Efficient Approximation Algorithms for Scheduling Coflows With Precedence Constraints in Identical Parallel Networks to Minimize Weighted Completion Time

This article focuses on the problem of coflow scheduling with precedence constraints in identical parallel networks, a well-known <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on services computing Ročník 17; číslo 5; s. 2349 - 2364
Hlavní autor: Chen, Chi-Yeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2024
Témata:
ISSN:1939-1374, 2372-0204
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article focuses on the problem of coflow scheduling with precedence constraints in identical parallel networks, a well-known <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq1-3344481.gif"/> </inline-formula>-hard problem. Coflow is a relatively new network abstraction that characterizes communication patterns in data centers. When considering workload sizes and weights that are dependent on the network topology in the input instances, the proposed algorithm for the flow-level scheduling problem achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">O(\chi)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>χ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq2-3344481.gif"/> </inline-formula> where <inline-formula><tex-math notation="LaTeX">\chi</tex-math> <mml:math><mml:mi>χ</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq3-3344481.gif"/> </inline-formula> is the coflow number of the longest path in the directed acyclic graph (DAG). Additionally, when taking into account topology-dependent workload sizes, the algorithm achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">O(R\chi)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mi>χ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq4-3344481.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">R</tex-math> <mml:math><mml:mi>R</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq5-3344481.gif"/> </inline-formula> represents the ratio of maximum weight to minimum weight. For the coflow-level scheduling problem, the proposed algorithm achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">O(m\chi)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mi>χ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq6-3344481.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">m</tex-math> <mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq7-3344481.gif"/> </inline-formula> is the number of network cores when considering workload sizes and weights that are topology-dependent. Moreover, when considering topology-dependent workload sizes, the algorithm achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">O(Rm\chi)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mi>m</mml:mi><mml:mi>χ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq8-3344481.gif"/> </inline-formula>. In the coflows of multi-stage job scheduling problem, the proposed algorithm achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">O(\chi)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>χ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chen-ieq9-3344481.gif"/> </inline-formula>. Although our theoretical results are based on a limited set of input instances, experimental findings show that the results for general input instances outperform the theoretical results.
ISSN:1939-1374
2372-0204
DOI:10.1109/TSC.2023.3344481