Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimizati...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 430; s. 58 - 70 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
21.03.2021
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP. |
|---|---|
| AbstractList | With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP. |
| Author | Zhan, Zhi-Hui Chen, Zong-Gan Kwong, Sam Zhang, Jun Zhao, Hong |
| Author_xml | – sequence: 1 givenname: Hong surname: Zhao fullname: Zhao, Hong organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China – sequence: 2 givenname: Zong-Gan surname: Chen fullname: Chen, Zong-Gan organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China – sequence: 3 givenname: Zhi-Hui surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China – sequence: 4 givenname: Sam surname: Kwong fullname: Kwong, Sam organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 5 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: Victoria University, Melbourne, VIC 8001, Australia |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DID6SMnaZNWCChipdUxAbWlmOPJVdOHNluUfkFfhqnZQMLWPmhuWd07oSMOtchIZcUZhTo4moz63ArXTtjwNIXmwFjJ2RMqyXLK1YtRmQMNStzVlB2RiYhbADokrJ6TD6ftzaa3mLWu35rRTSuC5l0Oe6c3Q4v4fdZL3w0Mg2Fd-HbzPXRtObjMJxp57N2gOSu2aCMZoeZFF6ZTlgT94nVheiF6VClHT5qZ437iei9ayy25-RUCxvw4vuckrf7u9fVY75-eXha3a5zWcAi5qpQy1KJRjVJQlTYFEKWINJda5QLQN0gIEAJlWp0DbpeakoLQaFo5nUJxZTMj1zpXQgeNe-9aZMnp8CHQvmGHwvlQ6GcMp4KTbHrXzFp4kFg0LP_hW-OYUxiO4OeB2mwk6iMT6Vx5czfgC-Mr52B |
| CitedBy_id | crossref_primary_10_1109_TCYB_2021_3082200 crossref_primary_10_1007_s10489_023_04822_y crossref_primary_10_1016_j_engappai_2023_106389 crossref_primary_10_1016_j_eswa_2024_124226 crossref_primary_10_1007_s00500_023_08177_x crossref_primary_10_3390_math11214406 crossref_primary_10_1016_j_eswa_2023_119970 crossref_primary_10_1016_j_neucom_2021_12_069 crossref_primary_10_1145_3734865 crossref_primary_10_1007_s10489_022_04240_6 crossref_primary_10_1109_TII_2022_3213719 crossref_primary_10_1016_j_eswa_2023_120742 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_eswa_2023_120388 crossref_primary_10_1007_s41060_025_00788_x crossref_primary_10_1016_j_neucom_2024_129296 crossref_primary_10_1109_TEVC_2021_3097339 crossref_primary_10_1155_2022_4241049 crossref_primary_10_1016_j_cie_2023_109450 crossref_primary_10_1155_2022_7957097 crossref_primary_10_1038_s41598_024_71193_w crossref_primary_10_1016_j_swevo_2025_102162 crossref_primary_10_3390_math12243946 crossref_primary_10_3390_math13162629 crossref_primary_10_1016_j_neucom_2022_05_100 crossref_primary_10_1007_s40747_022_00870_y crossref_primary_10_1007_s10489_022_03820_w crossref_primary_10_1155_2022_4105105 crossref_primary_10_1007_s10614_025_10985_2 crossref_primary_10_3390_a17090416 crossref_primary_10_1007_s10614_025_10908_1 crossref_primary_10_1016_j_asoc_2023_110101 crossref_primary_10_1016_j_neucom_2023_126892 crossref_primary_10_1016_j_asoc_2023_110587 crossref_primary_10_1016_j_eswa_2023_120656 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_asoc_2023_110589 crossref_primary_10_1016_j_swevo_2024_101627 crossref_primary_10_1038_s41598_025_04568_2 crossref_primary_10_1186_s40537_025_01140_7 crossref_primary_10_1016_j_cie_2025_111159 crossref_primary_10_22395_seec_v25n58a3 crossref_primary_10_3390_math12111694 crossref_primary_10_1016_j_ins_2024_121665 crossref_primary_10_1109_TCYB_2021_3088884 crossref_primary_10_1007_s40747_022_00860_0 crossref_primary_10_1016_j_neucom_2022_09_120 crossref_primary_10_3390_electronics12030491 |
| Cites_doi | 10.1016/j.asoc.2018.08.020 10.1007/978-3-319-40663-3_69 10.1109/TKDE.2016.2545660 10.1155/2017/4197914 10.1016/j.swevo.2011.02.002 10.1109/CEC.2018.8477732 10.1007/s10489-012-0405-5 10.1016/j.nonrwa.2008.04.023 10.1109/CEC.2014.6900357 10.12785/amis/080619 10.1016/j.neucom.2003.05.001 10.1109/TSMCB.2012.2209115 10.1109/TNNLS.2019.2957105 10.1109/CEC.2006.1688603 10.1109/TEVC.2014.2301794 10.1109/TFUZZ.2016.2543753 10.1109/TEVC.2018.2875430 10.1109/TSP.2015.2474298 10.1016/j.asoc.2014.08.026 10.1109/TEVC.2020.3004012 10.1109/4235.797969 10.1109/TCYB.2018.2832640 10.1016/j.neucom.2018.09.001 10.1016/j.neucom.2008.08.019 10.1109/TEVC.2013.2281396 10.1109/CEC.2005.1554852 10.1109/TSP.2013.2277839 10.1016/j.neucom.2019.01.006 10.1007/s10489-017-0898-z 10.1109/TFUZZ.2018.2842752 10.1016/j.neucom.2013.01.011 10.1109/TIE.2014.2314075 10.1016/j.neucom.2006.10.005 10.1109/TNNLS.2018.2846646 10.1016/j.neucom.2020.04.004 10.1109/TSMCB.2012.2198812 10.1109/TSMCB.2009.2015956 10.1016/S0925-2312(03)00381-3 10.1007/s00500-016-2063-8 10.1109/TEVC.2012.2196800 10.1007/s10479-016-2377-z 10.1016/j.neucom.2016.05.104 10.1016/j.neucom.2012.09.019 10.1007/s12559-016-9396-6 10.1109/4235.996017 10.1109/TEVC.2007.892759 10.1109/TITS.2020.2994779 10.1007/s10287-009-0107-6 10.1007/978-3-540-28651-6_117 10.1109/TFUZZ.2018.2872125 10.1109/TEVC.2009.2014360 10.1109/TEVC.2009.2015575 10.1016/j.neucom.2019.11.067 10.1109/MCI.2010.936308 10.1111/j.1467-9965.2006.00262.x 10.1016/j.neucom.2011.05.048 10.1109/CINC.2009.161 10.1016/S0305-0548(99)00074-X 10.1109/ICNN.1995.488968 10.1007/s10589-007-9126-9 10.1016/j.neucom.2017.02.097 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.12.022 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 70 |
| ExternalDocumentID | 10_1016_j_neucom_2020_12_022 S0925231220319226 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-d3d75dabdb017a8eb3ac50a17affec60efbe0e00508dbf90f97f113a103b49503 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617365300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 21:49:46 EST 2025 Sat Nov 29 07:16:25 EST 2025 Fri Feb 23 02:48:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple populations co-evolutionary Cardinality constrained Particle swarm optimization Portfolio optimization problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-d3d75dabdb017a8eb3ac50a17affec60efbe0e00508dbf90f97f113a103b49503 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_12_022 crossref_citationtrail_10_1016_j_neucom_2020_12_022 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_022 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-21 |
| PublicationDateYYYYMMDD | 2021-03-21 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Sun, Wang (b0245) 2006; 16 Zeng, Wang, Zhang (b0210) 2016; 8 Metawa, Elhoseny, Hassan, Hassanien (b0135) 2016 Gavrishchaka, Ganguli (b0010) 2003; 55 Wang, Sheng, Ye, Lin, Mao, Chen, Sheng (b0265) 2019; 334 Qiao, Li, Umer, Guo (b0330) 2020; 385 J. Fieldsend, J. Matatko, M. Peng, Cardinality constrained portfolio optimization, in: Processings of Int. Conf. Intell. Data Eng. Automat. Learning, 2004, pp. 788-793. Liu, Chen, Deb, Goodman (b0260) 2017; 21 Streichert, Ulmer, Zell (b0120) 2004 Weng, Sun, Xia, Liu, Xu (b0335) 2020; 402 Liang, Chen, He, Chen (b0020) 2013; 115 Shen, Zhan, Chen, Gong, Zhang, Li (b0200) 2014; 61 Deb, Pratap, Agarwal, Meyarivan (b0275) 2002; 6 Bertsimas, Shioda (b0250) 2009; 43 J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Processings of IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948. Thawornwong, Enke (b0050) 2004; 56 Derrac, García, Molina, Herrera (b0310) 2011; 1 Chang, Meade, Beasley, Sharaiha (b0110) 2000; 27 B. Wang, Y. Li, S. Wang, J. Watada, A multi-objective portfolio selection model with fuzzy value-at-risk ratio, IEEE Trans. Fuzzy Syst., 26(6) (2018) 3673-3687. Beume, Fonseca, Lopez-lbanez, Paquete, Vahrenhold (b0300) 2009; 13 Ponsich, Jaimes, Coello (b0035) 2013; 17 Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Processings of IEEE World Congr. Comput. Intell., 1998, pp. 69-73. Liagkouras, Metaxiotis (b0060) 2018; 267 Chen, Yang, Abraham (b0045) 2007; 70 Tuba, Bacanin (b0105) 2014; 8 Krink, Paterlini (b0070) 2011; 8 . Sheng, Chen, Sheng, Xiao, Mao, Zheng (b0270) 2016; 20 I. Strumberger, E. Tuba, N. Bacanin, M. Beko, M. Tuba, Hybridized artificial bee colony algorithm for constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2018, pp. 1-8. Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., DOI: 10.1109/TEVC.2020.3004012. Gao, Zhou, Wang, Cheng, Yachi, Wang (b0325) 2019; 30 Zhou S.Z., Zhan Z.H., Chen Z.G., Kwong S., Zhang J., A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Trans. Intell. Transport. Syst. Zheng, Ling, Xue, Chen (b0220) 2014; 18 Liu, Dang, Huang (b0095) 2013; 43 Zitzler, Laumanns, Thiele (b0280) 2002 Cura (b0255) 2009; 10 R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suarez, Selection of optimal investment portfolio with cardinality constraints, in: Processings of IEEE Inte. Conf. on Evol. Comput., 2006, pp. 2382-2388. Lwin, Qu, Kendall (b0065) 2014; 24 Qu, Zhou, Xiao, Liang, Suganthan (b0140) 2017; 2017 Zhou, Li, Pedrycz (b0235) 2016; 24 Zhang, Li (b0285) 2007; 11 Zhan, Li, Cao, Zhang (b0155) 2013; 43 Yu, Hu, Tang (b0040) 2016; 28 Yao, Ding, Jin, Hao (b0160) 2017; 21 Chen, Zhan, Lin, Gong, Gu, Zhao, Yuan, Chen, Li, Zhang (b0175) 2019; 49 Freitas, De Souza, de Almeida (b0320) 2009; 72 Liu, Zhan, Gao, Zhang, Kwong, Zhang (b0295) 2019; 23 J. Gao, Z. Chu, An improved particle swarm optimization for the constrained portfolio selection problem, in: Processings of Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 518-522. Zhang, Wang, Zhang, Zhang, Sun, Zhang, Chipecane, Yao (b0165) 2019; 27 Zitzler, Thiele (b0305) 1999; 3 Vijayalakshmi Pai, Michel (b0130) 2009; 13 Chen, Lin, Zeng, Xu, Zhang (b0145) 2017; 47 Markowitz (b0005) 1952; 7 Relich, Pawlewski (b0015) 2017; 231 Yang, Couillet, McKay (b0100) 2015; 63 Song, Liu, Yang (b0025) 2017; 264 Z. G. Chen, Z. H. Zhan, W. Shi, W. N. Chen, J. Zhang, When neural network computation meets evolutionary computation: A survey, in Proc. International Symposium on Neural Networks, 2016, pp. 603-612. Ruiz-Torrubiano, Suarez (b0030) 2010; 5 Zeng, Qiu, Wang (b0205) 2018; 320 T. Cui, S. Cheng, R. Bai, A combinatorial algorithm for the cardinality constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2014, pp. 491-498. Yang, Rubio, Scutari, Palomar (b0115) 2013; 61 Niu, Fan, Xiao, Xue (b0230) 2012; 98 R. Armananzas, J. A. Lozano, A multiobjective approach to the portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput, 2005, pp. 1388-1395. Liang, Wang, Lin, Chen, Chen, Ming (b0185) 2018; 73 M. Leung, J. Wang, Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2019.2957105. Zhang, Gong, Zhang (b0215) 2013; 103 Zhan, Zhang, Li, Chung (b0195) 2009; 39 Chen, Zeng, Lin, Zhang (b0150) 2015; 19 Zheng, Chen (b0225) 2013; 39 Zhou (10.1016/j.neucom.2020.12.022_b0235) 2016; 24 Krink (10.1016/j.neucom.2020.12.022_b0070) 2011; 8 Zitzler (10.1016/j.neucom.2020.12.022_b0280) 2002 Gavrishchaka (10.1016/j.neucom.2020.12.022_b0010) 2003; 55 10.1016/j.neucom.2020.12.022_b0180 Zeng (10.1016/j.neucom.2020.12.022_b0210) 2016; 8 Chen (10.1016/j.neucom.2020.12.022_b0045) 2007; 70 Zheng (10.1016/j.neucom.2020.12.022_b0220) 2014; 18 Liang (10.1016/j.neucom.2020.12.022_b0185) 2018; 73 10.1016/j.neucom.2020.12.022_b0340 Wang (10.1016/j.neucom.2020.12.022_b0265) 2019; 334 Song (10.1016/j.neucom.2020.12.022_b0025) 2017; 264 Zhang (10.1016/j.neucom.2020.12.022_b0215) 2013; 103 Zhang (10.1016/j.neucom.2020.12.022_b0285) 2007; 11 Yang (10.1016/j.neucom.2020.12.022_b0100) 2015; 63 Zeng (10.1016/j.neucom.2020.12.022_b0205) 2018; 320 Metawa (10.1016/j.neucom.2020.12.022_b0135) 2016 Bertsimas (10.1016/j.neucom.2020.12.022_b0250) 2009; 43 Liu (10.1016/j.neucom.2020.12.022_b0260) 2017; 21 10.1016/j.neucom.2020.12.022_b0190 Ruiz-Torrubiano (10.1016/j.neucom.2020.12.022_b0030) 2010; 5 Zhan (10.1016/j.neucom.2020.12.022_b0195) 2009; 39 Niu (10.1016/j.neucom.2020.12.022_b0230) 2012; 98 Liang (10.1016/j.neucom.2020.12.022_b0020) 2013; 115 Liagkouras (10.1016/j.neucom.2020.12.022_b0060) 2018; 267 10.1016/j.neucom.2020.12.022_b0075 Relich (10.1016/j.neucom.2020.12.022_b0015) 2017; 231 Ponsich (10.1016/j.neucom.2020.12.022_b0035) 2013; 17 Markowitz (10.1016/j.neucom.2020.12.022_b0005) 1952; 7 Chen (10.1016/j.neucom.2020.12.022_b0175) 2019; 49 10.1016/j.neucom.2020.12.022_b0315 Zhang (10.1016/j.neucom.2020.12.022_b0165) 2019; 27 Qu (10.1016/j.neucom.2020.12.022_b0140) 2017; 2017 Yu (10.1016/j.neucom.2020.12.022_b0040) 2016; 28 Liu (10.1016/j.neucom.2020.12.022_b0295) 2019; 23 10.1016/j.neucom.2020.12.022_b0080 Vijayalakshmi Pai (10.1016/j.neucom.2020.12.022_b0130) 2009; 13 Li (10.1016/j.neucom.2020.12.022_b0245) 2006; 16 10.1016/j.neucom.2020.12.022_b0085 Zitzler (10.1016/j.neucom.2020.12.022_b0305) 1999; 3 10.1016/j.neucom.2020.12.022_b0240 Chen (10.1016/j.neucom.2020.12.022_b0150) 2015; 19 Shen (10.1016/j.neucom.2020.12.022_b0200) 2014; 61 10.1016/j.neucom.2020.12.022_b0125 Liu (10.1016/j.neucom.2020.12.022_b0095) 2013; 43 Zhan (10.1016/j.neucom.2020.12.022_b0155) 2013; 43 Freitas (10.1016/j.neucom.2020.12.022_b0320) 2009; 72 Tuba (10.1016/j.neucom.2020.12.022_b0105) 2014; 8 Zheng (10.1016/j.neucom.2020.12.022_b0225) 2013; 39 Beume (10.1016/j.neucom.2020.12.022_b0300) 2009; 13 Cura (10.1016/j.neucom.2020.12.022_b0255) 2009; 10 10.1016/j.neucom.2020.12.022_b0090 Chen (10.1016/j.neucom.2020.12.022_b0145) 2017; 47 Yao (10.1016/j.neucom.2020.12.022_b0160) 2017; 21 10.1016/j.neucom.2020.12.022_b0290 10.1016/j.neucom.2020.12.022_b0170 Yang (10.1016/j.neucom.2020.12.022_b0115) 2013; 61 Streichert (10.1016/j.neucom.2020.12.022_b0120) 2004 10.1016/j.neucom.2020.12.022_b0055 Qiao (10.1016/j.neucom.2020.12.022_b0330) 2020; 385 Lwin (10.1016/j.neucom.2020.12.022_b0065) 2014; 24 Chang (10.1016/j.neucom.2020.12.022_b0110) 2000; 27 Weng (10.1016/j.neucom.2020.12.022_b0335) 2020; 402 Thawornwong (10.1016/j.neucom.2020.12.022_b0050) 2004; 56 Deb (10.1016/j.neucom.2020.12.022_b0275) 2002; 6 Gao (10.1016/j.neucom.2020.12.022_b0325) 2019; 30 Derrac (10.1016/j.neucom.2020.12.022_b0310) 2011; 1 Sheng (10.1016/j.neucom.2020.12.022_b0270) 2016; 20 |
| References_xml | – volume: 30 start-page: 601 year: 2019 end-page: 614 ident: b0325 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 27 start-page: 1052 year: 2019 end-page: 1065 ident: b0165 article-title: Cooperative artificial bee colony algorithm with multiple populations for interval multiobjective optimization problems publication-title: IEEE Trans. Fuzzy Syst. – volume: 13 start-page: 1075 year: 2009 end-page: 1082 ident: b0300 article-title: On the complexity of computing the hypervolume indicator publication-title: IEEE. Trans. Evol. Comput. – volume: 43 start-page: 14 year: 2013 end-page: 23 ident: b0095 article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion publication-title: IEEE Trans. Cybern – volume: 402 start-page: 171 year: 2020 end-page: 182 ident: b0335 article-title: Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism publication-title: Neurocomputing – volume: 49 start-page: 2912 year: 2019 end-page: 2926 ident: b0175 article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach publication-title: IEEE Trans. Cybern. – volume: 115 start-page: 142 year: 2013 end-page: 149 ident: b0020 article-title: Associating stock prices with web financial information time series based on support vector regression publication-title: Neurocomputing – reference: Zhou S.Z., Zhan Z.H., Chen Z.G., Kwong S., Zhang J., A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Trans. Intell. Transport. Syst., – volume: 61 start-page: 7141 year: 2014 end-page: 7151 ident: b0200 article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks publication-title: IEEE Trans. Ind. Electron. – volume: 5 start-page: 92 year: 2010 end-page: 107 ident: b0030 article-title: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints publication-title: IEEE Comput. Intell. Mag. – reference: J. Fieldsend, J. Matatko, M. Peng, Cardinality constrained portfolio optimization, in: Processings of Int. Conf. Intell. Data Eng. Automat. Learning, 2004, pp. 788-793. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0310 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – start-page: 1239 year: 2004 end-page: 1250 ident: b0120 article-title: Comparing discrete and continuous genotypes on the constrained portfolio selection problem publication-title: Processings of Genetic Evol. Comput. Conf. – volume: 61 start-page: 5590 year: 2013 end-page: 5602 ident: b0115 article-title: Multi-portfolio optimization: A potential game approach publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 50 year: 2015 end-page: 73 ident: b0150 article-title: A new local search-based multiobjective optimization algorithm publication-title: IEEE Trans. Evol. Comput. – reference: Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., DOI: 10.1109/TEVC.2020.3004012. – volume: 10 start-page: 2396 year: 2009 end-page: 2406 ident: b0255 article-title: Particle swarm optimization approach to portfolio optimization publication-title: Nonlinear Anal. Real World Appl. – volume: 24 start-page: 757 year: 2014 end-page: 772 ident: b0065 article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization publication-title: Appl. Soft. Comput. – volume: 28 start-page: 1891 year: 2016 end-page: 1904 ident: b0040 article-title: Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algorithm publication-title: IEEE Trans. Knowl. Data Eng. – reference: Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Processings of IEEE World Congr. Comput. Intell., 1998, pp. 69-73. – reference: I. Strumberger, E. Tuba, N. Bacanin, M. Beko, M. Tuba, Hybridized artificial bee colony algorithm for constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2018, pp. 1-8. – volume: 70 start-page: 697 year: 2007 end-page: 703 ident: b0045 article-title: Flexible neural trees ensemble for stock index modeling publication-title: Neurocomputing – volume: 63 start-page: 6684 year: 2015 end-page: 6697 ident: b0100 article-title: A robust statistics approach to minimum variance portfolio optimization publication-title: IEEE Trans. Signal Process – volume: 320 start-page: 195 year: 2018 end-page: 202 ident: b0205 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease publication-title: Neurocomputing – volume: 72 start-page: 2155 year: 2009 end-page: 2170 ident: b0320 article-title: Prediction-based portfolio optimization model using neural networks publication-title: Neurocomputing – volume: 8 start-page: 143 year: 2016 end-page: 152 ident: b0210 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cognitive Comput. – volume: 39 start-page: 202 year: 2013 end-page: 216 ident: b0225 article-title: Cooperative particle swarm optimization for multiobjective transportation planning publication-title: Appl. Intell. – volume: 264 start-page: 20 year: 2017 end-page: 28 ident: b0025 article-title: Stock portfolio selection using learning-to-rank algorithms with news sentiment publication-title: Neurocomputing – volume: 17 start-page: 321 year: 2013 end-page: 344 ident: b0035 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Computat. – volume: 23 start-page: 587 year: 2019 end-page: 602 ident: b0295 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 2831 year: 2014 end-page: 2844 ident: b0105 article-title: Artificial bee colony algorithm with firefly algorithm for cardinality constrained mean-variance portfolio selection problem publication-title: Appl. Math. Inf. Sci. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0285 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 1271 year: 2000 end-page: 1302 ident: b0110 article-title: Heuristics for cardinality constrained portfolio optimization publication-title: Comput. Oper. Res – volume: 43 start-page: 1 year: 2009 end-page: 22 ident: b0250 article-title: Algorithm for cardinality-constrained quadratic optimization publication-title: Comput. Optim. Appl. – reference: R. Armananzas, J. A. Lozano, A multiobjective approach to the portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput, 2005, pp. 1388-1395. – volume: 8 start-page: 157 year: 2011 end-page: 179 ident: b0070 article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization publication-title: Comput. Manage. Sci. – volume: 334 start-page: 79 year: 2019 end-page: 88 ident: b0265 article-title: A multilevel sampling strategy based memetic differential evolution for multimodal optimization publication-title: Neurocomputing – start-page: 95 year: 2002 end-page: 100 ident: b0280 article-title: SPEA2: Improving the strength pareto evolutionary algorithm publication-title: Proceedings of the International Conference on Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems – volume: 55 start-page: 285 year: 2003 end-page: 305 ident: b0010 article-title: Volatility forecasting from multiscale and high-dimensional market data publication-title: Neurocomputing – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: b0195 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst., Man, Cybern. B – reference: M. Leung, J. Wang, Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2019.2957105. – reference: J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Processings of IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948. – volume: 103 start-page: 172 year: 2013 end-page: 185 ident: b0215 article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization publication-title: Neurocomputing – volume: 98 start-page: 90 year: 2012 end-page: 100 ident: b0230 article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk publication-title: Neurocomputing – reference: J. Gao, Z. Chu, An improved particle swarm optimization for the constrained portfolio selection problem, in: Processings of Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 518-522. – reference: Z. G. Chen, Z. H. Zhan, W. Shi, W. N. Chen, J. Zhang, When neural network computation meets evolutionary computation: A survey, in Proc. International Symposium on Neural Networks, 2016, pp. 603-612. – volume: 21 start-page: 408 year: 2017 end-page: 425 ident: b0260 article-title: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms publication-title: IEEE. Trans. Evol. Comput. – volume: 56 start-page: 205 year: 2004 end-page: 232 ident: b0050 article-title: The adaptive selection of financial and economic variables for use with artificial neural networks publication-title: Neurocomputing – volume: 16 start-page: 83 year: 2006 end-page: 101 ident: b0245 article-title: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection publication-title: Math. Financ. – volume: 13 start-page: 1030 year: 2009 end-page: 1053 ident: b0130 article-title: Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios publication-title: IEEE Trans. Evol. Computat. – volume: 231 start-page: 19 year: 2017 end-page: 27 ident: b0015 article-title: A fuzzy weighted average approach for selecting portfolio of new product development projects publication-title: Neurocomputing – volume: 267 start-page: 281 year: 2018 end-page: 319 ident: b0060 article-title: A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem publication-title: Ann. Oper. Res. – volume: 24 start-page: 1627 year: 2016 end-page: 1636 ident: b0235 article-title: Mean-semi-entropy models of fuzzy portfolio selection publication-title: IEEE Trans. Fuzzy Syst – volume: 47 start-page: 505 year: 2017 end-page: 525 ident: b0145 article-title: The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm publication-title: Appl. Intell. – volume: 43 start-page: 445 year: 2013 end-page: 463 ident: b0155 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. – reference: R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suarez, Selection of optimal investment portfolio with cardinality constraints, in: Processings of IEEE Inte. Conf. on Evol. Comput., 2006, pp. 2382-2388. – reference: . – volume: 21 start-page: 4309 year: 2017 end-page: 4322 ident: b0160 article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system publication-title: Soft Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0275 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – reference: T. Cui, S. Cheng, R. Bai, A combinatorial algorithm for the cardinality constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2014, pp. 491-498. – start-page: 59 year: 2016 end-page: 64 ident: b0135 article-title: Loan portfolio optimization using genetic algorithm: A case of credit constraints publication-title: Int. Comput. Eng. Conf. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0305 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – volume: 385 start-page: 100 year: 2020 end-page: 110 ident: b0330 article-title: Deep learning based software defect prediction publication-title: Neurocomputing – volume: 2017 start-page: 1 year: 2017 end-page: 14 ident: b0140 article-title: Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods publication-title: Math. Probl. Eng. – volume: 7 start-page: 77 year: 1952 end-page: 91 ident: b0005 article-title: Portfolio selection publication-title: J. Finance – volume: 18 start-page: 70 year: 2014 end-page: 81 ident: b0220 article-title: Population classification in fire evacuation: A multiobjective particle swarm optimization approach publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 838 year: 2016 end-page: 858 ident: b0270 article-title: Adaptive multi-subpopulation competition and multi-niche crowding based memetic algorithm for automatic data clustering publication-title: IEEE. Trans. Evol. Comput. – volume: 73 start-page: 50 year: 2018 end-page: 66 ident: b0185 article-title: A novel multi-objective co-evolutionary algorithm based on decomposition approach publication-title: Appl. Soft. Comput. – reference: B. Wang, Y. Li, S. Wang, J. Watada, A multi-objective portfolio selection model with fuzzy value-at-risk ratio, IEEE Trans. Fuzzy Syst., 26(6) (2018) 3673-3687. – volume: 73 start-page: 50 year: 2018 ident: 10.1016/j.neucom.2020.12.022_b0185 article-title: A novel multi-objective co-evolutionary algorithm based on decomposition approach publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2018.08.020 – ident: 10.1016/j.neucom.2020.12.022_b0340 doi: 10.1007/978-3-319-40663-3_69 – volume: 28 start-page: 1891 issue: 7 year: 2016 ident: 10.1016/j.neucom.2020.12.022_b0040 article-title: Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algorithm publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2545660 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0140 article-title: Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods publication-title: Math. Probl. Eng. doi: 10.1155/2017/4197914 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.neucom.2020.12.022_b0310 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: 10.1016/j.neucom.2020.12.022_b0075 doi: 10.1109/CEC.2018.8477732 – volume: 39 start-page: 202 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0225 article-title: Cooperative particle swarm optimization for multiobjective transportation planning publication-title: Appl. Intell. doi: 10.1007/s10489-012-0405-5 – volume: 10 start-page: 2396 issue: 4 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0255 article-title: Particle swarm optimization approach to portfolio optimization publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2008.04.023 – ident: 10.1016/j.neucom.2020.12.022_b0080 doi: 10.1109/CEC.2014.6900357 – volume: 8 start-page: 2831 issue: 4 year: 2014 ident: 10.1016/j.neucom.2020.12.022_b0105 article-title: Artificial bee colony algorithm with firefly algorithm for cardinality constrained mean-variance portfolio selection problem publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/080619 – volume: 56 start-page: 205 year: 2004 ident: 10.1016/j.neucom.2020.12.022_b0050 article-title: The adaptive selection of financial and economic variables for use with artificial neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.05.001 – volume: 43 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0155 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2209115 – ident: 10.1016/j.neucom.2020.12.022_b0315 doi: 10.1109/TNNLS.2019.2957105 – ident: 10.1016/j.neucom.2020.12.022_b0055 doi: 10.1109/CEC.2006.1688603 – volume: 19 start-page: 50 issue: 1 year: 2015 ident: 10.1016/j.neucom.2020.12.022_b0150 article-title: A new local search-based multiobjective optimization algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2301794 – volume: 24 start-page: 1627 issue: 6 year: 2016 ident: 10.1016/j.neucom.2020.12.022_b0235 article-title: Mean-semi-entropy models of fuzzy portfolio selection publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2543753 – volume: 23 start-page: 587 issue: 4 year: 2019 ident: 10.1016/j.neucom.2020.12.022_b0295 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2875430 – volume: 63 start-page: 6684 issue: 24 year: 2015 ident: 10.1016/j.neucom.2020.12.022_b0100 article-title: A robust statistics approach to minimum variance portfolio optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2474298 – start-page: 95 year: 2002 ident: 10.1016/j.neucom.2020.12.022_b0280 article-title: SPEA2: Improving the strength pareto evolutionary algorithm – volume: 24 start-page: 757 year: 2014 ident: 10.1016/j.neucom.2020.12.022_b0065 article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2014.08.026 – start-page: 59 year: 2016 ident: 10.1016/j.neucom.2020.12.022_b0135 article-title: Loan portfolio optimization using genetic algorithm: A case of credit constraints publication-title: Int. Comput. Eng. Conf. – ident: 10.1016/j.neucom.2020.12.022_b0180 doi: 10.1109/TEVC.2020.3004012 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.neucom.2020.12.022_b0305 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 49 start-page: 2912 issue: 8 year: 2019 ident: 10.1016/j.neucom.2020.12.022_b0175 article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2832640 – volume: 320 start-page: 195 year: 2018 ident: 10.1016/j.neucom.2020.12.022_b0205 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.001 – volume: 20 start-page: 838 issue: 6 year: 2016 ident: 10.1016/j.neucom.2020.12.022_b0270 article-title: Adaptive multi-subpopulation competition and multi-niche crowding based memetic algorithm for automatic data clustering publication-title: IEEE. Trans. Evol. Comput. – volume: 72 start-page: 2155 issue: 10 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0320 article-title: Prediction-based portfolio optimization model using neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.019 – volume: 18 start-page: 70 issue: 1 year: 2014 ident: 10.1016/j.neucom.2020.12.022_b0220 article-title: Population classification in fire evacuation: A multiobjective particle swarm optimization approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281396 – ident: 10.1016/j.neucom.2020.12.022_b0090 doi: 10.1109/CEC.2005.1554852 – volume: 61 start-page: 5590 issue: 22 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0115 article-title: Multi-portfolio optimization: A potential game approach publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2277839 – volume: 334 start-page: 79 year: 2019 ident: 10.1016/j.neucom.2020.12.022_b0265 article-title: A multilevel sampling strategy based memetic differential evolution for multimodal optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.006 – volume: 47 start-page: 505 issue: 2 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0145 article-title: The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-017-0898-z – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 10.1016/j.neucom.2020.12.022_b0005 article-title: Portfolio selection publication-title: J. Finance – ident: 10.1016/j.neucom.2020.12.022_b0240 doi: 10.1109/TFUZZ.2018.2842752 – volume: 115 start-page: 142 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0020 article-title: Associating stock prices with web financial information time series based on support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.011 – volume: 61 start-page: 7141 issue: 12 year: 2014 ident: 10.1016/j.neucom.2020.12.022_b0200 article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2314075 – volume: 70 start-page: 697 issue: 4-6 year: 2007 ident: 10.1016/j.neucom.2020.12.022_b0045 article-title: Flexible neural trees ensemble for stock index modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.10.005 – volume: 30 start-page: 601 issue: 2 year: 2019 ident: 10.1016/j.neucom.2020.12.022_b0325 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2846646 – volume: 402 start-page: 171 year: 2020 ident: 10.1016/j.neucom.2020.12.022_b0335 article-title: Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.004 – volume: 43 start-page: 14 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0095 article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2198812 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0195 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst., Man, Cybern. B doi: 10.1109/TSMCB.2009.2015956 – volume: 55 start-page: 285 issue: 1-2 year: 2003 ident: 10.1016/j.neucom.2020.12.022_b0010 article-title: Volatility forecasting from multiscale and high-dimensional market data publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00381-3 – volume: 21 start-page: 4309 issue: 15 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0160 article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system publication-title: Soft Comput. doi: 10.1007/s00500-016-2063-8 – volume: 17 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0035 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2012.2196800 – start-page: 1239 year: 2004 ident: 10.1016/j.neucom.2020.12.022_b0120 article-title: Comparing discrete and continuous genotypes on the constrained portfolio selection problem – volume: 267 start-page: 281 issue: 1-2 year: 2018 ident: 10.1016/j.neucom.2020.12.022_b0060 article-title: A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem publication-title: Ann. Oper. Res. doi: 10.1007/s10479-016-2377-z – volume: 231 start-page: 19 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0015 article-title: A fuzzy weighted average approach for selecting portfolio of new product development projects publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.104 – volume: 103 start-page: 172 year: 2013 ident: 10.1016/j.neucom.2020.12.022_b0215 article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.019 – volume: 8 start-page: 143 issue: 2 year: 2016 ident: 10.1016/j.neucom.2020.12.022_b0210 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cognitive Comput. doi: 10.1007/s12559-016-9396-6 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.neucom.2020.12.022_b0275 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.neucom.2020.12.022_b0285 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: 10.1016/j.neucom.2020.12.022_b0170 doi: 10.1109/TITS.2020.2994779 – volume: 21 start-page: 408 issue: 3 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0260 article-title: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms publication-title: IEEE. Trans. Evol. Comput. – volume: 8 start-page: 157 issue: 1-2 year: 2011 ident: 10.1016/j.neucom.2020.12.022_b0070 article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization publication-title: Comput. Manage. Sci. doi: 10.1007/s10287-009-0107-6 – ident: 10.1016/j.neucom.2020.12.022_b0125 doi: 10.1007/978-3-540-28651-6_117 – volume: 27 start-page: 1052 issue: 5 year: 2019 ident: 10.1016/j.neucom.2020.12.022_b0165 article-title: Cooperative artificial bee colony algorithm with multiple populations for interval multiobjective optimization problems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2872125 – volume: 13 start-page: 1030 issue: 5 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0130 article-title: Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2009.2014360 – volume: 13 start-page: 1075 issue: 5 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0300 article-title: On the complexity of computing the hypervolume indicator publication-title: IEEE. Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2015575 – volume: 385 start-page: 100 year: 2020 ident: 10.1016/j.neucom.2020.12.022_b0330 article-title: Deep learning based software defect prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.067 – volume: 5 start-page: 92 issue: 2 year: 2010 ident: 10.1016/j.neucom.2020.12.022_b0030 article-title: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.936308 – volume: 16 start-page: 83 issue: 1 year: 2006 ident: 10.1016/j.neucom.2020.12.022_b0245 article-title: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection publication-title: Math. Financ. doi: 10.1111/j.1467-9965.2006.00262.x – volume: 98 start-page: 90 year: 2012 ident: 10.1016/j.neucom.2020.12.022_b0230 article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.048 – ident: 10.1016/j.neucom.2020.12.022_b0290 – ident: 10.1016/j.neucom.2020.12.022_b0085 doi: 10.1109/CINC.2009.161 – volume: 27 start-page: 1271 issue: 11 year: 2000 ident: 10.1016/j.neucom.2020.12.022_b0110 article-title: Heuristics for cardinality constrained portfolio optimization publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(99)00074-X – ident: 10.1016/j.neucom.2020.12.022_b0190 doi: 10.1109/ICNN.1995.488968 – volume: 43 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.neucom.2020.12.022_b0250 article-title: Algorithm for cardinality-constrained quadratic optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9126-9 – volume: 264 start-page: 20 year: 2017 ident: 10.1016/j.neucom.2020.12.022_b0025 article-title: Stock portfolio selection using learning-to-rank algorithms with news sentiment publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.097 |
| SSID | ssj0017129 |
| Score | 2.5408645 |
| Snippet | With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Cardinality constrained Multiple populations co-evolutionary Particle swarm optimization Portfolio optimization problem |
| Title | Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.12.022 |
| Volume | 430 |
| WOSCitedRecordID | wos000617365300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3qjlpT1wixb5mbWPESoEBBUSBUW9WPtUHSV2lFf7H_p7-v-Yfdh1UlTogYtlrbLjx3zZmR1_M4PQuyjRQlI-IKkWEUl4LkmuswHRMTXdowdc2GLPv77S4-NsPM6_93pXTS7MZkqrKru4yOf_VdUwBso2qbN3UHcrFAbgHJQOR1A7HP9J8d8aiuC87c217IuaqI2_rOHJzf3E_vKcLWb9GhaOmc_ItMRDyzMkNZ-49dAUsJal99mFcSlNZwnwVY33rutpWW-L8G1qup6vrQIibA8JH50YzkyRBmkQ2UYjTs-Yjd2Oam9RLfPALY2nMEY-XaPZxLrt-FlJRuuyNR3nnmX8g826MY3IkrpconQTnIxSAp7n1jqd-A84bqV1Bd-9zXa9R25YAxeYmLyv1NpQg-BKgY39ukzo7eLbO0axpSo2LLhJ4aQURkoRRgVIuYf2I5rmYA_2h5-Pxl_az1c0jFyRR_8YTc6mJRbevJs_-0QdP-fkMXroNyh46PDxBPVU9RQ9app_YG8LnqHLBme4gzO8gzPc4AxbnOEuSDDgDO_gDHdwhjs4wy3OtkV4nD1HPz8enXwYEd_ZgwjYoq6IjCVNJeOSw7timeIxE2nA4NyQmAaB0lwFytQmyiTXeaBzqsMwZmEQc9jRB_ELtFfVlTowNQeiIM2CnKUsSSLBuBaUKZkqyoRUiT5EcfNuC-HL3pt7nxa3afYQkXbW3JV9-cvvaaO2wruuziUtAIu3znx5xyu9Qg-u_zGv0d5qsVZv0H2xWZXLxVsPxN-IWcmP |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+populations+co-evolutionary+particle+swarm+optimization+for+multi-objective+cardinality+constrained+portfolio+optimization+problem&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhao%2C+Hong&rft.au=Chen%2C+Zong-Gan&rft.au=Zhan%2C+Zhi-Hui&rft.au=Kwong%2C+Sam&rft.date=2021-03-21&rft.issn=0925-2312&rft.volume=430&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_12_022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |