An optimized Q-Learning algorithm for mobile robot local path planning

The Q-Learning algorithm is a reinforcement learning technique widely used in various fields such as path planning, intelligent transportation, penetration testing, among others. It primarily involves the interaction between an agent and its environment, enabling the agent to learn an optimal strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 286; S. 111400
Hauptverfasser: Zhou, Qian, Lian, Yang, Wu, Jiayang, Zhu, Mengyue, Wang, Haiyong, Cao, Jinli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 28.02.2024
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Q-Learning algorithm is a reinforcement learning technique widely used in various fields such as path planning, intelligent transportation, penetration testing, among others. It primarily involves the interaction between an agent and its environment, enabling the agent to learn an optimal strategy that maximizes cumulative rewards. Most non-agent-based path planning algorithms face challenges in exploring completely unknown environments effectively, lacking efficient perception in unfamiliar settings. Additionally, many Q-Learning-based path planning algorithms suffer from slow convergence and susceptibility to getting stuck in local optimal solutions. To address these issues, an optimized version of the Q-Learning algorithm (Optimized Q-Learning, O-QL) is proposed and applied to local path planning of mobile robots. O-QL introduces novel Q-table initialization methods, incorporates a new action-selection policy, and a new reward function, and adapts the Root Mean Square Propagation (RMSprop) method in the learning rate adjustment. This adjustment dynamically tunes the learning rate based on gradient changes to accelerate learning and enhance path planning efficiency. Simulation experiments are carried out in three maze environments with different complexity levels, and the performance of the algorithm in local path planning is evaluated using steps, exploration reward, learning rate change and running time. The experimental results demonstrate that O-QL exhibits improvements across all four metrics compared to existing algorithms.
AbstractList The Q-Learning algorithm is a reinforcement learning technique widely used in various fields such as path planning, intelligent transportation, penetration testing, among others. It primarily involves the interaction between an agent and its environment, enabling the agent to learn an optimal strategy that maximizes cumulative rewards. Most non-agent-based path planning algorithms face challenges in exploring completely unknown environments effectively, lacking efficient perception in unfamiliar settings. Additionally, many Q-Learning-based path planning algorithms suffer from slow convergence and susceptibility to getting stuck in local optimal solutions. To address these issues, an optimized version of the Q-Learning algorithm (Optimized Q-Learning, O-QL) is proposed and applied to local path planning of mobile robots. O-QL introduces novel Q-table initialization methods, incorporates a new action-selection policy, and a new reward function, and adapts the Root Mean Square Propagation (RMSprop) method in the learning rate adjustment. This adjustment dynamically tunes the learning rate based on gradient changes to accelerate learning and enhance path planning efficiency. Simulation experiments are carried out in three maze environments with different complexity levels, and the performance of the algorithm in local path planning is evaluated using steps, exploration reward, learning rate change and running time. The experimental results demonstrate that O-QL exhibits improvements across all four metrics compared to existing algorithms.
ArticleNumber 111400
Author Wu, Jiayang
Zhu, Mengyue
Zhou, Qian
Cao, Jinli
Lian, Yang
Wang, Haiyong
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0001-7888-2419
  surname: Zhou
  fullname: Zhou, Qian
  email: zhouqian@njupt.edu.cn
  organization: School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003, Jiangsu, China
– sequence: 2
  givenname: Yang
  surname: Lian
  fullname: Lian, Yang
  email: 1321048425@njupt.edu.cn
  organization: School of Computer Science, School of Software and School of Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing, 210037, Jiangsu, China
– sequence: 3
  givenname: Jiayang
  surname: Wu
  fullname: Wu, Jiayang
  email: 1223096926@njupt.edu.cn
  organization: School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003, Jiangsu, China
– sequence: 4
  givenname: Mengyue
  surname: Zhu
  fullname: Zhu, Mengyue
  email: 1223096927@njupt.edu.cn
  organization: School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003, Jiangsu, China
– sequence: 5
  givenname: Haiyong
  surname: Wang
  fullname: Wang, Haiyong
  email: why@njupt.edu.cn
  organization: School of Computer Science, School of Software and School of Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing, 210037, Jiangsu, China
– sequence: 6
  givenname: Jinli
  orcidid: 0000-0002-0221-6361
  surname: Cao
  fullname: Cao, Jinli
  email: J.Cao@latrobe.edu.au
  organization: Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIw3aebPhVCKrUJBBF2HTH7a1JlkSIJQn96WceVCV5cD9ztwvhmaOO80QrcEcgKkvDvkH87HY8wpUJYTQhjABZqSuqJZxaCZoCk0BWQVFOQKzWI8AAClpJ6i9dJhPyTb2y-t8Gu21SI463ZYdDsfbNr32PiAe9_aTuPgW59w56Xo8CDSHg-dcOf3a3RpRBf1zc-do_f149vqKdu-bJ5Xy20mF1CmTIGpC1a2LasFCKaUqEnZCKYFhaZitJWFEaquTN0Qs1CMsgaYPuVWlopps5ij-7FXBh9j0IZLm0Sy3qUgbMcJ8LMRfuCjEX42wkcjJ5j9godgexGO_2EPI6ZPwz6tDjxKq53UygYtE1fe_l3wDUppgA0
CitedBy_id crossref_primary_10_1002_rob_22531
crossref_primary_10_3390_app15031165
crossref_primary_10_1016_j_ijhydene_2024_11_262
crossref_primary_10_1016_j_knosys_2024_112120
crossref_primary_10_3934_jimo_2025150
crossref_primary_10_1016_j_compeleceng_2024_110034
crossref_primary_10_1109_JSEN_2025_3557437
crossref_primary_10_1016_j_neucom_2024_128423
crossref_primary_10_1016_j_knosys_2024_112326
crossref_primary_10_1109_ACCESS_2025_3607976
crossref_primary_10_1109_ACCESS_2025_3602286
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_1088_1402_4896_adb79a
crossref_primary_10_3390_electronics14163199
crossref_primary_10_1016_j_knosys_2024_112406
crossref_primary_10_1109_TASE_2025_3604604
crossref_primary_10_1007_s11227_025_07318_3
crossref_primary_10_1016_j_engappai_2024_109866
crossref_primary_10_1016_j_knosys_2025_113836
crossref_primary_10_1016_j_ijtst_2025_06_001
crossref_primary_10_1017_S0263574725000529
crossref_primary_10_1016_j_chaos_2025_116656
crossref_primary_10_1016_j_ast_2025_110950
crossref_primary_10_1016_j_physa_2025_130902
crossref_primary_10_1016_j_neucom_2025_131173
crossref_primary_10_1002_rob_22479
crossref_primary_10_1016_j_aei_2025_103398
crossref_primary_10_48084_etasr_11986
crossref_primary_10_1109_TKDE_2025_3579386
crossref_primary_10_1016_j_ress_2025_111030
crossref_primary_10_1007_s11227_025_07470_w
crossref_primary_10_1080_14484846_2025_2514394
crossref_primary_10_1016_j_engappai_2025_111890
crossref_primary_10_3390_drones8090462
crossref_primary_10_1016_j_rineng_2025_105325
crossref_primary_10_1109_ACCESS_2025_3602149
crossref_primary_10_1109_TAFE_2025_3528403
crossref_primary_10_1177_09544062241281115
crossref_primary_10_1016_j_tbs_2024_100943
crossref_primary_10_3390_fishes10080420
crossref_primary_10_1016_j_jobe_2025_112626
crossref_primary_10_1088_2631_8695_adcb92
crossref_primary_10_1016_j_eswa_2025_127808
crossref_primary_10_1016_j_engappai_2025_111030
crossref_primary_10_2478_jaiscr_2025_0012
crossref_primary_10_1016_j_sftr_2025_100575
crossref_primary_10_1016_j_eswa_2025_128051
crossref_primary_10_1016_j_sasc_2025_200332
crossref_primary_10_1088_1361_6501_adee3a
crossref_primary_10_1088_1402_4896_ad551b
crossref_primary_10_32604_cmc_2024_056791
crossref_primary_10_1016_j_enganabound_2025_106407
crossref_primary_10_1109_JIOT_2024_3379361
crossref_primary_10_3390_technologies12060082
crossref_primary_10_1007_s11370_025_00617_x
crossref_primary_10_3390_app142311195
Cites_doi 10.1016/j.knosys.2019.03.018
10.1109/ICASERT.2019.8934450
10.1016/j.knosys.2019.104938
10.1109/TSMCA.2012.2227719
10.1109/TITS.2019.2913998
10.1016/j.knosys.2023.110355
10.3390/sym10100450
10.1007/s10846-016-0362-z
10.1109/AIM.2009.5229903
10.1007/s10489-023-04946-1
10.1016/j.knosys.2022.109075
10.1016/j.eswa.2022.117191
10.1016/j.ymssp.2017.07.019
10.1109/CVCI56766.2022.9964859
10.1109/TCYB.2021.3107415
10.1023/A:1022633531479
10.1109/ICRAS.2018.8443226
10.1016/j.procs.2018.01.054
10.1007/978-3-642-16111-7_23
10.1007/s12652-018-0777-4
10.1023/A:1007694015589
10.1109/ICInfA.2015.7279322
10.1364/OE.494734
10.1109/TVT.2021.3093318
10.1109/TIE.2021.3062273
10.1016/j.robot.2019.02.013
10.1109/TVT.2014.2335201
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2024.111400
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2024_111400
S0950705124000352
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-d0f8546bb48a0a4dda8169a4ea209742bc5fad87f891f3d424904e87fbc6d4ef3
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001170720800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:10:07 EST 2025
Tue Nov 18 22:24:52 EST 2025
Sat Feb 24 15:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Q-Learning algorithm
Local path planning
Adaptive learning rate
Mobile robot
Reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-d0f8546bb48a0a4dda8169a4ea209742bc5fad87f891f3d424904e87fbc6d4ef3
ORCID 0000-0001-7888-2419
0000-0002-0221-6361
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2024_111400
crossref_primary_10_1016_j_knosys_2024_111400
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_111400
PublicationCentury 2000
PublicationDate 2024-02-28
PublicationDateYYYYMMDD 2024-02-28
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Liu, Nugent (b30) 2023; 264
Zhang, Ma, Zhao (b40) 2021; 69
Sreelakshmy (b36) 2023; 3
I. Syed, I. Moinul, U. Mohiuddin, Q-Learning based particle swarm optimization algorithm for optimal path planning of swarm of mobile robots, in: Proceedings of 2019 International Conference on Advances in Science, Engineering and Robotics Technology, 2019, pp. 1–5.
Zhang, Zheng, Cen (b1) 2005; 17
Xie, Qin, Zhou (b12) 2019; 186
Zhan, Sha, Xiao (b22) 2023; 9
Wang, Liu, Qin (b9) 2018; 37
Wang, Shan, Lu (b8) 2014; 64
Iiduka (b42) 2021; 52
Wang, Zhu, Zhu (b4) 2023; 59
Sutton (b32) 1988; 3
Zhang, Xia, Li (b16) 2022; 250
S. Li, X. Xu, L. Zuo, Dynamic path planning of a mobile robot with improved Q-learning algorithm, in: 2015 IEEE International Conference on Information and Automation, 2015, pp. 409–414.
Zhou, Guo, Li (b10) 2021; 42
Zhou, Sun, Wu (b14) 2022; 42
Claussmann, Revilloud, Gruyer (b11) 2019; 21
Emmanouil (b35) 2016; 84
Li (b23) 2023; 53
Z. Bai, H. Pang, M. Liu, et al., An improved Q-Learning algorithm and its application to the optimized path planning for unmanned ground robot with obstacle avoidance, in: 2022 6th CAA International Conference on Vehicular Control and Intelligence, CVCI, 2022, pp. 1–6.
Aleksandr, Yakovlev, Suvorov (b34) 2018; 123
Y.Z. Cong, S.G. Ponnambalam, Mobile robot path planning using ant colony optimization, in: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 851–856.
Ma, Guan (b2) 2008; 3
Sombolestan, Rasooli, Khodaygan (b17) 2019; 10
Song, Zhou, Li (b27) 2023
Zhang, Lin, Chen (b5) 2018; 10
Hu, Chen, Tang (b7) 2018; 100
Yuan, Yu, Gu (b20) 2019; 175
greedy exploration in reinforcement learning based on value differences, in: Annual Conference on Artificial Intelligence, 2010, pp. 203–210.
Zhou, Zhang, Wu (b15) 2022; 37
Low, Ong, Low, Omar (b21) 2022; 199
Xu, Yuan (b24) 2019; 27
C. Yan, X. Xiang, A path planning algorithm for UAV based on improved Q-learning, in: 2018 2nd International Conference on Robotics and Automation Sciences, ICRAS, 2018, pp. 1–5.
Zhang, Li, Zhang (b25) 2021; 37
Wu, Low, Pang (b6) 2021; 70
Low, Ong, Cheah (b33) 2019; 115
Džeroski, Raedt, Driessens (b19) 2001; 43
M. Tokic, Adaptive
Konar, Chakraborty, Singh (b18) 2013; 43
Gao, Ma, Liu (b26) 2018; 36
Li, Pan, Li (b41) 2023; 31
Liu, Tong (b13) 2021; 41
Tan, Zhang, Shi (b31) 2020; 18
10.1016/j.knosys.2024.111400_b29
Tan (10.1016/j.knosys.2024.111400_b31) 2020; 18
10.1016/j.knosys.2024.111400_b28
Aleksandr (10.1016/j.knosys.2024.111400_b34) 2018; 123
Liu (10.1016/j.knosys.2024.111400_b13) 2021; 41
Low (10.1016/j.knosys.2024.111400_b21) 2022; 199
Song (10.1016/j.knosys.2024.111400_b27) 2023
Sombolestan (10.1016/j.knosys.2024.111400_b17) 2019; 10
Li (10.1016/j.knosys.2024.111400_b23) 2023; 53
Zhan (10.1016/j.knosys.2024.111400_b22) 2023; 9
Wang (10.1016/j.knosys.2024.111400_b9) 2018; 37
Zhou (10.1016/j.knosys.2024.111400_b10) 2021; 42
10.1016/j.knosys.2024.111400_b3
Zhou (10.1016/j.knosys.2024.111400_b15) 2022; 37
Zhang (10.1016/j.knosys.2024.111400_b16) 2022; 250
Konar (10.1016/j.knosys.2024.111400_b18) 2013; 43
Sutton (10.1016/j.knosys.2024.111400_b32) 1988; 3
Zhang (10.1016/j.knosys.2024.111400_b5) 2018; 10
Wang (10.1016/j.knosys.2024.111400_b8) 2014; 64
Li (10.1016/j.knosys.2024.111400_b41) 2023; 31
Iiduka (10.1016/j.knosys.2024.111400_b42) 2021; 52
Claussmann (10.1016/j.knosys.2024.111400_b11) 2019; 21
Emmanouil (10.1016/j.knosys.2024.111400_b35) 2016; 84
10.1016/j.knosys.2024.111400_b38
10.1016/j.knosys.2024.111400_b39
Xie (10.1016/j.knosys.2024.111400_b12) 2019; 186
Ma (10.1016/j.knosys.2024.111400_b2) 2008; 3
Xu (10.1016/j.knosys.2024.111400_b24) 2019; 27
10.1016/j.knosys.2024.111400_b37
Zhang (10.1016/j.knosys.2024.111400_b1) 2005; 17
Hu (10.1016/j.knosys.2024.111400_b7) 2018; 100
Wang (10.1016/j.knosys.2024.111400_b30) 2023; 264
Zhang (10.1016/j.knosys.2024.111400_b40) 2021; 69
Yuan (10.1016/j.knosys.2024.111400_b20) 2019; 175
Džeroski (10.1016/j.knosys.2024.111400_b19) 2001; 43
Gao (10.1016/j.knosys.2024.111400_b26) 2018; 36
Wang (10.1016/j.knosys.2024.111400_b4) 2023; 59
Wu (10.1016/j.knosys.2024.111400_b6) 2021; 70
Zhang (10.1016/j.knosys.2024.111400_b25) 2021; 37
Zhou (10.1016/j.knosys.2024.111400_b14) 2022; 42
Sreelakshmy (10.1016/j.knosys.2024.111400_b36) 2023; 3
Low (10.1016/j.knosys.2024.111400_b33) 2019; 115
References_xml – volume: 41
  start-page: 185
  year: 2021
  end-page: 190
  ident: b13
  article-title: Urban transportation path planning based on reinforcement learning
  publication-title: J. Comput. Appl.
– volume: 52
  start-page: 13250
  year: 2021
  end-page: 13261
  ident: b42
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans. Cybern.
– volume: 3
  start-page: 9
  year: 1988
  end-page: 44
  ident: b32
  article-title: Learning to predict by the methods of temporal difference
  publication-title: Mach. Learn.
– volume: 53
  start-page: 27110
  year: 2023
  end-page: 27127
  ident: b23
  article-title: INNES: An intelligent network penetration testing model based on deep reinforcement learning
  publication-title: Appl. Intell.
– volume: 18
  start-page: 53
  year: 2020
  end-page: 60
  ident: b31
  article-title: Reinforcement-learning-based multi-slot rail empty wagon real-time distribution
  publication-title: J. Transport. Eng. Inf.
– volume: 43
  start-page: 1141
  year: 2013
  end-page: 1153
  ident: b18
  article-title: A deterministic improved Q-learning for path planning of a mobile robot
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 37
  start-page: 5
  year: 2018
  end-page: 8
  ident: b9
  article-title: Review on intelligent path planning algorithm of mobile robots
  publication-title: Transducer Microsyst. Technol.
– volume: 43
  start-page: 7
  year: 2001
  end-page: 52
  ident: b19
  article-title: Relational reinforcement learning
  publication-title: Mach. Learn.
– reference: C. Yan, X. Xiang, A path planning algorithm for UAV based on improved Q-learning, in: 2018 2nd International Conference on Robotics and Automation Sciences, ICRAS, 2018, pp. 1–5.
– volume: 64
  start-page: 1664
  year: 2014
  end-page: 1678
  ident: b8
  article-title: Real-time path planning based on hybrid-VANET-enhanced transportation system
  publication-title: IEEE Trans. Veh. Technol.
– volume: 37
  start-page: 1
  year: 2021
  end-page: 6
  ident: b25
  article-title: Local path planning of mobile robot based on improved Q-learning algorithm
  publication-title: J. Shandong Univ. Technol. (Nat. Sci. Ed.)
– volume: 115
  start-page: 143
  year: 2019
  end-page: 161
  ident: b33
  article-title: Solving the optimal path planning of a mobile robot using improved Q-learning
  publication-title: Robot. Auton. Syst.
– volume: 21
  start-page: 1826
  year: 2019
  end-page: 1848
  ident: b11
  article-title: A review of motion planning for highway autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 84
  start-page: 829
  year: 2016
  end-page: 858
  ident: b35
  article-title: A review of global path planning methods for occupancy grid maps regardless of obstacle density
  publication-title: J. Intell. Robot. Syst.
– volume: 100
  start-page: 482
  year: 2018
  end-page: 500
  ident: b7
  article-title: Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles
  publication-title: Mech. Syst. Signal Process.
– volume: 37
  start-page: 1314
  year: 2022
  end-page: 1322
  ident: b15
  article-title: An adaptive path planning algorithm for local delivery of confidential documents based on block-chain
  publication-title: J. Data Acquisit. Process.
– volume: 10
  start-page: 450
  year: 2018
  ident: b5
  article-title: Path planning for the mobile robot: A review
  publication-title: Symmetry
– volume: 36
  start-page: 439
  year: 2018
  end-page: 443
  ident: b26
  article-title: Application of improved Q-learning algorithm in path planning
  publication-title: J. Jilin Univ. (Inf. Sci. Ed.)
– volume: 9
  start-page: 104
  year: 2023
  end-page: 120
  ident: b22
  article-title: Automated windows domain penetration method based on reinforcement learning
  publication-title: Chin. J. Netw. Inf. Secur.
– volume: 250
  year: 2022
  ident: b16
  article-title: Multi-objective particle swarm optimization with multi-mode collaboration based on reinforcement learning for path planning of unmanned air vehicles
  publication-title: Knowl.-Based Syst.
– year: 2023
  ident: b27
  article-title: Research on path planning algorithm based on improved Q-learning algorithm
  publication-title: J. Chin. Comput. Syst.
– volume: 175
  start-page: 107
  year: 2019
  end-page: 117
  ident: b20
  article-title: A novel multi-step Q-learning method to improve data efficiency for deep reinforcement learning
  publication-title: Knowl.-Based Syst.
– volume: 264
  year: 2023
  ident: b30
  article-title: Mobile agent path planning under uncertain environment using reinforcement learning and probabilistic model checking
  publication-title: Knowl.-Based Syst.
– volume: 59
  start-page: 51
  year: 2023
  end-page: 66
  ident: b4
  article-title: Review of path planning algorithms for mobile robots
  publication-title: Comput. Eng. Appl.
– volume: 42
  start-page: 86
  year: 2022
  end-page: 98
  ident: b14
  article-title: A location privacy preservation scheme based on consortium block-chain in VANET
  publication-title: J. Nanjing Univ. Posts Telecommun. (Nat. Sci. Ed.)
– volume: 3
  start-page: 45
  year: 2023
  ident: b36
  article-title: 3D path optimisation of unmanned aerial vehicles using q learning-controlled GWO-aoa
  publication-title: Comput. Syst. Sci. Eng.
– volume: 199
  year: 2022
  ident: b21
  article-title: Modified Q-learning with distance metric and virtual target on path planning of mobile robot
  publication-title: Expert Syst. Appl.
– volume: 186
  year: 2019
  ident: b12
  article-title: A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm
  publication-title: Knowl.-Based Syst.
– reference: Z. Bai, H. Pang, M. Liu, et al., An improved Q-Learning algorithm and its application to the optimized path planning for unmanned ground robot with obstacle avoidance, in: 2022 6th CAA International Conference on Vehicular Control and Intelligence, CVCI, 2022, pp. 1–6.
– reference: S. Li, X. Xu, L. Zuo, Dynamic path planning of a mobile robot with improved Q-learning algorithm, in: 2015 IEEE International Conference on Information and Automation, 2015, pp. 409–414.
– reference: Y.Z. Cong, S.G. Ponnambalam, Mobile robot path planning using ant colony optimization, in: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 851–856.
– volume: 42
  start-page: 498
  year: 2021
  end-page: 505
  ident: b10
  article-title: Path planning of UAV using guided enhancement Q-learning algorithm
  publication-title: Acta Aeronaut. Astronaut. Sinica
– volume: 17
  start-page: 439
  year: 2005
  end-page: 443
  ident: b1
  article-title: Present situation and future development of mobile robot path planning technology
  publication-title: J. Syst. Simul.
– volume: 3
  start-page: 22
  year: 2008
  end-page: 24
  ident: b2
  article-title: Summarization for present situation and future development of path planning technology
  publication-title: Mod. Mach.
– volume: 70
  start-page: 7464
  year: 2021
  end-page: 7479
  ident: b6
  article-title: Swarm-based 4D path planning for drone operations in urban environments
  publication-title: IEEE Trans. Veh. Technol.
– volume: 69
  start-page: 1537
  year: 2021
  end-page: 1547
  ident: b40
  article-title: A novel energy management strategy based on dual reward function Q-learning for fuel cell hybrid electric vehicle
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  start-page: 23974
  year: 2023
  end-page: 23989
  ident: b41
  article-title: Advanced root mean square propagation with the warm-up algorithm for fiber coupling
  publication-title: Opt. Express
– reference: I. Syed, I. Moinul, U. Mohiuddin, Q-Learning based particle swarm optimization algorithm for optimal path planning of swarm of mobile robots, in: Proceedings of 2019 International Conference on Advances in Science, Engineering and Robotics Technology, 2019, pp. 1–5.
– volume: 123
  start-page: 347
  year: 2018
  end-page: 353
  ident: b34
  article-title: Grid path planning with deep reinforcement learning: Preliminary results
  publication-title: Procedia Comput. Sci.
– volume: 10
  start-page: 1841
  year: 2019
  end-page: 1850
  ident: b17
  article-title: Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning
  publication-title: J. Ambient Intell. Humaniz. Comput.
– reference: -greedy exploration in reinforcement learning based on value differences, in: Annual Conference on Artificial Intelligence, 2010, pp. 203–210.
– volume: 27
  start-page: 314
  year: 2019
  end-page: 320
  ident: b24
  article-title: Path planning for mobile robot based on improved reinforcement learning algorithm
  publication-title: J. Chin. Inertial Technol.
– reference: M. Tokic, Adaptive
– volume: 175
  start-page: 107
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b20
  article-title: A novel multi-step Q-learning method to improve data efficiency for deep reinforcement learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.03.018
– volume: 17
  start-page: 439
  issue: 2
  year: 2005
  ident: 10.1016/j.knosys.2024.111400_b1
  article-title: Present situation and future development of mobile robot path planning technology
  publication-title: J. Syst. Simul.
– volume: 41
  start-page: 185
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b13
  article-title: Urban transportation path planning based on reinforcement learning
  publication-title: J. Comput. Appl.
– ident: 10.1016/j.knosys.2024.111400_b28
  doi: 10.1109/ICASERT.2019.8934450
– volume: 27
  start-page: 314
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b24
  article-title: Path planning for mobile robot based on improved reinforcement learning algorithm
  publication-title: J. Chin. Inertial Technol.
– volume: 3
  start-page: 22
  year: 2008
  ident: 10.1016/j.knosys.2024.111400_b2
  article-title: Summarization for present situation and future development of path planning technology
  publication-title: Mod. Mach.
– volume: 186
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b12
  article-title: A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104938
– volume: 43
  start-page: 1141
  issue: 5
  year: 2013
  ident: 10.1016/j.knosys.2024.111400_b18
  article-title: A deterministic improved Q-learning for path planning of a mobile robot
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMCA.2012.2227719
– volume: 21
  start-page: 1826
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b11
  article-title: A review of motion planning for highway autonomous driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2913998
– volume: 264
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b30
  article-title: Mobile agent path planning under uncertain environment using reinforcement learning and probabilistic model checking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110355
– volume: 37
  start-page: 1314
  issue: 6
  year: 2022
  ident: 10.1016/j.knosys.2024.111400_b15
  article-title: An adaptive path planning algorithm for local delivery of confidential documents based on block-chain
  publication-title: J. Data Acquisit. Process.
– volume: 10
  start-page: 450
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2024.111400_b5
  article-title: Path planning for the mobile robot: A review
  publication-title: Symmetry
  doi: 10.3390/sym10100450
– volume: 37
  start-page: 5
  issue: 8
  year: 2018
  ident: 10.1016/j.knosys.2024.111400_b9
  article-title: Review on intelligent path planning algorithm of mobile robots
  publication-title: Transducer Microsyst. Technol.
– volume: 84
  start-page: 829
  year: 2016
  ident: 10.1016/j.knosys.2024.111400_b35
  article-title: A review of global path planning methods for occupancy grid maps regardless of obstacle density
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-016-0362-z
– volume: 9
  start-page: 104
  issue: 4
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b22
  article-title: Automated windows domain penetration method based on reinforcement learning
  publication-title: Chin. J. Netw. Inf. Secur.
– ident: 10.1016/j.knosys.2024.111400_b3
  doi: 10.1109/AIM.2009.5229903
– volume: 53
  start-page: 27110
  issue: 22
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b23
  article-title: INNES: An intelligent network penetration testing model based on deep reinforcement learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04946-1
– volume: 250
  year: 2022
  ident: 10.1016/j.knosys.2024.111400_b16
  article-title: Multi-objective particle swarm optimization with multi-mode collaboration based on reinforcement learning for path planning of unmanned air vehicles
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109075
– volume: 199
  year: 2022
  ident: 10.1016/j.knosys.2024.111400_b21
  article-title: Modified Q-learning with distance metric and virtual target on path planning of mobile robot
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117191
– volume: 100
  start-page: 482
  year: 2018
  ident: 10.1016/j.knosys.2024.111400_b7
  article-title: Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.07.019
– volume: 3
  start-page: 45
  issue: 3
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b36
  article-title: 3D path optimisation of unmanned aerial vehicles using q learning-controlled GWO-aoa
  publication-title: Comput. Syst. Sci. Eng.
– ident: 10.1016/j.knosys.2024.111400_b29
  doi: 10.1109/CVCI56766.2022.9964859
– volume: 52
  start-page: 13250
  issue: 12
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b42
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3107415
– volume: 3
  start-page: 9
  issue: 1
  year: 1988
  ident: 10.1016/j.knosys.2024.111400_b32
  article-title: Learning to predict by the methods of temporal difference
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022633531479
– ident: 10.1016/j.knosys.2024.111400_b39
  doi: 10.1109/ICRAS.2018.8443226
– volume: 42
  start-page: 498
  issue: 9
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b10
  article-title: Path planning of UAV using guided enhancement Q-learning algorithm
  publication-title: Acta Aeronaut. Astronaut. Sinica
– year: 2023
  ident: 10.1016/j.knosys.2024.111400_b27
  article-title: Research on path planning algorithm based on improved Q-learning algorithm
  publication-title: J. Chin. Comput. Syst.
– volume: 18
  start-page: 53
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2024.111400_b31
  article-title: Reinforcement-learning-based multi-slot rail empty wagon real-time distribution
  publication-title: J. Transport. Eng. Inf.
– volume: 37
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b25
  article-title: Local path planning of mobile robot based on improved Q-learning algorithm
  publication-title: J. Shandong Univ. Technol. (Nat. Sci. Ed.)
– volume: 59
  start-page: 51
  issue: 20
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b4
  article-title: Review of path planning algorithms for mobile robots
  publication-title: Comput. Eng. Appl.
– volume: 123
  start-page: 347
  year: 2018
  ident: 10.1016/j.knosys.2024.111400_b34
  article-title: Grid path planning with deep reinforcement learning: Preliminary results
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.054
– ident: 10.1016/j.knosys.2024.111400_b37
  doi: 10.1007/978-3-642-16111-7_23
– volume: 10
  start-page: 1841
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b17
  article-title: Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0777-4
– volume: 43
  start-page: 7
  year: 2001
  ident: 10.1016/j.knosys.2024.111400_b19
  article-title: Relational reinforcement learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007694015589
– ident: 10.1016/j.knosys.2024.111400_b38
  doi: 10.1109/ICInfA.2015.7279322
– volume: 31
  start-page: 23974
  issue: 15
  year: 2023
  ident: 10.1016/j.knosys.2024.111400_b41
  article-title: Advanced root mean square propagation with the warm-up algorithm for fiber coupling
  publication-title: Opt. Express
  doi: 10.1364/OE.494734
– volume: 70
  start-page: 7464
  issue: 8
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b6
  article-title: Swarm-based 4D path planning for drone operations in urban environments
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3093318
– volume: 69
  start-page: 1537
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2024.111400_b40
  article-title: A novel energy management strategy based on dual reward function Q-learning for fuel cell hybrid electric vehicle
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3062273
– volume: 42
  start-page: 86
  issue: 6
  year: 2022
  ident: 10.1016/j.knosys.2024.111400_b14
  article-title: A location privacy preservation scheme based on consortium block-chain in VANET
  publication-title: J. Nanjing Univ. Posts Telecommun. (Nat. Sci. Ed.)
– volume: 115
  start-page: 143
  year: 2019
  ident: 10.1016/j.knosys.2024.111400_b33
  article-title: Solving the optimal path planning of a mobile robot using improved Q-learning
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2019.02.013
– volume: 64
  start-page: 1664
  issue: 5
  year: 2014
  ident: 10.1016/j.knosys.2024.111400_b8
  article-title: Real-time path planning based on hybrid-VANET-enhanced transportation system
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2335201
– volume: 36
  start-page: 439
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2024.111400_b26
  article-title: Application of improved Q-learning algorithm in path planning
  publication-title: J. Jilin Univ. (Inf. Sci. Ed.)
SSID ssj0002218
Score 2.6338198
Snippet The Q-Learning algorithm is a reinforcement learning technique widely used in various fields such as path planning, intelligent transportation, penetration...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111400
SubjectTerms Adaptive learning rate
Local path planning
Mobile robot
Q-Learning algorithm
Reinforcement learning
Title An optimized Q-Learning algorithm for mobile robot local path planning
URI https://dx.doi.org/10.1016/j.knosys.2024.111400
Volume 286
WOSCitedRecordID wos001170720800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6IUkA_cKldO4sT2cVW1glJVVBRp6SVyYodN202qbRa1_HrGj2QjLeIlcYkSy46TmU_jz6PxDEJvEyZ0woUhTKcJYbKMiDBRYV0CPFWap7GhrtgEPz4W06n8GMqlXrtyArxpxM2NvPqvqoY2ULY9OvsX6h5eCg1wD0qHK6gdrn-k-AkQQLAD8_o7cMkTctT7PtTl13ZRd7O5iyyctwXYg51FW7TdjlvQbIrVma0q7YoYjUnrh97vRuyap0P254GMn83apdXUyQhpR7V3rH5R4VXW7rteh7W6HTWezVyrDa69XZqxDyJmozPdzjG2djgmeBgp4TTkkzXevgoOhJ5ROTbAsU-GvWbMvV_hfPeiaeHHdu3E1sIzSleL1xBS-MlOZ2ezQbE2yetdtBnzVIKl25y8358eDutzHDuv7_B5_YFKF_W3PtfPCcuIhJw-Qg_C7gFPvNYfozumeYIe9pU5cDDUT9HBpMEDCPAKBHgAAQYQYA8C7ECAHQiwBQHuQfAMfT7YP917R0LFDFLC1q8jmlYiZVlRMKGoYlorEWVSMaNiChvHuCjTSmnBKyGjKtEM9t6UGXguykwzUyXP0UbTNuYFwkZroVSVGCkrZoCEK-gEbMZkqcyKqNpCSS-WvAzp5G1Vk8u8jxs8z70wcyvM3AtzC5Fh1JVPp_Kb_ryXeB4ooad6OYDklyNf_vPIbXR_hfFXaKNbLM1rdK_81tXXizcBTT8A-KqH6Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+Q-Learning+algorithm+for+mobile+robot+local+path+planning&rft.jtitle=Knowledge-based+systems&rft.au=Zhou%2C+Qian&rft.au=Lian%2C+Yang&rft.au=Wu%2C+Jiayang&rft.au=Zhu%2C+Mengyue&rft.date=2024-02-28&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=286&rft_id=info:doi/10.1016%2Fj.knosys.2024.111400&rft.externalDocID=S0950705124000352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon