S6YxpMlOJSaVblCalJ6fa2pkD7XtNtnfOmZkJCzTrZA7RP2JjD1r8__XiSfBpqb5nJYuin3pdn6hzC3Xf9nP44lOb8CTqwvgieGgw9RSNZP0OPnQ6Vz9FmijWacI8mfAdN2KIJD2jCTYkdNGGFJqzRhI0IjCk0YY0m7KIJb9H0An09PTn_MPPtUR1-Dj7n2i-iUgL7KyQPZBYUk4kAv4JGpJSMlMCRgCpFROZAd5WHksdAGwUpQxbygnIBLsdLtFc3tTxEWMY8F2EcU0njCNwHLkRUjhkrOc1YSMojRPsVTHPbx14dp1KlfcLiZWrWPVXrngY0hY8j5G-llqaPy2_uZ71yUstFDcdMAU-_lDz-Z8lX6NHwU3mN9tZtJ9-gh_lmPV-1by3wbgHJIrPE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+adaptive+density-based+spatial+clustering+of+application+with+noise+based+on+bird+swarm+optimization+algorithm&rft.jtitle=Computer+communications&rft.au=Wang%2C+Limin&rft.au=Wang%2C+Honghuan&rft.au=Han%2C+Xuming&rft.au=Zhou%2C+Wei&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=174&rft.spage=205&rft.epage=214&rft_id=info:doi/10.1016%2Fj.comcom.2021.03.021&rft.externalDocID=S0140366421001237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon