Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem

With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 430; s. 58 - 70
Hlavní autoři: Zhao, Hong, Chen, Zong-Gan, Zhan, Zhi-Hui, Kwong, Sam, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 21.03.2021
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP.
AbstractList With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP.
Author Zhan, Zhi-Hui
Chen, Zong-Gan
Kwong, Sam
Zhang, Jun
Zhao, Hong
Author_xml – sequence: 1
  givenname: Hong
  surname: Zhao
  fullname: Zhao, Hong
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China
– sequence: 2
  givenname: Zong-Gan
  surname: Chen
  fullname: Chen, Zong-Gan
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China
– sequence: 3
  givenname: Zhi-Hui
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 51006, China
– sequence: 4
  givenname: Sam
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: Victoria University, Melbourne, VIC 8001, Australia
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6SMnaZNWCChipdUxAbWlmOPJVdOHNluUfkFfhqnZQMLWPmhuWd07oSMOtchIZcUZhTo4moz63ArXTtjwNIXmwFjJ2RMqyXLK1YtRmQMNStzVlB2RiYhbADokrJ6TD6ftzaa3mLWu35rRTSuC5l0Oe6c3Q4v4fdZL3w0Mg2Fd-HbzPXRtObjMJxp57N2gOSu2aCMZoeZFF6ZTlgT94nVheiF6VClHT5qZ437iei9ayy25-RUCxvw4vuckrf7u9fVY75-eXha3a5zWcAi5qpQy1KJRjVJQlTYFEKWINJda5QLQN0gIEAJlWp0DbpeakoLQaFo5nUJxZTMj1zpXQgeNe-9aZMnp8CHQvmGHwvlQ6GcMp4KTbHrXzFp4kFg0LP_hW-OYUxiO4OeB2mwk6iMT6Vx5czfgC-Mr52B
CitedBy_id crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1007_s10489_023_04822_y
crossref_primary_10_1016_j_engappai_2023_106389
crossref_primary_10_1016_j_eswa_2024_124226
crossref_primary_10_1007_s00500_023_08177_x
crossref_primary_10_3390_math11214406
crossref_primary_10_1016_j_eswa_2023_119970
crossref_primary_10_1016_j_neucom_2021_12_069
crossref_primary_10_1145_3734865
crossref_primary_10_1007_s10489_022_04240_6
crossref_primary_10_1109_TII_2022_3213719
crossref_primary_10_1016_j_eswa_2023_120742
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_eswa_2023_120388
crossref_primary_10_1007_s41060_025_00788_x
crossref_primary_10_1016_j_neucom_2024_129296
crossref_primary_10_1109_TEVC_2021_3097339
crossref_primary_10_1155_2022_4241049
crossref_primary_10_1016_j_cie_2023_109450
crossref_primary_10_1155_2022_7957097
crossref_primary_10_1038_s41598_024_71193_w
crossref_primary_10_1016_j_swevo_2025_102162
crossref_primary_10_3390_math12243946
crossref_primary_10_3390_math13162629
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1007_s40747_022_00870_y
crossref_primary_10_1007_s10489_022_03820_w
crossref_primary_10_1155_2022_4105105
crossref_primary_10_1007_s10614_025_10985_2
crossref_primary_10_3390_a17090416
crossref_primary_10_1007_s10614_025_10908_1
crossref_primary_10_1016_j_asoc_2023_110101
crossref_primary_10_1016_j_neucom_2023_126892
crossref_primary_10_1016_j_asoc_2023_110587
crossref_primary_10_1016_j_eswa_2023_120656
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_asoc_2023_110589
crossref_primary_10_1016_j_swevo_2024_101627
crossref_primary_10_1038_s41598_025_04568_2
crossref_primary_10_1186_s40537_025_01140_7
crossref_primary_10_1016_j_cie_2025_111159
crossref_primary_10_22395_seec_v25n58a3
crossref_primary_10_3390_math12111694
crossref_primary_10_1016_j_ins_2024_121665
crossref_primary_10_1109_TCYB_2021_3088884
crossref_primary_10_1007_s40747_022_00860_0
crossref_primary_10_1016_j_neucom_2022_09_120
crossref_primary_10_3390_electronics12030491
Cites_doi 10.1016/j.asoc.2018.08.020
10.1007/978-3-319-40663-3_69
10.1109/TKDE.2016.2545660
10.1155/2017/4197914
10.1016/j.swevo.2011.02.002
10.1109/CEC.2018.8477732
10.1007/s10489-012-0405-5
10.1016/j.nonrwa.2008.04.023
10.1109/CEC.2014.6900357
10.12785/amis/080619
10.1016/j.neucom.2003.05.001
10.1109/TSMCB.2012.2209115
10.1109/TNNLS.2019.2957105
10.1109/CEC.2006.1688603
10.1109/TEVC.2014.2301794
10.1109/TFUZZ.2016.2543753
10.1109/TEVC.2018.2875430
10.1109/TSP.2015.2474298
10.1016/j.asoc.2014.08.026
10.1109/TEVC.2020.3004012
10.1109/4235.797969
10.1109/TCYB.2018.2832640
10.1016/j.neucom.2018.09.001
10.1016/j.neucom.2008.08.019
10.1109/TEVC.2013.2281396
10.1109/CEC.2005.1554852
10.1109/TSP.2013.2277839
10.1016/j.neucom.2019.01.006
10.1007/s10489-017-0898-z
10.1109/TFUZZ.2018.2842752
10.1016/j.neucom.2013.01.011
10.1109/TIE.2014.2314075
10.1016/j.neucom.2006.10.005
10.1109/TNNLS.2018.2846646
10.1016/j.neucom.2020.04.004
10.1109/TSMCB.2012.2198812
10.1109/TSMCB.2009.2015956
10.1016/S0925-2312(03)00381-3
10.1007/s00500-016-2063-8
10.1109/TEVC.2012.2196800
10.1007/s10479-016-2377-z
10.1016/j.neucom.2016.05.104
10.1016/j.neucom.2012.09.019
10.1007/s12559-016-9396-6
10.1109/4235.996017
10.1109/TEVC.2007.892759
10.1109/TITS.2020.2994779
10.1007/s10287-009-0107-6
10.1007/978-3-540-28651-6_117
10.1109/TFUZZ.2018.2872125
10.1109/TEVC.2009.2014360
10.1109/TEVC.2009.2015575
10.1016/j.neucom.2019.11.067
10.1109/MCI.2010.936308
10.1111/j.1467-9965.2006.00262.x
10.1016/j.neucom.2011.05.048
10.1109/CINC.2009.161
10.1016/S0305-0548(99)00074-X
10.1109/ICNN.1995.488968
10.1007/s10589-007-9126-9
10.1016/j.neucom.2017.02.097
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.12.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 70
ExternalDocumentID 10_1016_j_neucom_2020_12_022
S0925231220319226
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-d3d75dabdb017a8eb3ac50a17affec60efbe0e00508dbf90f97f113a103b49503
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617365300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:49:46 EST 2025
Sat Nov 29 07:16:25 EST 2025
Fri Feb 23 02:48:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple populations co-evolutionary
Cardinality constrained
Particle swarm optimization
Portfolio optimization problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-d3d75dabdb017a8eb3ac50a17affec60efbe0e00508dbf90f97f113a103b49503
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_12_022
crossref_citationtrail_10_1016_j_neucom_2020_12_022
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_022
PublicationCentury 2000
PublicationDate 2021-03-21
PublicationDateYYYYMMDD 2021-03-21
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-21
  day: 21
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Sun, Wang (b0245) 2006; 16
Zeng, Wang, Zhang (b0210) 2016; 8
Metawa, Elhoseny, Hassan, Hassanien (b0135) 2016
Gavrishchaka, Ganguli (b0010) 2003; 55
Wang, Sheng, Ye, Lin, Mao, Chen, Sheng (b0265) 2019; 334
Qiao, Li, Umer, Guo (b0330) 2020; 385
J. Fieldsend, J. Matatko, M. Peng, Cardinality constrained portfolio optimization, in: Processings of Int. Conf. Intell. Data Eng. Automat. Learning, 2004, pp. 788-793.
Liu, Chen, Deb, Goodman (b0260) 2017; 21
Streichert, Ulmer, Zell (b0120) 2004
Weng, Sun, Xia, Liu, Xu (b0335) 2020; 402
Liang, Chen, He, Chen (b0020) 2013; 115
Shen, Zhan, Chen, Gong, Zhang, Li (b0200) 2014; 61
Deb, Pratap, Agarwal, Meyarivan (b0275) 2002; 6
Bertsimas, Shioda (b0250) 2009; 43
J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Processings of IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948.
Thawornwong, Enke (b0050) 2004; 56
Derrac, García, Molina, Herrera (b0310) 2011; 1
Chang, Meade, Beasley, Sharaiha (b0110) 2000; 27
B. Wang, Y. Li, S. Wang, J. Watada, A multi-objective portfolio selection model with fuzzy value-at-risk ratio, IEEE Trans. Fuzzy Syst., 26(6) (2018) 3673-3687.
Beume, Fonseca, Lopez-lbanez, Paquete, Vahrenhold (b0300) 2009; 13
Ponsich, Jaimes, Coello (b0035) 2013; 17
Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Processings of IEEE World Congr. Comput. Intell., 1998, pp. 69-73.
Liagkouras, Metaxiotis (b0060) 2018; 267
Chen, Yang, Abraham (b0045) 2007; 70
Tuba, Bacanin (b0105) 2014; 8
Krink, Paterlini (b0070) 2011; 8
.
Sheng, Chen, Sheng, Xiao, Mao, Zheng (b0270) 2016; 20
I. Strumberger, E. Tuba, N. Bacanin, M. Beko, M. Tuba, Hybridized artificial bee colony algorithm for constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2018, pp. 1-8.
Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., DOI: 10.1109/TEVC.2020.3004012.
Gao, Zhou, Wang, Cheng, Yachi, Wang (b0325) 2019; 30
Zhou S.Z., Zhan Z.H., Chen Z.G., Kwong S., Zhang J., A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Trans. Intell. Transport. Syst.
Zheng, Ling, Xue, Chen (b0220) 2014; 18
Liu, Dang, Huang (b0095) 2013; 43
Zitzler, Laumanns, Thiele (b0280) 2002
Cura (b0255) 2009; 10
R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suarez, Selection of optimal investment portfolio with cardinality constraints, in: Processings of IEEE Inte. Conf. on Evol. Comput., 2006, pp. 2382-2388.
Lwin, Qu, Kendall (b0065) 2014; 24
Qu, Zhou, Xiao, Liang, Suganthan (b0140) 2017; 2017
Zhou, Li, Pedrycz (b0235) 2016; 24
Zhang, Li (b0285) 2007; 11
Zhan, Li, Cao, Zhang (b0155) 2013; 43
Yu, Hu, Tang (b0040) 2016; 28
Yao, Ding, Jin, Hao (b0160) 2017; 21
Chen, Zhan, Lin, Gong, Gu, Zhao, Yuan, Chen, Li, Zhang (b0175) 2019; 49
Freitas, De Souza, de Almeida (b0320) 2009; 72
Liu, Zhan, Gao, Zhang, Kwong, Zhang (b0295) 2019; 23
J. Gao, Z. Chu, An improved particle swarm optimization for the constrained portfolio selection problem, in: Processings of Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 518-522.
Zhang, Wang, Zhang, Zhang, Sun, Zhang, Chipecane, Yao (b0165) 2019; 27
Zitzler, Thiele (b0305) 1999; 3
Vijayalakshmi Pai, Michel (b0130) 2009; 13
Chen, Lin, Zeng, Xu, Zhang (b0145) 2017; 47
Markowitz (b0005) 1952; 7
Relich, Pawlewski (b0015) 2017; 231
Yang, Couillet, McKay (b0100) 2015; 63
Song, Liu, Yang (b0025) 2017; 264
Z. G. Chen, Z. H. Zhan, W. Shi, W. N. Chen, J. Zhang, When neural network computation meets evolutionary computation: A survey, in Proc. International Symposium on Neural Networks, 2016, pp. 603-612.
Ruiz-Torrubiano, Suarez (b0030) 2010; 5
Zeng, Qiu, Wang (b0205) 2018; 320
T. Cui, S. Cheng, R. Bai, A combinatorial algorithm for the cardinality constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2014, pp. 491-498.
Yang, Rubio, Scutari, Palomar (b0115) 2013; 61
Niu, Fan, Xiao, Xue (b0230) 2012; 98
R. Armananzas, J. A. Lozano, A multiobjective approach to the portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput, 2005, pp. 1388-1395.
Liang, Wang, Lin, Chen, Chen, Ming (b0185) 2018; 73
M. Leung, J. Wang, Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2019.2957105.
Zhang, Gong, Zhang (b0215) 2013; 103
Zhan, Zhang, Li, Chung (b0195) 2009; 39
Chen, Zeng, Lin, Zhang (b0150) 2015; 19
Zheng, Chen (b0225) 2013; 39
Zhou (10.1016/j.neucom.2020.12.022_b0235) 2016; 24
Krink (10.1016/j.neucom.2020.12.022_b0070) 2011; 8
Zitzler (10.1016/j.neucom.2020.12.022_b0280) 2002
Gavrishchaka (10.1016/j.neucom.2020.12.022_b0010) 2003; 55
10.1016/j.neucom.2020.12.022_b0180
Zeng (10.1016/j.neucom.2020.12.022_b0210) 2016; 8
Chen (10.1016/j.neucom.2020.12.022_b0045) 2007; 70
Zheng (10.1016/j.neucom.2020.12.022_b0220) 2014; 18
Liang (10.1016/j.neucom.2020.12.022_b0185) 2018; 73
10.1016/j.neucom.2020.12.022_b0340
Wang (10.1016/j.neucom.2020.12.022_b0265) 2019; 334
Song (10.1016/j.neucom.2020.12.022_b0025) 2017; 264
Zhang (10.1016/j.neucom.2020.12.022_b0215) 2013; 103
Zhang (10.1016/j.neucom.2020.12.022_b0285) 2007; 11
Yang (10.1016/j.neucom.2020.12.022_b0100) 2015; 63
Zeng (10.1016/j.neucom.2020.12.022_b0205) 2018; 320
Metawa (10.1016/j.neucom.2020.12.022_b0135) 2016
Bertsimas (10.1016/j.neucom.2020.12.022_b0250) 2009; 43
Liu (10.1016/j.neucom.2020.12.022_b0260) 2017; 21
10.1016/j.neucom.2020.12.022_b0190
Ruiz-Torrubiano (10.1016/j.neucom.2020.12.022_b0030) 2010; 5
Zhan (10.1016/j.neucom.2020.12.022_b0195) 2009; 39
Niu (10.1016/j.neucom.2020.12.022_b0230) 2012; 98
Liang (10.1016/j.neucom.2020.12.022_b0020) 2013; 115
Liagkouras (10.1016/j.neucom.2020.12.022_b0060) 2018; 267
10.1016/j.neucom.2020.12.022_b0075
Relich (10.1016/j.neucom.2020.12.022_b0015) 2017; 231
Ponsich (10.1016/j.neucom.2020.12.022_b0035) 2013; 17
Markowitz (10.1016/j.neucom.2020.12.022_b0005) 1952; 7
Chen (10.1016/j.neucom.2020.12.022_b0175) 2019; 49
10.1016/j.neucom.2020.12.022_b0315
Zhang (10.1016/j.neucom.2020.12.022_b0165) 2019; 27
Qu (10.1016/j.neucom.2020.12.022_b0140) 2017; 2017
Yu (10.1016/j.neucom.2020.12.022_b0040) 2016; 28
Liu (10.1016/j.neucom.2020.12.022_b0295) 2019; 23
10.1016/j.neucom.2020.12.022_b0080
Vijayalakshmi Pai (10.1016/j.neucom.2020.12.022_b0130) 2009; 13
Li (10.1016/j.neucom.2020.12.022_b0245) 2006; 16
10.1016/j.neucom.2020.12.022_b0085
Zitzler (10.1016/j.neucom.2020.12.022_b0305) 1999; 3
10.1016/j.neucom.2020.12.022_b0240
Chen (10.1016/j.neucom.2020.12.022_b0150) 2015; 19
Shen (10.1016/j.neucom.2020.12.022_b0200) 2014; 61
10.1016/j.neucom.2020.12.022_b0125
Liu (10.1016/j.neucom.2020.12.022_b0095) 2013; 43
Zhan (10.1016/j.neucom.2020.12.022_b0155) 2013; 43
Freitas (10.1016/j.neucom.2020.12.022_b0320) 2009; 72
Tuba (10.1016/j.neucom.2020.12.022_b0105) 2014; 8
Zheng (10.1016/j.neucom.2020.12.022_b0225) 2013; 39
Beume (10.1016/j.neucom.2020.12.022_b0300) 2009; 13
Cura (10.1016/j.neucom.2020.12.022_b0255) 2009; 10
10.1016/j.neucom.2020.12.022_b0090
Chen (10.1016/j.neucom.2020.12.022_b0145) 2017; 47
Yao (10.1016/j.neucom.2020.12.022_b0160) 2017; 21
10.1016/j.neucom.2020.12.022_b0290
10.1016/j.neucom.2020.12.022_b0170
Yang (10.1016/j.neucom.2020.12.022_b0115) 2013; 61
Streichert (10.1016/j.neucom.2020.12.022_b0120) 2004
10.1016/j.neucom.2020.12.022_b0055
Qiao (10.1016/j.neucom.2020.12.022_b0330) 2020; 385
Lwin (10.1016/j.neucom.2020.12.022_b0065) 2014; 24
Chang (10.1016/j.neucom.2020.12.022_b0110) 2000; 27
Weng (10.1016/j.neucom.2020.12.022_b0335) 2020; 402
Thawornwong (10.1016/j.neucom.2020.12.022_b0050) 2004; 56
Deb (10.1016/j.neucom.2020.12.022_b0275) 2002; 6
Gao (10.1016/j.neucom.2020.12.022_b0325) 2019; 30
Derrac (10.1016/j.neucom.2020.12.022_b0310) 2011; 1
Sheng (10.1016/j.neucom.2020.12.022_b0270) 2016; 20
References_xml – volume: 30
  start-page: 601
  year: 2019
  end-page: 614
  ident: b0325
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 27
  start-page: 1052
  year: 2019
  end-page: 1065
  ident: b0165
  article-title: Cooperative artificial bee colony algorithm with multiple populations for interval multiobjective optimization problems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 13
  start-page: 1075
  year: 2009
  end-page: 1082
  ident: b0300
  article-title: On the complexity of computing the hypervolume indicator
  publication-title: IEEE. Trans. Evol. Comput.
– volume: 43
  start-page: 14
  year: 2013
  end-page: 23
  ident: b0095
  article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion
  publication-title: IEEE Trans. Cybern
– volume: 402
  start-page: 171
  year: 2020
  end-page: 182
  ident: b0335
  article-title: Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism
  publication-title: Neurocomputing
– volume: 49
  start-page: 2912
  year: 2019
  end-page: 2926
  ident: b0175
  article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach
  publication-title: IEEE Trans. Cybern.
– volume: 115
  start-page: 142
  year: 2013
  end-page: 149
  ident: b0020
  article-title: Associating stock prices with web financial information time series based on support vector regression
  publication-title: Neurocomputing
– reference: Zhou S.Z., Zhan Z.H., Chen Z.G., Kwong S., Zhang J., A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Trans. Intell. Transport. Syst.,
– volume: 61
  start-page: 7141
  year: 2014
  end-page: 7151
  ident: b0200
  article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 5
  start-page: 92
  year: 2010
  end-page: 107
  ident: b0030
  article-title: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints
  publication-title: IEEE Comput. Intell. Mag.
– reference: J. Fieldsend, J. Matatko, M. Peng, Cardinality constrained portfolio optimization, in: Processings of Int. Conf. Intell. Data Eng. Automat. Learning, 2004, pp. 788-793.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0310
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– start-page: 1239
  year: 2004
  end-page: 1250
  ident: b0120
  article-title: Comparing discrete and continuous genotypes on the constrained portfolio selection problem
  publication-title: Processings of Genetic Evol. Comput. Conf.
– volume: 61
  start-page: 5590
  year: 2013
  end-page: 5602
  ident: b0115
  article-title: Multi-portfolio optimization: A potential game approach
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 50
  year: 2015
  end-page: 73
  ident: b0150
  article-title: A new local search-based multiobjective optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., DOI: 10.1109/TEVC.2020.3004012.
– volume: 10
  start-page: 2396
  year: 2009
  end-page: 2406
  ident: b0255
  article-title: Particle swarm optimization approach to portfolio optimization
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 24
  start-page: 757
  year: 2014
  end-page: 772
  ident: b0065
  article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
  publication-title: Appl. Soft. Comput.
– volume: 28
  start-page: 1891
  year: 2016
  end-page: 1904
  ident: b0040
  article-title: Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algorithm
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Processings of IEEE World Congr. Comput. Intell., 1998, pp. 69-73.
– reference: I. Strumberger, E. Tuba, N. Bacanin, M. Beko, M. Tuba, Hybridized artificial bee colony algorithm for constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2018, pp. 1-8.
– volume: 70
  start-page: 697
  year: 2007
  end-page: 703
  ident: b0045
  article-title: Flexible neural trees ensemble for stock index modeling
  publication-title: Neurocomputing
– volume: 63
  start-page: 6684
  year: 2015
  end-page: 6697
  ident: b0100
  article-title: A robust statistics approach to minimum variance portfolio optimization
  publication-title: IEEE Trans. Signal Process
– volume: 320
  start-page: 195
  year: 2018
  end-page: 202
  ident: b0205
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
– volume: 72
  start-page: 2155
  year: 2009
  end-page: 2170
  ident: b0320
  article-title: Prediction-based portfolio optimization model using neural networks
  publication-title: Neurocomputing
– volume: 8
  start-page: 143
  year: 2016
  end-page: 152
  ident: b0210
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognitive Comput.
– volume: 39
  start-page: 202
  year: 2013
  end-page: 216
  ident: b0225
  article-title: Cooperative particle swarm optimization for multiobjective transportation planning
  publication-title: Appl. Intell.
– volume: 264
  start-page: 20
  year: 2017
  end-page: 28
  ident: b0025
  article-title: Stock portfolio selection using learning-to-rank algorithms with news sentiment
  publication-title: Neurocomputing
– volume: 17
  start-page: 321
  year: 2013
  end-page: 344
  ident: b0035
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Computat.
– volume: 23
  start-page: 587
  year: 2019
  end-page: 602
  ident: b0295
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 2831
  year: 2014
  end-page: 2844
  ident: b0105
  article-title: Artificial bee colony algorithm with firefly algorithm for cardinality constrained mean-variance portfolio selection problem
  publication-title: Appl. Math. Inf. Sci.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0285
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 1271
  year: 2000
  end-page: 1302
  ident: b0110
  article-title: Heuristics for cardinality constrained portfolio optimization
  publication-title: Comput. Oper. Res
– volume: 43
  start-page: 1
  year: 2009
  end-page: 22
  ident: b0250
  article-title: Algorithm for cardinality-constrained quadratic optimization
  publication-title: Comput. Optim. Appl.
– reference: R. Armananzas, J. A. Lozano, A multiobjective approach to the portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput, 2005, pp. 1388-1395.
– volume: 8
  start-page: 157
  year: 2011
  end-page: 179
  ident: b0070
  article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization
  publication-title: Comput. Manage. Sci.
– volume: 334
  start-page: 79
  year: 2019
  end-page: 88
  ident: b0265
  article-title: A multilevel sampling strategy based memetic differential evolution for multimodal optimization
  publication-title: Neurocomputing
– start-page: 95
  year: 2002
  end-page: 100
  ident: b0280
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
  publication-title: Proceedings of the International Conference on Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems
– volume: 55
  start-page: 285
  year: 2003
  end-page: 305
  ident: b0010
  article-title: Volatility forecasting from multiscale and high-dimensional market data
  publication-title: Neurocomputing
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: b0195
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst., Man, Cybern. B
– reference: M. Leung, J. Wang, Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2019.2957105.
– reference: J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Processings of IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948.
– volume: 103
  start-page: 172
  year: 2013
  end-page: 185
  ident: b0215
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
– volume: 98
  start-page: 90
  year: 2012
  end-page: 100
  ident: b0230
  article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk
  publication-title: Neurocomputing
– reference: J. Gao, Z. Chu, An improved particle swarm optimization for the constrained portfolio selection problem, in: Processings of Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 518-522.
– reference: Z. G. Chen, Z. H. Zhan, W. Shi, W. N. Chen, J. Zhang, When neural network computation meets evolutionary computation: A survey, in Proc. International Symposium on Neural Networks, 2016, pp. 603-612.
– volume: 21
  start-page: 408
  year: 2017
  end-page: 425
  ident: b0260
  article-title: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms
  publication-title: IEEE. Trans. Evol. Comput.
– volume: 56
  start-page: 205
  year: 2004
  end-page: 232
  ident: b0050
  article-title: The adaptive selection of financial and economic variables for use with artificial neural networks
  publication-title: Neurocomputing
– volume: 16
  start-page: 83
  year: 2006
  end-page: 101
  ident: b0245
  article-title: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection
  publication-title: Math. Financ.
– volume: 13
  start-page: 1030
  year: 2009
  end-page: 1053
  ident: b0130
  article-title: Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios
  publication-title: IEEE Trans. Evol. Computat.
– volume: 231
  start-page: 19
  year: 2017
  end-page: 27
  ident: b0015
  article-title: A fuzzy weighted average approach for selecting portfolio of new product development projects
  publication-title: Neurocomputing
– volume: 267
  start-page: 281
  year: 2018
  end-page: 319
  ident: b0060
  article-title: A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem
  publication-title: Ann. Oper. Res.
– volume: 24
  start-page: 1627
  year: 2016
  end-page: 1636
  ident: b0235
  article-title: Mean-semi-entropy models of fuzzy portfolio selection
  publication-title: IEEE Trans. Fuzzy Syst
– volume: 47
  start-page: 505
  year: 2017
  end-page: 525
  ident: b0145
  article-title: The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm
  publication-title: Appl. Intell.
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: b0155
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– reference: R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suarez, Selection of optimal investment portfolio with cardinality constraints, in: Processings of IEEE Inte. Conf. on Evol. Comput., 2006, pp. 2382-2388.
– reference: .
– volume: 21
  start-page: 4309
  year: 2017
  end-page: 4322
  ident: b0160
  article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system
  publication-title: Soft Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0275
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: T. Cui, S. Cheng, R. Bai, A combinatorial algorithm for the cardinality constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2014, pp. 491-498.
– start-page: 59
  year: 2016
  end-page: 64
  ident: b0135
  article-title: Loan portfolio optimization using genetic algorithm: A case of credit constraints
  publication-title: Int. Comput. Eng. Conf.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0305
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 385
  start-page: 100
  year: 2020
  end-page: 110
  ident: b0330
  article-title: Deep learning based software defect prediction
  publication-title: Neurocomputing
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0140
  article-title: Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods
  publication-title: Math. Probl. Eng.
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: b0005
  article-title: Portfolio selection
  publication-title: J. Finance
– volume: 18
  start-page: 70
  year: 2014
  end-page: 81
  ident: b0220
  article-title: Population classification in fire evacuation: A multiobjective particle swarm optimization approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 838
  year: 2016
  end-page: 858
  ident: b0270
  article-title: Adaptive multi-subpopulation competition and multi-niche crowding based memetic algorithm for automatic data clustering
  publication-title: IEEE. Trans. Evol. Comput.
– volume: 73
  start-page: 50
  year: 2018
  end-page: 66
  ident: b0185
  article-title: A novel multi-objective co-evolutionary algorithm based on decomposition approach
  publication-title: Appl. Soft. Comput.
– reference: B. Wang, Y. Li, S. Wang, J. Watada, A multi-objective portfolio selection model with fuzzy value-at-risk ratio, IEEE Trans. Fuzzy Syst., 26(6) (2018) 3673-3687.
– volume: 73
  start-page: 50
  year: 2018
  ident: 10.1016/j.neucom.2020.12.022_b0185
  article-title: A novel multi-objective co-evolutionary algorithm based on decomposition approach
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.08.020
– ident: 10.1016/j.neucom.2020.12.022_b0340
  doi: 10.1007/978-3-319-40663-3_69
– volume: 28
  start-page: 1891
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2020.12.022_b0040
  article-title: Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algorithm
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2545660
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0140
  article-title: Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/4197914
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2020.12.022_b0310
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.neucom.2020.12.022_b0075
  doi: 10.1109/CEC.2018.8477732
– volume: 39
  start-page: 202
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0225
  article-title: Cooperative particle swarm optimization for multiobjective transportation planning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-012-0405-5
– volume: 10
  start-page: 2396
  issue: 4
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0255
  article-title: Particle swarm optimization approach to portfolio optimization
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2008.04.023
– ident: 10.1016/j.neucom.2020.12.022_b0080
  doi: 10.1109/CEC.2014.6900357
– volume: 8
  start-page: 2831
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2020.12.022_b0105
  article-title: Artificial bee colony algorithm with firefly algorithm for cardinality constrained mean-variance portfolio selection problem
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/080619
– volume: 56
  start-page: 205
  year: 2004
  ident: 10.1016/j.neucom.2020.12.022_b0050
  article-title: The adaptive selection of financial and economic variables for use with artificial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.05.001
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0155
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2209115
– ident: 10.1016/j.neucom.2020.12.022_b0315
  doi: 10.1109/TNNLS.2019.2957105
– ident: 10.1016/j.neucom.2020.12.022_b0055
  doi: 10.1109/CEC.2006.1688603
– volume: 19
  start-page: 50
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2020.12.022_b0150
  article-title: A new local search-based multiobjective optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2301794
– volume: 24
  start-page: 1627
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2020.12.022_b0235
  article-title: Mean-semi-entropy models of fuzzy portfolio selection
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2543753
– volume: 23
  start-page: 587
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2020.12.022_b0295
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2875430
– volume: 63
  start-page: 6684
  issue: 24
  year: 2015
  ident: 10.1016/j.neucom.2020.12.022_b0100
  article-title: A robust statistics approach to minimum variance portfolio optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2474298
– start-page: 95
  year: 2002
  ident: 10.1016/j.neucom.2020.12.022_b0280
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
– volume: 24
  start-page: 757
  year: 2014
  ident: 10.1016/j.neucom.2020.12.022_b0065
  article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.08.026
– start-page: 59
  year: 2016
  ident: 10.1016/j.neucom.2020.12.022_b0135
  article-title: Loan portfolio optimization using genetic algorithm: A case of credit constraints
  publication-title: Int. Comput. Eng. Conf.
– ident: 10.1016/j.neucom.2020.12.022_b0180
  doi: 10.1109/TEVC.2020.3004012
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.neucom.2020.12.022_b0305
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 49
  start-page: 2912
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2020.12.022_b0175
  article-title: Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2832640
– volume: 320
  start-page: 195
  year: 2018
  ident: 10.1016/j.neucom.2020.12.022_b0205
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 20
  start-page: 838
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2020.12.022_b0270
  article-title: Adaptive multi-subpopulation competition and multi-niche crowding based memetic algorithm for automatic data clustering
  publication-title: IEEE. Trans. Evol. Comput.
– volume: 72
  start-page: 2155
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0320
  article-title: Prediction-based portfolio optimization model using neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.019
– volume: 18
  start-page: 70
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2020.12.022_b0220
  article-title: Population classification in fire evacuation: A multiobjective particle swarm optimization approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281396
– ident: 10.1016/j.neucom.2020.12.022_b0090
  doi: 10.1109/CEC.2005.1554852
– volume: 61
  start-page: 5590
  issue: 22
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0115
  article-title: Multi-portfolio optimization: A potential game approach
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2277839
– volume: 334
  start-page: 79
  year: 2019
  ident: 10.1016/j.neucom.2020.12.022_b0265
  article-title: A multilevel sampling strategy based memetic differential evolution for multimodal optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.006
– volume: 47
  start-page: 505
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0145
  article-title: The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0898-z
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 10.1016/j.neucom.2020.12.022_b0005
  article-title: Portfolio selection
  publication-title: J. Finance
– ident: 10.1016/j.neucom.2020.12.022_b0240
  doi: 10.1109/TFUZZ.2018.2842752
– volume: 115
  start-page: 142
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0020
  article-title: Associating stock prices with web financial information time series based on support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.011
– volume: 61
  start-page: 7141
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2020.12.022_b0200
  article-title: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2314075
– volume: 70
  start-page: 697
  issue: 4-6
  year: 2007
  ident: 10.1016/j.neucom.2020.12.022_b0045
  article-title: Flexible neural trees ensemble for stock index modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.005
– volume: 30
  start-page: 601
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2020.12.022_b0325
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2846646
– volume: 402
  start-page: 171
  year: 2020
  ident: 10.1016/j.neucom.2020.12.022_b0335
  article-title: Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.004
– volume: 43
  start-page: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0095
  article-title: A one-layer recurrent neural network for real-time portfolio optimization with probability criterion
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2198812
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0195
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst., Man, Cybern. B
  doi: 10.1109/TSMCB.2009.2015956
– volume: 55
  start-page: 285
  issue: 1-2
  year: 2003
  ident: 10.1016/j.neucom.2020.12.022_b0010
  article-title: Volatility forecasting from multiscale and high-dimensional market data
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00381-3
– volume: 21
  start-page: 4309
  issue: 15
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0160
  article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2063-8
– volume: 17
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0035
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2012.2196800
– start-page: 1239
  year: 2004
  ident: 10.1016/j.neucom.2020.12.022_b0120
  article-title: Comparing discrete and continuous genotypes on the constrained portfolio selection problem
– volume: 267
  start-page: 281
  issue: 1-2
  year: 2018
  ident: 10.1016/j.neucom.2020.12.022_b0060
  article-title: A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2377-z
– volume: 231
  start-page: 19
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0015
  article-title: A fuzzy weighted average approach for selecting portfolio of new product development projects
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.104
– volume: 103
  start-page: 172
  year: 2013
  ident: 10.1016/j.neucom.2020.12.022_b0215
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.019
– volume: 8
  start-page: 143
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2020.12.022_b0210
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognitive Comput.
  doi: 10.1007/s12559-016-9396-6
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.neucom.2020.12.022_b0275
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.neucom.2020.12.022_b0285
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.neucom.2020.12.022_b0170
  doi: 10.1109/TITS.2020.2994779
– volume: 21
  start-page: 408
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0260
  article-title: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms
  publication-title: IEEE. Trans. Evol. Comput.
– volume: 8
  start-page: 157
  issue: 1-2
  year: 2011
  ident: 10.1016/j.neucom.2020.12.022_b0070
  article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization
  publication-title: Comput. Manage. Sci.
  doi: 10.1007/s10287-009-0107-6
– ident: 10.1016/j.neucom.2020.12.022_b0125
  doi: 10.1007/978-3-540-28651-6_117
– volume: 27
  start-page: 1052
  issue: 5
  year: 2019
  ident: 10.1016/j.neucom.2020.12.022_b0165
  article-title: Cooperative artificial bee colony algorithm with multiple populations for interval multiobjective optimization problems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2872125
– volume: 13
  start-page: 1030
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0130
  article-title: Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2009.2014360
– volume: 13
  start-page: 1075
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0300
  article-title: On the complexity of computing the hypervolume indicator
  publication-title: IEEE. Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2015575
– volume: 385
  start-page: 100
  year: 2020
  ident: 10.1016/j.neucom.2020.12.022_b0330
  article-title: Deep learning based software defect prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.067
– volume: 5
  start-page: 92
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2020.12.022_b0030
  article-title: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.936308
– volume: 16
  start-page: 83
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2020.12.022_b0245
  article-title: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection
  publication-title: Math. Financ.
  doi: 10.1111/j.1467-9965.2006.00262.x
– volume: 98
  start-page: 90
  year: 2012
  ident: 10.1016/j.neucom.2020.12.022_b0230
  article-title: Bacterial foraging based approaches to portfolio optimization with liquidity risk
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.048
– ident: 10.1016/j.neucom.2020.12.022_b0290
– ident: 10.1016/j.neucom.2020.12.022_b0085
  doi: 10.1109/CINC.2009.161
– volume: 27
  start-page: 1271
  issue: 11
  year: 2000
  ident: 10.1016/j.neucom.2020.12.022_b0110
  article-title: Heuristics for cardinality constrained portfolio optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(99)00074-X
– ident: 10.1016/j.neucom.2020.12.022_b0190
  doi: 10.1109/ICNN.1995.488968
– volume: 43
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2020.12.022_b0250
  article-title: Algorithm for cardinality-constrained quadratic optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9126-9
– volume: 264
  start-page: 20
  year: 2017
  ident: 10.1016/j.neucom.2020.12.022_b0025
  article-title: Stock portfolio selection using learning-to-rank algorithms with news sentiment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.097
SSID ssj0017129
Score 2.5408645
Snippet With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Cardinality constrained
Multiple populations co-evolutionary
Particle swarm optimization
Portfolio optimization problem
Title Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
URI https://dx.doi.org/10.1016/j.neucom.2020.12.022
Volume 430
WOSCitedRecordID wos000617365300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3qjlpT1wixb5mbWPESoEBBUSBUW9WPtUHSV2lFf7H_p7-v-Yfdh1UlTogYtlrbLjx3zZmR1_M4PQuyjRQlI-IKkWEUl4LkmuswHRMTXdowdc2GLPv77S4-NsPM6_93pXTS7MZkqrKru4yOf_VdUwBso2qbN3UHcrFAbgHJQOR1A7HP9J8d8aiuC87c217IuaqI2_rOHJzf3E_vKcLWb9GhaOmc_ItMRDyzMkNZ-49dAUsJal99mFcSlNZwnwVY33rutpWW-L8G1qup6vrQIibA8JH50YzkyRBmkQ2UYjTs-Yjd2Oam9RLfPALY2nMEY-XaPZxLrt-FlJRuuyNR3nnmX8g826MY3IkrpconQTnIxSAp7n1jqd-A84bqV1Bd-9zXa9R25YAxeYmLyv1NpQg-BKgY39ukzo7eLbO0axpSo2LLhJ4aQURkoRRgVIuYf2I5rmYA_2h5-Pxl_az1c0jFyRR_8YTc6mJRbevJs_-0QdP-fkMXroNyh46PDxBPVU9RQ9app_YG8LnqHLBme4gzO8gzPc4AxbnOEuSDDgDO_gDHdwhjs4wy3OtkV4nD1HPz8enXwYEd_ZgwjYoq6IjCVNJeOSw7timeIxE2nA4NyQmAaB0lwFytQmyiTXeaBzqsMwZmEQc9jRB_ELtFfVlTowNQeiIM2CnKUsSSLBuBaUKZkqyoRUiT5EcfNuC-HL3pt7nxa3afYQkXbW3JV9-cvvaaO2wruuziUtAIu3znx5xyu9Qg-u_zGv0d5qsVZv0H2xWZXLxVsPxN-IWcmP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+populations+co-evolutionary+particle+swarm+optimization+for+multi-objective+cardinality+constrained+portfolio+optimization+problem&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhao%2C+Hong&rft.au=Chen%2C+Zong-Gan&rft.au=Zhan%2C+Zhi-Hui&rft.au=Kwong%2C+Sam&rft.date=2021-03-21&rft.issn=0925-2312&rft.volume=430&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_12_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon