LLNet: A deep autoencoder approach to natural low-light image enhancement
In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or vide...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 61; S. 650 - 662 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2017
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or videos taken in a poorly-lit environment. Many applications aim to enhance brightness, contrast and reduce noise content from the images in an on-board real-time manner. We propose a deep autoencoder-based approach to identify signal features from low-light images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn from synthetically darkened and noise-added training examples to adaptively enhance images taken from natural low-light environment and/or are hardware-degraded. Results show significant credibility of the approach both visually and by quantitative comparison with various techniques.
•Novel application of stacked sparse denoising autoencoder enhances low-light images.•Simultaneous learning of contrast-enhancement and denoising (LLNet).•Sequential learning of contrast-enhancement and denoising (Staged LLNet).•Synthetically trained model evaluated on natural low-light images.•Learned features visualized to gain insights about the model. |
|---|---|
| AbstractList | In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or videos taken in a poorly-lit environment. Many applications aim to enhance brightness, contrast and reduce noise content from the images in an on-board real-time manner. We propose a deep autoencoder-based approach to identify signal features from low-light images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn from synthetically darkened and noise-added training examples to adaptively enhance images taken from natural low-light environment and/or are hardware-degraded. Results show significant credibility of the approach both visually and by quantitative comparison with various techniques.
•Novel application of stacked sparse denoising autoencoder enhances low-light images.•Simultaneous learning of contrast-enhancement and denoising (LLNet).•Sequential learning of contrast-enhancement and denoising (Staged LLNet).•Synthetically trained model evaluated on natural low-light images.•Learned features visualized to gain insights about the model. |
| Author | Lore, Kin Gwn Akintayo, Adedotun Sarkar, Soumik |
| Author_xml | – sequence: 1 givenname: Kin Gwn surname: Lore fullname: Lore, Kin Gwn email: kglore@iastate.edu – sequence: 2 givenname: Adedotun surname: Akintayo fullname: Akintayo, Adedotun email: akintayo@iastate.edu – sequence: 3 givenname: Soumik surname: Sarkar fullname: Sarkar, Soumik email: soumiks@iastate.edu |
| BookMark | eNqFkM1qwzAQhEVpoUnaN-hBL2B3JdmWk0MhhP4ETHvJXajyKlFwLCMrLX37KqSnHloYWJZlhtlvSi573yMhdwxyBqy63-eDjsZvc562HJKgviATVkuRlazgl2QCIFgmOIhrMh3HPQCT6TAh66Z5xbigS9oiDlQfo8fe-BYD1cMQvDY7Gj3tdTwG3dHOf2ad2-4idQe9RYr9TvcGD9jHG3JldTfi7c-ckc3T42b1kjVvz-vVssmMgCpmxmI5L6tapgZQc86Qg9VSSi14O68raXlloeCyksIyEJVmunifWwFiXnIUM1KcY03w4xjQqiGkLuFLMVAnGmqvzjTUiYaCJKiTbfHLZlzU0fk-Bu26_8wPZzOmvz4cBjUalzBh6wKaqFrv_g74BgAafoU |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2021_3073371 crossref_primary_10_1049_ipr2_12173 crossref_primary_10_1016_j_infrared_2021_103690 crossref_primary_10_1016_j_image_2022_116916 crossref_primary_10_1049_ipr2_70059 crossref_primary_10_1145_3711929 crossref_primary_10_1109_TCSVT_2020_3004854 crossref_primary_10_1016_j_displa_2021_102091 crossref_primary_10_1109_TITS_2023_3342799 crossref_primary_10_1016_j_optcom_2023_130064 crossref_primary_10_1016_j_sigpro_2020_107936 crossref_primary_10_1049_iet_ipr_2019_1438 crossref_primary_10_1109_ACCESS_2022_3195499 crossref_primary_10_1109_TIP_2019_2922106 crossref_primary_10_1109_TMM_2020_2982045 crossref_primary_10_1016_j_cmpb_2019_05_004 crossref_primary_10_1109_TPAMI_2024_3432308 crossref_primary_10_1109_ACCESS_2020_3020844 crossref_primary_10_1109_TIM_2024_3500070 crossref_primary_10_1186_s13677_023_00533_4 crossref_primary_10_1109_ACCESS_2024_3502654 crossref_primary_10_1016_j_neucom_2024_129236 crossref_primary_10_1109_TETCI_2024_3378651 crossref_primary_10_1109_TPAMI_2019_2895793 crossref_primary_10_1016_j_neucom_2025_129992 crossref_primary_10_1186_s12880_024_01386_2 crossref_primary_10_1016_j_heliyon_2023_e14558 crossref_primary_10_1109_ACCESS_2025_3548151 crossref_primary_10_3390_s25113382 crossref_primary_10_1016_j_inffus_2025_103036 crossref_primary_10_1186_s13040_022_00303_z crossref_primary_10_1007_s11227_023_05634_0 crossref_primary_10_1016_j_media_2023_102945 crossref_primary_10_1364_OE_546629 crossref_primary_10_1016_j_aei_2025_103463 crossref_primary_10_1007_s11042_023_15147_w crossref_primary_10_1049_ipr2_70043 crossref_primary_10_1109_ACCESS_2021_3068534 crossref_primary_10_1109_TITS_2023_3308894 crossref_primary_10_1109_TII_2020_3008703 crossref_primary_10_1109_TCSVT_2024_3465875 crossref_primary_10_1109_TCSVT_2022_3190057 crossref_primary_10_1109_TCSVT_2018_2828141 crossref_primary_10_1016_j_patcog_2024_111076 crossref_primary_10_32604_cmc_2024_057662 crossref_primary_10_1007_s11760_024_03127_y crossref_primary_10_1109_TITS_2022_3224769 crossref_primary_10_1007_s10044_020_00908_2 crossref_primary_10_3390_s25061825 crossref_primary_10_1007_s11042_024_19720_9 crossref_primary_10_3390_s24092711 crossref_primary_10_1007_s00371_023_02769_2 crossref_primary_10_1109_TCSVT_2023_3299232 crossref_primary_10_1016_j_jvcir_2022_103712 crossref_primary_10_1016_j_displa_2024_102954 crossref_primary_10_1177_1475921719893594 crossref_primary_10_1007_s00521_018_3893_3 crossref_primary_10_1016_j_inffus_2022_12_012 crossref_primary_10_1007_s00034_023_02591_0 crossref_primary_10_1109_JSEN_2025_3592706 crossref_primary_10_1038_s41598_023_46693_w crossref_primary_10_1088_1361_6560_ade844 crossref_primary_10_1109_ACCESS_2018_2870638 crossref_primary_10_1016_j_jvcir_2024_104148 crossref_primary_10_1016_j_patcog_2025_112203 crossref_primary_10_1117_1_JEI_31_5_053001 crossref_primary_10_1007_s11042_021_11590_9 crossref_primary_10_1016_j_compmedimag_2024_102487 crossref_primary_10_1109_TPAMI_2024_3524538 crossref_primary_10_1109_JSEN_2024_3446645 crossref_primary_10_1109_TCI_2024_3378091 crossref_primary_10_3788_LOP242249 crossref_primary_10_1109_TCI_2023_3288300 crossref_primary_10_3390_math11102404 crossref_primary_10_1109_TCSVT_2022_3169422 crossref_primary_10_1109_TITS_2021_3117868 crossref_primary_10_3390_s23187763 crossref_primary_10_1016_j_optlaseng_2023_107520 crossref_primary_10_1007_s11042_020_09562_6 crossref_primary_10_1109_TCSVT_2022_3181781 crossref_primary_10_3390_bioengineering9100522 crossref_primary_10_1007_s11760_021_01856_y crossref_primary_10_1109_TGRS_2023_3279826 crossref_primary_10_1109_TMM_2021_3054509 crossref_primary_10_1016_j_cag_2023_12_014 crossref_primary_10_1371_journal_pone_0329533 crossref_primary_10_3389_fnbot_2022_837208 crossref_primary_10_1016_j_engappai_2025_111115 crossref_primary_10_1109_TETCI_2023_3235378 crossref_primary_10_3390_app15116295 crossref_primary_10_1109_TIP_2021_3050850 crossref_primary_10_3390_app131810336 crossref_primary_10_1145_3664653 crossref_primary_10_1007_s11042_020_09586_y crossref_primary_10_1016_j_displa_2024_102738 crossref_primary_10_1109_ACCESS_2020_3015217 crossref_primary_10_1007_s11263_022_01745_y crossref_primary_10_1016_j_patcog_2024_111033 crossref_primary_10_1049_ipr2_13076 crossref_primary_10_3390_s21154986 crossref_primary_10_1002_sdtp_17317 crossref_primary_10_1007_s13369_025_10264_0 crossref_primary_10_1109_ACCESS_2020_3048366 crossref_primary_10_1007_s10278_025_01592_6 crossref_primary_10_1016_j_engappai_2023_107793 crossref_primary_10_1016_j_knosys_2023_110730 crossref_primary_10_1155_2021_2436486 crossref_primary_10_1109_TETCI_2023_3314436 crossref_primary_10_1155_2022_9543893 crossref_primary_10_1016_j_compbiomed_2024_109456 crossref_primary_10_1016_j_eswa_2025_127638 crossref_primary_10_1109_TMM_2023_3268867 crossref_primary_10_1007_s40747_024_01681_z crossref_primary_10_1109_ACCESS_2020_3007610 crossref_primary_10_1109_TMI_2020_3043495 crossref_primary_10_1007_s11517_019_01965_4 crossref_primary_10_1117_1_JEI_32_4_043024 crossref_primary_10_1109_TIP_2020_3008396 crossref_primary_10_1016_j_sigpro_2021_108280 crossref_primary_10_1109_TMM_2024_3521781 crossref_primary_10_3389_fnbot_2021_700011 crossref_primary_10_3390_s22166126 crossref_primary_10_1111_cgf_15209 crossref_primary_10_1016_j_patcog_2022_109249 crossref_primary_10_1109_ACCESS_2022_3178745 crossref_primary_10_1109_TMM_2022_3207330 crossref_primary_10_1109_TNNLS_2022_3190880 crossref_primary_10_3390_s22145464 crossref_primary_10_1088_1742_6596_1848_1_012085 crossref_primary_10_1016_j_optlastec_2024_112181 crossref_primary_10_1007_s40031_024_01004_3 crossref_primary_10_1111_cgf_15210 crossref_primary_10_1007_s10462_021_10039_7 crossref_primary_10_1016_j_ymeth_2021_11_004 crossref_primary_10_1007_s10489_021_02627_5 crossref_primary_10_1007_s00371_020_01910_9 crossref_primary_10_1016_j_infrared_2017_08_015 crossref_primary_10_1049_iet_ipr_2020_0100 crossref_primary_10_1109_TIM_2022_3222517 crossref_primary_10_1016_j_optlaseng_2023_107561 crossref_primary_10_1145_3498341 crossref_primary_10_1145_3569464 crossref_primary_10_3390_ai6070132 crossref_primary_10_3390_electronics12244950 crossref_primary_10_1007_s00530_024_01391_z crossref_primary_10_1016_j_advengsoft_2024_103713 crossref_primary_10_1088_1742_6596_1345_2_022030 crossref_primary_10_1145_3745786 crossref_primary_10_1016_j_jvcir_2025_104478 crossref_primary_10_1109_JSEN_2023_3314898 crossref_primary_10_1109_TCSVT_2022_3146731 crossref_primary_10_1109_TMM_2023_3312851 crossref_primary_10_1109_TETCI_2023_3301337 crossref_primary_10_1109_TRO_2025_3548540 crossref_primary_10_1007_s00603_023_03490_1 crossref_primary_10_1109_TITS_2024_3495034 crossref_primary_10_1155_2023_6225923 crossref_primary_10_1145_3735973 crossref_primary_10_1007_s11831_025_10226_7 crossref_primary_10_1177_30504554251342571 crossref_primary_10_1109_ACCESS_2023_3269719 crossref_primary_10_1016_j_displa_2024_102774 crossref_primary_10_1016_j_sigpro_2018_04_025 crossref_primary_10_1016_j_cviu_2025_104439 crossref_primary_10_1109_TMM_2024_3413293 crossref_primary_10_3389_fmars_2022_921492 crossref_primary_10_3390_math11071657 crossref_primary_10_1109_ACCESS_2024_3461859 crossref_primary_10_3389_fgene_2021_799777 crossref_primary_10_1016_j_patcog_2022_109039 crossref_primary_10_1016_j_image_2022_116742 crossref_primary_10_1007_s00530_025_01891_6 crossref_primary_10_1109_TNNLS_2023_3289626 crossref_primary_10_1007_s00521_021_06551_0 crossref_primary_10_1016_j_dsp_2025_105272 crossref_primary_10_1016_j_neuroimage_2021_118687 crossref_primary_10_1109_ACCESS_2022_3202940 crossref_primary_10_1364_AO_486302 crossref_primary_10_1016_j_compeleceng_2025_110469 crossref_primary_10_1007_s11554_024_01532_7 crossref_primary_10_1016_j_jvcir_2023_104010 crossref_primary_10_1109_TETCI_2024_3369321 crossref_primary_10_1007_s00371_023_03249_3 crossref_primary_10_3390_electronics13183713 crossref_primary_10_1016_j_cag_2024_103921 crossref_primary_10_3390_math9202613 crossref_primary_10_1109_TIP_2019_2938310 crossref_primary_10_1007_s11263_022_01667_9 crossref_primary_10_1016_j_patcog_2019_107051 crossref_primary_10_1016_j_neunet_2025_107764 crossref_primary_10_1016_j_patcog_2019_107038 crossref_primary_10_1049_ipr2_12124 crossref_primary_10_3390_electronics12143162 crossref_primary_10_1109_ACCESS_2020_2995549 crossref_primary_10_1016_j_dsp_2025_105044 crossref_primary_10_1007_s00530_023_01228_1 crossref_primary_10_1016_j_jvcir_2024_104308 crossref_primary_10_1016_j_neucom_2021_02_059 crossref_primary_10_3390_mi12121458 crossref_primary_10_1109_TIP_2021_3135473 crossref_primary_10_1007_s11263_024_02250_0 crossref_primary_10_1109_ACCESS_2019_2924042 crossref_primary_10_1007_s00521_024_09687_x crossref_primary_10_1109_TIP_2018_2869722 crossref_primary_10_1007_s11063_022_11107_x crossref_primary_10_1016_j_autcon_2023_104930 crossref_primary_10_1080_13682199_2023_2198350 crossref_primary_10_1049_itr2_12534 crossref_primary_10_1016_j_compind_2023_103862 crossref_primary_10_1007_s00371_021_02289_x crossref_primary_10_1007_s00521_021_06836_4 crossref_primary_10_1007_s11042_023_16871_z crossref_primary_10_3390_math11194194 crossref_primary_10_1109_LSP_2024_3453120 crossref_primary_10_1109_TETCI_2024_3358200 crossref_primary_10_1109_JSTSP_2022_3175015 crossref_primary_10_1049_ipr2_12368 crossref_primary_10_1080_10589759_2023_2274011 crossref_primary_10_1145_3495258 crossref_primary_10_1016_j_eswa_2023_120271 crossref_primary_10_1016_j_knosys_2024_111958 crossref_primary_10_1016_j_dsp_2025_105221 crossref_primary_10_1038_s41598_024_80265_w crossref_primary_10_1109_TCI_2023_3323835 crossref_primary_10_1109_ACCESS_2025_3573171 crossref_primary_10_1007_s12652_021_02947_x crossref_primary_10_1007_s12200_024_00129_z crossref_primary_10_1109_TIP_2022_3189805 crossref_primary_10_3233_JIFS_211664 crossref_primary_10_3390_rs16071134 crossref_primary_10_1016_j_compbiomed_2023_106961 crossref_primary_10_1016_j_knosys_2020_106617 crossref_primary_10_7717_peerj_cs_2799 crossref_primary_10_3390_biomimetics8020212 crossref_primary_10_1007_s11760_024_03621_3 crossref_primary_10_1038_s41598_024_67131_5 crossref_primary_10_1049_ipr2_13226 crossref_primary_10_3390_app15031604 crossref_primary_10_1007_s00371_022_02570_7 crossref_primary_10_1016_j_neucom_2025_131174 crossref_primary_10_3390_electronics13040788 crossref_primary_10_1016_j_eswa_2024_124923 crossref_primary_10_1109_JIOT_2024_3513545 crossref_primary_10_1016_j_jvcir_2024_104337 crossref_primary_10_1016_j_patcog_2024_110799 crossref_primary_10_3389_fmars_2023_1133881 crossref_primary_10_1155_2024_3328299 crossref_primary_10_1088_1742_6596_1345_4_042055 crossref_primary_10_1109_JSTSP_2020_3043590 crossref_primary_10_1016_j_image_2025_117276 crossref_primary_10_1007_s13042_022_01716_2 crossref_primary_10_1016_j_image_2025_117274 crossref_primary_10_1016_j_petrol_2020_106944 crossref_primary_10_1016_j_dsp_2022_103881 crossref_primary_10_1007_s11042_023_16650_w crossref_primary_10_1016_j_jvcir_2025_104402 crossref_primary_10_1016_j_image_2021_116466 crossref_primary_10_1016_j_ymssp_2018_03_011 crossref_primary_10_1109_ACCESS_2021_3073090 crossref_primary_10_1007_s00034_021_01711_y crossref_primary_10_1088_1361_6501_aa6e22 crossref_primary_10_3390_math10234472 crossref_primary_10_1002_aisy_202300239 crossref_primary_10_1016_j_neucom_2020_09_002 crossref_primary_10_1109_TGRS_2017_2777886 crossref_primary_10_1109_TNNLS_2024_3502424 crossref_primary_10_1007_s00371_025_03835_7 crossref_primary_10_1109_TIP_2024_3519997 crossref_primary_10_1360_SSI_2024_0394 crossref_primary_10_1016_j_inffus_2023_101949 crossref_primary_10_1016_j_sigpro_2022_108902 crossref_primary_10_1137_22M1543161 crossref_primary_10_1109_TCSVT_2021_3049940 crossref_primary_10_1038_s41598_025_10779_4 crossref_primary_10_1007_s11042_023_15447_1 crossref_primary_10_1016_j_cnsns_2023_107278 crossref_primary_10_1016_j_engappai_2023_106925 crossref_primary_10_1016_j_jfranklin_2023_02_023 crossref_primary_10_1038_s41598_025_95366_3 crossref_primary_10_1088_1742_6596_2258_1_012003 crossref_primary_10_1007_s11760_024_03768_z crossref_primary_10_1007_s41095_021_0232_x crossref_primary_10_1016_j_jksuci_2024_102234 crossref_primary_10_1016_j_jcp_2021_110532 crossref_primary_10_1007_s11760_023_02927_y crossref_primary_10_3390_drones8080390 crossref_primary_10_1007_s11063_023_11303_3 crossref_primary_10_1016_j_neucom_2025_131383 crossref_primary_10_1109_TPAMI_2021_3063604 crossref_primary_10_1016_j_eswa_2024_123722 crossref_primary_10_1109_JBHI_2022_3168604 crossref_primary_10_1007_s00530_025_01929_9 crossref_primary_10_1109_JSYST_2023_3262593 crossref_primary_10_1109_ACCESS_2023_3344534 crossref_primary_10_1109_TPAMI_2021_3126387 crossref_primary_10_1007_s11760_025_04004_y crossref_primary_10_1088_1757_899X_452_4_042202 crossref_primary_10_1016_j_cagd_2018_03_024 crossref_primary_10_1007_s11664_024_11079_9 crossref_primary_10_1007_s00371_025_03875_z crossref_primary_10_1007_s40747_024_01762_z crossref_primary_10_1016_j_sigpro_2017_08_021 crossref_primary_10_3390_s18103583 crossref_primary_10_1016_j_cogsys_2018_07_004 crossref_primary_10_1016_j_image_2023_116971 crossref_primary_10_3233_JCM_226858 crossref_primary_10_1080_08839514_2024_2349410 crossref_primary_10_1109_TII_2022_3172902 crossref_primary_10_1109_TIM_2024_3372230 crossref_primary_10_1016_j_cag_2022_12_001 crossref_primary_10_1016_j_measurement_2023_113567 crossref_primary_10_1016_j_inffus_2024_102467 crossref_primary_10_1109_ACCESS_2024_3406944 crossref_primary_10_3788_LOP241837 crossref_primary_10_1109_TMM_2024_3414328 crossref_primary_10_1186_s12544_023_00583_4 crossref_primary_10_1155_2021_6681202 crossref_primary_10_1007_s11042_022_13598_1 crossref_primary_10_1145_3618373 crossref_primary_10_1007_s11263_025_02551_y crossref_primary_10_3390_sym15101850 crossref_primary_10_1049_cit2_12188 crossref_primary_10_3390_computers13060134 crossref_primary_10_1049_ipr2_12650 crossref_primary_10_1109_TCSVT_2023_3325357 crossref_primary_10_1016_j_inffus_2025_103400 crossref_primary_10_3390_electronics12040990 crossref_primary_10_1016_j_patcog_2023_109344 crossref_primary_10_1109_TCSVT_2024_3408007 crossref_primary_10_1155_2021_5563698 crossref_primary_10_1016_j_measurement_2025_118746 crossref_primary_10_1002_cpe_70255 crossref_primary_10_1109_TMM_2020_3021243 crossref_primary_10_1109_TIM_2022_3181280 crossref_primary_10_1007_s11760_025_03914_1 crossref_primary_10_1007_s11760_021_01915_4 crossref_primary_10_1109_TIP_2018_2810539 crossref_primary_10_1109_LSP_2020_3036312 crossref_primary_10_1007_s00521_022_07612_8 crossref_primary_10_1007_s11263_025_02542_z crossref_primary_10_1007_s11042_023_15761_8 crossref_primary_10_1016_j_ins_2025_122625 crossref_primary_10_1109_TII_2021_3127188 crossref_primary_10_1111_coin_12648 crossref_primary_10_1007_s00371_024_03262_0 crossref_primary_10_3390_rs14102338 crossref_primary_10_1007_s11263_024_02084_w crossref_primary_10_1016_j_patrec_2021_10_030 crossref_primary_10_1016_j_cma_2020_113291 crossref_primary_10_3390_electronics12245022 crossref_primary_10_1109_TCSVT_2023_3284856 crossref_primary_10_1109_TIM_2025_3557114 crossref_primary_10_1049_ipr2_12418 crossref_primary_10_1109_TCSVT_2023_3303574 crossref_primary_10_1016_j_neucom_2025_130005 crossref_primary_10_1109_JSEN_2019_2927414 crossref_primary_10_1007_s11554_025_01744_5 crossref_primary_10_1007_s00779_021_01627_z crossref_primary_10_1109_JSEN_2023_3296167 crossref_primary_10_3390_electronics13204025 crossref_primary_10_1016_j_marenvres_2025_107510 crossref_primary_10_1109_TCSVT_2023_3313348 crossref_primary_10_1016_j_cviu_2025_104496 crossref_primary_10_1109_ACCESS_2021_3054505 crossref_primary_10_1109_ACCESS_2018_2812809 crossref_primary_10_1109_TCSVT_2023_3286802 crossref_primary_10_1016_j_dsp_2023_104071 crossref_primary_10_1007_s42979_022_01608_w crossref_primary_10_1109_TIP_2020_2981922 crossref_primary_10_1007_s00371_025_03842_8 crossref_primary_10_3390_rs14184608 crossref_primary_10_3390_e24060815 crossref_primary_10_3390_sym12030446 crossref_primary_10_1109_TCSVT_2024_3377108 crossref_primary_10_3390_electronics12194077 crossref_primary_10_1016_j_cag_2025_104209 crossref_primary_10_1016_j_displa_2025_103219 crossref_primary_10_1007_s44174_025_00492_1 crossref_primary_10_1109_TIM_2022_3216880 crossref_primary_10_54691_fse_v3i11_5701 crossref_primary_10_3389_fmed_2023_1061357 crossref_primary_10_1109_ACCESS_2020_2992749 crossref_primary_10_1109_LSP_2022_3212641 crossref_primary_10_1007_s00521_024_10885_w crossref_primary_10_1007_s00530_025_01940_0 crossref_primary_10_1109_TITS_2025_3534472 crossref_primary_10_3390_s23239593 crossref_primary_10_1080_09540091_2025_2546911 crossref_primary_10_1109_TETCI_2024_3508834 crossref_primary_10_1007_s00371_022_02412_6 crossref_primary_10_1007_s11042_024_18919_0 crossref_primary_10_1016_j_dsp_2024_104556 crossref_primary_10_1016_j_dsp_2023_104054 crossref_primary_10_1109_TGRS_2024_3351134 crossref_primary_10_1007_s11263_024_01995_y crossref_primary_10_1007_s13042_023_01991_7 crossref_primary_10_1016_j_cviu_2023_103681 crossref_primary_10_1016_j_neucom_2021_05_025 crossref_primary_10_1016_j_patcog_2022_108983 crossref_primary_10_1109_TETCI_2024_3359051 crossref_primary_10_1016_j_eswa_2022_117564 crossref_primary_10_1016_j_compeleceng_2024_109622 crossref_primary_10_3390_rs13010062 crossref_primary_10_1016_j_patrec_2020_07_041 crossref_primary_10_1155_2024_4650233 crossref_primary_10_3390_sym14061165 crossref_primary_10_1109_ACCESS_2024_3523419 crossref_primary_10_1007_s00500_023_08788_4 crossref_primary_10_1109_TMM_2022_3232206 crossref_primary_10_1038_s41598_025_98484_0 crossref_primary_10_1007_s00530_025_01820_7 crossref_primary_10_1016_j_compeleceng_2023_108859 crossref_primary_10_3390_electronics13050950 crossref_primary_10_1109_TMM_2020_3039361 crossref_primary_10_1007_s10462_017_9576_0 crossref_primary_10_1109_TGRS_2024_3422314 crossref_primary_10_1016_j_ocecoaman_2023_106478 crossref_primary_10_1109_TCSVT_2024_3426527 crossref_primary_10_1109_ACCESS_2023_3328923 crossref_primary_10_1088_1742_6596_2822_1_012084 crossref_primary_10_1155_2020_3936975 crossref_primary_10_1155_2022_3903453 crossref_primary_10_1016_j_dsp_2019_06_014 crossref_primary_10_1109_TCE_2024_3367667 crossref_primary_10_1016_j_cviu_2024_103930 crossref_primary_10_1016_j_neucom_2025_130662 crossref_primary_10_1109_ACCESS_2020_2994969 crossref_primary_10_1016_j_imavis_2024_104933 crossref_primary_10_1017_S0373463321000783 crossref_primary_10_3390_electronics12163517 crossref_primary_10_1186_s13640_018_0362_y crossref_primary_10_3390_app13148148 crossref_primary_10_3390_electronics13010230 crossref_primary_10_1016_j_dsp_2024_104521 crossref_primary_10_1109_JIOT_2024_3446036 crossref_primary_10_1016_j_displa_2023_102614 crossref_primary_10_1109_ACCESS_2018_2880279 crossref_primary_10_12677_JISP_2022_113013 crossref_primary_10_3390_app15116330 crossref_primary_10_1109_TITS_2025_3553106 crossref_primary_10_1109_TMM_2022_3193059 crossref_primary_10_3390_rs14163985 crossref_primary_10_1007_s41870_022_00931_y crossref_primary_10_1007_s00371_022_02761_2 crossref_primary_10_3390_s22218244 crossref_primary_10_1007_s13042_023_02036_9 crossref_primary_10_1007_s11760_022_02319_8 crossref_primary_10_1109_TGRS_2023_3281741 crossref_primary_10_1109_ACCESS_2021_3057167 crossref_primary_10_1007_s42154_023_00249_w crossref_primary_10_1109_TNNLS_2025_3566647 crossref_primary_10_3390_electronics12173576 crossref_primary_10_1007_s11063_023_11407_w crossref_primary_10_1016_j_dsp_2023_104259 crossref_primary_10_1016_j_image_2023_117016 crossref_primary_10_1016_j_dsp_2024_104752 crossref_primary_10_1109_TIM_2024_3470234 crossref_primary_10_1007_s11042_023_15256_6 crossref_primary_10_1016_j_neucom_2025_129426 crossref_primary_10_1109_TCSI_2020_3010634 crossref_primary_10_1109_ACCESS_2020_3022393 crossref_primary_10_1109_LSP_2022_3162145 crossref_primary_10_32604_cmc_2024_059000 crossref_primary_10_3390_s24020673 crossref_primary_10_1016_j_engappai_2023_106062 crossref_primary_10_1016_j_patrec_2021_12_010 crossref_primary_10_1016_j_cviu_2024_103952 crossref_primary_10_1016_j_future_2020_02_068 crossref_primary_10_1007_s00530_023_01252_1 crossref_primary_10_1007_s11265_025_01945_y crossref_primary_10_1016_j_sigpro_2022_108523 crossref_primary_10_1007_s00138_021_01223_4 crossref_primary_10_3390_su15021029 crossref_primary_10_1109_ACCESS_2021_3072331 crossref_primary_10_3390_electronics12081887 crossref_primary_10_3390_s20020495 crossref_primary_10_1007_s10489_022_04013_1 crossref_primary_10_1109_LSP_2022_3163686 crossref_primary_10_1155_2022_5818180 crossref_primary_10_1007_s00530_021_00757_x crossref_primary_10_1016_j_cviu_2024_103948 crossref_primary_10_1007_s00170_024_13566_z crossref_primary_10_1016_j_array_2025_100431 crossref_primary_10_1109_TIP_2021_3087943 crossref_primary_10_1016_j_cose_2020_102120 crossref_primary_10_1109_TMM_2023_3278380 crossref_primary_10_1109_TMM_2023_3278385 crossref_primary_10_1016_j_patcog_2021_108023 crossref_primary_10_1109_JSEN_2025_3543768 crossref_primary_10_1063_5_0087205 crossref_primary_10_1088_1742_6596_2074_1_012024 crossref_primary_10_1016_j_neucom_2020_12_057 crossref_primary_10_1016_j_dcan_2024_11_010 crossref_primary_10_1109_TMM_2022_3175634 crossref_primary_10_1145_3397322 crossref_primary_10_1016_j_neucom_2024_128011 crossref_primary_10_3390_electronics11010032 crossref_primary_10_1080_13682199_2024_2395751 crossref_primary_10_1109_ACCESS_2020_2988767 crossref_primary_10_1109_TIP_2024_3486610 crossref_primary_10_3390_s23208442 crossref_primary_10_1016_j_infrared_2024_105351 crossref_primary_10_3390_app14010332 crossref_primary_10_3390_sym11040574 crossref_primary_10_1016_j_sigpro_2022_108468 crossref_primary_10_1109_ACCESS_2021_3137993 crossref_primary_10_1109_TNNLS_2021_3052903 crossref_primary_10_3390_photonics11121198 crossref_primary_10_3390_electronics11223695 crossref_primary_10_1109_LSENS_2024_3380889 crossref_primary_10_1016_j_patcog_2024_111180 crossref_primary_10_1016_j_jksuci_2023_101666 crossref_primary_10_1016_j_image_2021_116527 crossref_primary_10_1016_j_jvcir_2024_104242 crossref_primary_10_1371_journal_pone_0303696 crossref_primary_10_1016_j_engappai_2024_109906 crossref_primary_10_3390_s22186904 crossref_primary_10_1109_TCBB_2023_3256709 crossref_primary_10_3389_fnhum_2021_638052 crossref_primary_10_1109_TMM_2023_3293736 crossref_primary_10_3390_electronics9061011 crossref_primary_10_1109_TII_2020_3026036 crossref_primary_10_1109_ACCESS_2022_3227069 crossref_primary_10_1016_j_eswa_2024_124132 crossref_primary_10_3389_fmars_2023_1163831 crossref_primary_10_1109_TCSVT_2024_3480930 crossref_primary_10_3390_s20185300 crossref_primary_10_1109_JSEN_2024_3396195 crossref_primary_10_1007_s11263_021_01466_8 crossref_primary_10_1016_j_image_2024_117229 crossref_primary_10_1109_TMM_2023_3254141 crossref_primary_10_1038_s41598_021_02085_6 crossref_primary_10_1016_j_eswa_2023_119739 crossref_primary_10_1049_ell2_70053 crossref_primary_10_1109_TIP_2021_3125394 crossref_primary_10_1017_S0373463322000467 crossref_primary_10_3390_electronics10232970 crossref_primary_10_1109_ACCESS_2025_3578916 crossref_primary_10_3390_s24155019 crossref_primary_10_3390_sym17091560 crossref_primary_10_3390_s23177605 crossref_primary_10_1007_s11227_024_06683_9 crossref_primary_10_1007_s42979_022_01261_3 crossref_primary_10_1109_TETCI_2024_3369858 crossref_primary_10_1109_TPAMI_2024_3487361 crossref_primary_10_1016_j_autcon_2021_103721 crossref_primary_10_1007_s11760_024_03431_7 crossref_primary_10_1007_s11263_023_01808_8 crossref_primary_10_1007_s11042_024_20086_1 crossref_primary_10_1016_j_dsp_2024_104802 crossref_primary_10_1049_ipr2_12097 crossref_primary_10_3390_e26030184 crossref_primary_10_1109_TIM_2023_3301049 crossref_primary_10_1109_TCE_2024_3516366 crossref_primary_10_3390_s24030772 crossref_primary_10_3390_s24165246 crossref_primary_10_1109_TNNLS_2023_3280037 crossref_primary_10_1016_j_displa_2024_102856 crossref_primary_10_1016_j_optlaseng_2024_108800 crossref_primary_10_1007_s11042_023_15242_y crossref_primary_10_1145_3758097 crossref_primary_10_1017_eds_2023_41 crossref_primary_10_1016_j_dsp_2024_104808 crossref_primary_10_1109_TCYB_2021_3140202 crossref_primary_10_1109_TIM_2025_3604925 crossref_primary_10_1016_j_cmpb_2022_106800 crossref_primary_10_1109_JSEN_2023_3328995 crossref_primary_10_1109_TIP_2025_3553070 crossref_primary_10_1016_j_dsp_2022_103387 crossref_primary_10_3390_app14072846 crossref_primary_10_1016_j_image_2024_117246 crossref_primary_10_3389_fnins_2024_1297671 crossref_primary_10_1016_j_jvcir_2024_104050 crossref_primary_10_1007_s11082_023_05224_7 crossref_primary_10_1088_1742_6596_2035_1_012027 crossref_primary_10_1155_2022_1882464 crossref_primary_10_3390_s22155593 crossref_primary_10_1016_j_neucom_2022_12_007 crossref_primary_10_3390_electronics14112212 crossref_primary_10_1016_j_patrec_2025_07_026 crossref_primary_10_1016_j_displa_2024_102877 crossref_primary_10_1080_00032719_2021_1992417 crossref_primary_10_1007_s10586_024_04829_1 crossref_primary_10_1007_s12559_024_10347_4 crossref_primary_10_3390_jimaging11080253 crossref_primary_10_3724_SP_J_1089_2022_19719 crossref_primary_10_1371_journal_pone_0331746 crossref_primary_10_1155_2021_3742536 crossref_primary_10_1371_journal_pone_0247440 crossref_primary_10_1016_j_image_2022_116800 crossref_primary_10_1038_s41598_023_40899_8 crossref_primary_10_1109_TIE_2020_3013783 crossref_primary_10_1016_j_neucom_2022_07_058 crossref_primary_10_1038_srep46368 crossref_primary_10_1109_TIP_2019_2910412 crossref_primary_10_3390_rs15143580 crossref_primary_10_1016_j_matdes_2023_111852 crossref_primary_10_1109_ACCESS_2018_2889321 crossref_primary_10_1109_TETCI_2023_3243920 crossref_primary_10_1109_TIM_2022_3216391 crossref_primary_10_1007_s00034_025_03017_9 crossref_primary_10_1117_1_JEI_33_2_023040 crossref_primary_10_1109_TAI_2024_3405405 crossref_primary_10_1109_TASE_2019_2935314 crossref_primary_10_1016_j_bspc_2022_103586 crossref_primary_10_1108_IJICC_03_2021_0053 crossref_primary_10_1145_3457905 crossref_primary_10_1016_j_patcog_2025_111628 crossref_primary_10_1109_ACCESS_2022_3161527 crossref_primary_10_1016_j_image_2025_117332 crossref_primary_10_1016_j_imavis_2024_105313 crossref_primary_10_1007_s11760_024_03239_5 crossref_primary_10_1016_j_patcog_2024_110490 crossref_primary_10_1007_s11760_023_02850_2 crossref_primary_10_1109_TIM_2022_3232641 crossref_primary_10_1109_TITS_2024_3524117 crossref_primary_10_31854_1813_324X_2025_11_2_7_19 crossref_primary_10_1016_j_image_2023_116925 crossref_primary_10_1016_j_ndteint_2024_103049 crossref_primary_10_1109_TPAMI_2025_3545936 crossref_primary_10_1016_j_cag_2023_08_004 crossref_primary_10_1016_j_cviu_2024_104276 crossref_primary_10_1109_TAI_2024_3499950 crossref_primary_10_1016_j_image_2025_117336 crossref_primary_10_3390_s25051530 crossref_primary_10_1109_TPAMI_2025_3554639 crossref_primary_10_1007_s00530_025_01948_6 crossref_primary_10_1007_s00371_024_03452_w crossref_primary_10_1016_j_asoc_2019_105889 crossref_primary_10_1007_s00371_022_02582_3 crossref_primary_10_1109_TMM_2020_3037526 crossref_primary_10_1016_j_cag_2025_104380 crossref_primary_10_1007_s10489_025_06771_0 crossref_primary_10_1109_TCSVT_2023_3323128 crossref_primary_10_3390_s20185147 crossref_primary_10_1117_1_JEI_33_2_023020 crossref_primary_10_3390_electronics13122403 crossref_primary_10_1016_j_bspc_2022_104450 crossref_primary_10_1016_j_patcog_2019_107163 crossref_primary_10_1016_j_patcog_2019_107166 crossref_primary_10_1016_j_procs_2024_03_021 crossref_primary_10_1007_s11554_024_01424_w crossref_primary_10_1109_LSP_2022_3160652 crossref_primary_10_1007_s13721_022_00373_3 crossref_primary_10_1109_TMM_2025_3535333 crossref_primary_10_1007_s11042_024_18749_0 crossref_primary_10_1016_j_image_2022_116848 crossref_primary_10_1016_j_aei_2025_103165 crossref_primary_10_1016_j_measurement_2021_110545 crossref_primary_10_1109_ACCESS_2020_2973658 crossref_primary_10_1109_TPAMI_2022_3212995 crossref_primary_10_1016_j_biocon_2024_110713 crossref_primary_10_1016_j_eswa_2025_128653 crossref_primary_10_1631_FITEE_2400261 crossref_primary_10_1109_ACCESS_2020_2970143 crossref_primary_10_1109_TIP_2023_3266171 crossref_primary_10_1007_s11042_023_15908_7 crossref_primary_10_1109_ACCESS_2023_3328534 crossref_primary_10_1007_s11042_023_17527_8 crossref_primary_10_1109_TMM_2020_2969790 crossref_primary_10_1016_j_patcog_2019_107143 crossref_primary_10_1016_j_ins_2020_09_066 crossref_primary_10_3788_LOP241669 crossref_primary_10_3390_electronics11101627 crossref_primary_10_26599_TST_2022_9010047 crossref_primary_10_1109_JSEN_2020_3044392 crossref_primary_10_1016_j_knosys_2025_113055 crossref_primary_10_1111_cgf_15192 crossref_primary_10_1007_s10278_025_01509_3 crossref_primary_10_1007_s11042_021_10607_7 crossref_primary_10_1007_s11042_017_5448_5 crossref_primary_10_1109_ACCESS_2020_3032981 crossref_primary_10_1007_s10586_025_05494_8 crossref_primary_10_1016_j_dsp_2022_103547 crossref_primary_10_1016_j_dsp_2025_105342 crossref_primary_10_1016_j_image_2023_116966 crossref_primary_10_1109_ACCESS_2019_2951583 crossref_primary_10_1109_TMM_2020_2969782 crossref_primary_10_1109_LSP_2020_3029738 crossref_primary_10_1007_s00371_023_02986_9 crossref_primary_10_1109_TNNLS_2021_3071245 crossref_primary_10_1016_j_imavis_2025_105645 crossref_primary_10_1109_TMM_2025_3535342 crossref_primary_10_1016_j_compag_2024_109169 crossref_primary_10_3390_electronics12183907 crossref_primary_10_1109_ACCESS_2023_3290490 crossref_primary_10_3390_electronics14122419 crossref_primary_10_1109_TETCI_2024_3404015 crossref_primary_10_1109_TIP_2020_3045617 crossref_primary_10_1016_j_jvcir_2024_104211 crossref_primary_10_1049_ipr2_70116 crossref_primary_10_1007_s11263_020_01418_8 crossref_primary_10_1016_j_bspc_2021_103286 crossref_primary_10_1109_ACCESS_2021_3068861 crossref_primary_10_1007_s11042_022_13830_y crossref_primary_10_1007_s00371_020_01964_9 crossref_primary_10_1109_TCSVT_2024_3472278 crossref_primary_10_1007_s00138_024_01651_y crossref_primary_10_1016_j_cag_2025_104170 crossref_primary_10_1049_ipr2_12287 crossref_primary_10_1109_ACCESS_2024_3434599 crossref_primary_10_3233_JIFS_222644 crossref_primary_10_1007_s11042_020_10310_z crossref_primary_10_3390_app122312476 crossref_primary_10_1007_s00371_020_01888_4 crossref_primary_10_1016_j_jvcir_2024_104223 crossref_primary_10_3788_gzxb20255406_0610001 crossref_primary_10_1007_s11263_020_01407_x crossref_primary_10_1109_LGRS_2022_3181106 crossref_primary_10_1088_1361_6560_aae511 crossref_primary_10_7717_peerj_cs_2417 crossref_primary_10_1007_s11760_024_03733_w crossref_primary_10_1109_ACCESS_2022_3207299 crossref_primary_10_3390_app13179645 crossref_primary_10_3390_app14124962 crossref_primary_10_3390_s19040969 crossref_primary_10_1016_j_jksuci_2023_101814 crossref_primary_10_1109_TPAMI_2020_3022406 crossref_primary_10_3390_app15168850 crossref_primary_10_3390_electronics12092081 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1109_TPAMI_2022_3152562 crossref_primary_10_1007_s00530_022_00913_x crossref_primary_10_1007_s11042_020_09919_x crossref_primary_10_1016_j_cma_2022_115768 crossref_primary_10_1038_s40494_025_01635_9 crossref_primary_10_1016_j_jvcir_2023_103780 crossref_primary_10_1109_ACCESS_2021_3059498 crossref_primary_10_3390_s25144433 crossref_primary_10_1007_s00530_024_01298_9 crossref_primary_10_1109_ACCESS_2025_3583723 crossref_primary_10_1016_j_image_2019_02_001 crossref_primary_10_1109_JSTARS_2024_3357093 crossref_primary_10_3390_s23020792 crossref_primary_10_1016_j_cviu_2018_10_010 crossref_primary_10_1007_s11042_022_13411_z crossref_primary_10_1016_j_engappai_2024_108036 crossref_primary_10_1016_j_engappai_2025_110867 crossref_primary_10_1016_j_eswa_2025_129436 crossref_primary_10_1016_j_patcog_2023_110001 crossref_primary_10_1007_s11042_024_18773_0 crossref_primary_10_1016_j_vlsi_2023_102102 crossref_primary_10_1142_S0129156425401524 crossref_primary_10_1007_s00170_022_09054_x crossref_primary_10_3233_JIFS_230643 crossref_primary_10_1109_TCSVT_2022_3141578 crossref_primary_10_1007_s11042_025_21051_2 crossref_primary_10_1007_s00371_021_02210_6 crossref_primary_10_1007_s11831_021_09587_6 crossref_primary_10_1007_s00371_023_03039_x crossref_primary_10_1016_j_eswa_2025_127263 crossref_primary_10_1145_3665498 crossref_primary_10_1016_j_asoc_2022_109168 crossref_primary_10_1002_rob_22595 crossref_primary_10_1016_j_engappai_2022_105411 crossref_primary_10_1049_ipr2_12750 crossref_primary_10_1007_s00521_022_07713_4 crossref_primary_10_1155_2021_5577956 crossref_primary_10_1016_j_eswa_2022_118920 crossref_primary_10_1080_08839514_2021_1985799 crossref_primary_10_1007_s00371_021_02343_8 crossref_primary_10_1007_s00371_023_02896_w crossref_primary_10_1109_TPAMI_2021_3130302 crossref_primary_10_1109_TCSVT_2025_3541429 crossref_primary_10_1016_j_jvcir_2023_103795 crossref_primary_10_1007_s11042_023_17158_z crossref_primary_10_1109_ACCESS_2023_3278734 crossref_primary_10_1109_TCSVT_2024_3520802 crossref_primary_10_3390_s25051472 crossref_primary_10_1016_j_sigpro_2024_109689 crossref_primary_10_1109_TIP_2021_3062184 crossref_primary_10_1016_j_patcog_2021_108506 crossref_primary_10_1007_s00371_023_02883_1 crossref_primary_10_1016_j_neucom_2024_128974 crossref_primary_10_1016_j_knosys_2025_114073 crossref_primary_10_1049_ipr2_12757 crossref_primary_10_3390_rs15174327 crossref_primary_10_1016_j_engappai_2025_111501 crossref_primary_10_1109_LSP_2022_3167331 crossref_primary_10_1016_j_engappai_2022_105632 crossref_primary_10_1049_ipr2_12771 crossref_primary_10_1145_3555777 crossref_primary_10_1109_TCSVT_2023_3239511 crossref_primary_10_12677_mos_2025_148567 crossref_primary_10_1109_LSP_2025_3562822 crossref_primary_10_1109_TIP_2023_3245991 crossref_primary_10_1371_journal_pone_0272398 crossref_primary_10_3390_rs14041027 crossref_primary_10_1016_j_sigpro_2022_108821 crossref_primary_10_1007_s10489_024_05534_7 crossref_primary_10_1109_TMM_2025_3543015 crossref_primary_10_1007_s10851_024_01224_8 crossref_primary_10_1016_j_compeleceng_2024_109310 crossref_primary_10_3390_app15147762 crossref_primary_10_1007_s00034_024_02890_0 crossref_primary_10_1016_j_neucom_2025_129399 crossref_primary_10_1051_shsconf_202316601068 crossref_primary_10_1007_s11042_021_11422_w crossref_primary_10_1007_s11554_024_01563_0 crossref_primary_10_1016_j_coal_2022_104046 crossref_primary_10_1088_1742_6596_2425_1_012027 crossref_primary_10_1109_TCSVT_2021_3113559 crossref_primary_10_3390_s22186799 crossref_primary_10_1007_s11760_023_02797_4 crossref_primary_10_1186_s42492_019_0031_8 crossref_primary_10_3390_sym17050798 crossref_primary_10_1016_j_cag_2022_04_002 crossref_primary_10_1049_iet_bmt_2018_5065 crossref_primary_10_3390_s25144463 crossref_primary_10_1109_ACCESS_2023_3297490 crossref_primary_10_3390_photonics10020198 crossref_primary_10_1007_s11042_024_19594_x crossref_primary_10_1109_JPROC_2023_3338272 crossref_primary_10_1007_s00371_022_02402_8 crossref_primary_10_1007_s11042_022_12429_7 crossref_primary_10_1007_s11042_022_12407_z crossref_primary_10_1016_j_cviu_2023_103916 crossref_primary_10_1016_j_cropro_2024_106734 crossref_primary_10_1016_j_ins_2019_05_015 crossref_primary_10_1109_LSP_2021_3134943 crossref_primary_10_3390_jimaging11040125 crossref_primary_10_1109_TNNLS_2024_3397886 crossref_primary_10_1007_s11063_024_11565_5 crossref_primary_10_3233_IDA_230631 crossref_primary_10_1016_j_neucom_2022_10_083 crossref_primary_10_3390_coatings15040478 crossref_primary_10_1109_TIP_2022_3140610 crossref_primary_10_1007_s00371_024_03735_2 crossref_primary_10_3390_math12193125 crossref_primary_10_1016_j_bspc_2020_102395 crossref_primary_10_1016_j_foodchem_2025_143799 crossref_primary_10_1109_LRA_2020_3048667 crossref_primary_10_1007_s00530_025_01708_6 crossref_primary_10_1016_j_patcog_2018_03_026 crossref_primary_10_1109_TMM_2024_3400668 crossref_primary_10_1109_TCSVT_2025_3549351 crossref_primary_10_1109_TCE_2023_3280467 crossref_primary_10_1016_j_patrec_2021_04_020 crossref_primary_10_3390_electronics13193883 crossref_primary_10_1016_j_engappai_2025_110841 crossref_primary_10_1016_j_neunet_2017_12_003 crossref_primary_10_1049_ipr2_12321 crossref_primary_10_1109_TGRS_2022_3201206 crossref_primary_10_3390_e26100882 crossref_primary_10_1016_j_knosys_2024_111779 crossref_primary_10_1109_TCSVT_2024_3398145 crossref_primary_10_3390_math13071119 crossref_primary_10_3390_electronics11172750 crossref_primary_10_1016_j_patcog_2022_108846 crossref_primary_10_1109_TETC_2024_3403935 crossref_primary_10_1016_j_imu_2022_101136 crossref_primary_10_1007_s11042_022_13139_w crossref_primary_10_1007_s00530_025_01750_4 crossref_primary_10_1016_j_neucom_2025_131430 crossref_primary_10_1109_TIP_2020_2984098 crossref_primary_10_1049_iet_ipr_2018_6208 crossref_primary_10_1109_TIM_2023_3342229 crossref_primary_10_1016_j_compeleceng_2024_109750 crossref_primary_10_1016_j_engappai_2024_109521 crossref_primary_10_1109_TIP_2021_3051462 crossref_primary_10_1016_j_eswa_2025_129039 crossref_primary_10_1109_ACCESS_2024_3381514 crossref_primary_10_1007_s10489_019_01623_0 crossref_primary_10_1155_2018_3145947 crossref_primary_10_1155_2022_9613936 crossref_primary_10_1109_TIM_2024_3351255 crossref_primary_10_1109_TNNLS_2023_3274926 crossref_primary_10_1007_s40314_022_02140_6 crossref_primary_10_1016_j_patrec_2018_01_010 crossref_primary_10_1007_s11220_025_00611_8 crossref_primary_10_1016_j_engappai_2024_109749 crossref_primary_10_1038_s41598_019_54707_9 crossref_primary_10_1016_j_aap_2021_106293 crossref_primary_10_1016_j_patcog_2022_108867 crossref_primary_10_1021_jacs_2c07957 crossref_primary_10_1109_TIP_2023_3286254 crossref_primary_10_1016_j_dsp_2024_104467 crossref_primary_10_3724_SP_J_1089_2022_18833 crossref_primary_10_1109_TCSVT_2022_3190916 crossref_primary_10_1016_j_patcog_2017_10_022 crossref_primary_10_1007_s11227_024_05952_x crossref_primary_10_1016_j_knosys_2025_113827 crossref_primary_10_1109_TIV_2023_3347952 crossref_primary_10_1007_s11227_024_06177_8 crossref_primary_10_1109_TETCI_2021_3053253 crossref_primary_10_1007_s10489_020_02119_y crossref_primary_10_1007_s11760_024_03299_7 crossref_primary_10_1016_j_isatra_2021_06_005 crossref_primary_10_1109_ACCESS_2023_3336411 crossref_primary_10_1002_lsm_23414 crossref_primary_10_1109_LSP_2020_2965824 crossref_primary_10_1109_TMM_2023_3284988 crossref_primary_10_1111_coin_12391 crossref_primary_10_1631_FITEE_2200344 crossref_primary_10_1016_j_neucom_2025_129572 crossref_primary_10_1109_ACCESS_2021_3097913 crossref_primary_10_1016_j_knosys_2023_111053 crossref_primary_10_1007_s11265_016_1209_3 crossref_primary_10_1186_s43593_022_00034_y crossref_primary_10_1109_TCSVT_2020_2987874 crossref_primary_10_1016_j_displa_2025_103136 crossref_primary_10_1016_j_optlastec_2025_113547 crossref_primary_10_1016_j_ymssp_2021_108797 crossref_primary_10_1109_TIP_2022_3180213 crossref_primary_10_1109_TCSVT_2025_3544771 crossref_primary_10_1109_TMM_2022_3162493 crossref_primary_10_1109_TPAMI_2022_3167175 crossref_primary_10_3390_electronics13112040 crossref_primary_10_3390_app142311033 crossref_primary_10_3390_app15137382 crossref_primary_10_1109_ACCESS_2023_3340914 crossref_primary_10_1016_j_patcog_2021_108370 crossref_primary_10_3390_ijgi12100400 crossref_primary_10_1016_j_neucom_2022_08_042 crossref_primary_10_1016_j_cviu_2020_103095 crossref_primary_10_1142_S0218348X17400102 crossref_primary_10_3390_electronics13183695 crossref_primary_10_1109_JSEN_2022_3143709 crossref_primary_10_1109_ACCESS_2019_2932130 crossref_primary_10_1016_j_ijleo_2022_169023 crossref_primary_10_1007_s11063_022_10872_z crossref_primary_10_1049_cit2_12279 crossref_primary_10_1109_ACCESS_2024_3437154 crossref_primary_10_1109_TMI_2021_3101937 crossref_primary_10_1016_j_neunet_2023_11_014 crossref_primary_10_1109_MMUL_2023_3314741 crossref_primary_10_34133_space_0293 crossref_primary_10_3390_app15010361 crossref_primary_10_1016_j_compeleceng_2023_108754 crossref_primary_10_1109_JSEN_2025_3590815 crossref_primary_10_3390_s25165192 crossref_primary_10_1007_s10489_024_06044_2 crossref_primary_10_3390_app15105556 crossref_primary_10_3390_app132011394 crossref_primary_10_1117_1_JEI_31_4_043050 crossref_primary_10_1016_j_neucom_2017_02_066 crossref_primary_10_1007_s00138_022_01365_z crossref_primary_10_32604_cmc_2025_059669 crossref_primary_10_1016_j_engappai_2023_107234 crossref_primary_10_1007_s13042_023_01983_7 crossref_primary_10_1016_j_autcon_2024_105404 crossref_primary_10_1007_s10921_023_01013_0 crossref_primary_10_1007_s11760_023_02613_z crossref_primary_10_1016_j_displa_2025_103163 crossref_primary_10_1016_j_patrec_2024_02_011 crossref_primary_10_1109_TCI_2023_3340617 crossref_primary_10_1109_TMI_2022_3147854 crossref_primary_10_1016_j_patcog_2023_109602 crossref_primary_10_1016_j_patcog_2025_112371 crossref_primary_10_1016_j_knosys_2023_111099 crossref_primary_10_1109_TCI_2023_3240087 crossref_primary_10_1016_j_measurement_2022_112013 crossref_primary_10_1016_j_engappai_2023_107003 crossref_primary_10_1109_ACCESS_2025_3558574 crossref_primary_10_1016_j_compeleceng_2024_109922 crossref_primary_10_1109_JSEN_2024_3481416 crossref_primary_10_3390_e25081201 crossref_primary_10_1109_ACCESS_2022_3178698 crossref_primary_10_3390_s25020327 crossref_primary_10_1007_s11042_023_15233_z crossref_primary_10_1177_09544070211016254 |
| Cites_doi | 10.1007/978-3-319-11758-4_10 10.1109/CVPR.2012.6247952 10.1109/ICCPS.2016.7479095 10.1109/TIP.2006.881969 10.1016/j.dsp.2013.06.002 10.1016/j.dsp.2003.07.002 10.1016/S0734-189X(87)80186-X 10.1109/TIP.2010.2092438 10.36001/phmconf.2015.v7i1.2723 10.1109/ICPR.1992.202045 10.1109/TIP.2003.819861 10.1109/TIP.2007.901238 10.1109/ICME.2011.6012107 10.1109/CVPR.2004.1315150 10.1109/TIP.2005.852196 10.1145/1390156.1390294 10.25080/Majora-92bf1922-003 10.1007/s11265-016-1209-3 10.1109/ICPR.2008.4761424 10.1007/BF03178082 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2016.06.008 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 662 |
| ExternalDocumentID | 10_1016_j_patcog_2016_06_008 S003132031630125X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-cfe59568701708221e20fa777a32d9867f26f0427673f1036a1a4b9f303952e3 |
| ISICitedReferencesCount | 1301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385899400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 03:52:18 EST 2025 Tue Nov 18 22:23:32 EST 2025 Fri Feb 23 02:25:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image enhancement Deep autoencoders Natural low-light images |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-cfe59568701708221e20fa777a32d9867f26f0427673f1036a1a4b9f303952e3 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2016_06_008 crossref_citationtrail_10_1016_j_patcog_2016_06_008 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-00 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | A. Yamasaki, H. Takauji, S. Kaneko, T. Kanade, H. Ohki, Denighting: Enhancement of nighttime images for a surveillance camera, in: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, IEEE, Tampa, FL, 2008, pp. 1–4. Dabov, Foi, Katkovnik, Egiazarian (bib15) 2007; 16 Chan, Ho, Nikolova (bib17) 2005; 14 J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 341–349. Pisano, Zong, Hemminger, DeLuce, Johnston, Muller, Braeuning, Pizer (bib10) 1998; 11 S. Sarkar, K.G. Lore, S. Sarkar, V. Ramanan, S.R. Chakravarthy, S. Phoha, A. Ray, Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, Proceedings of the Annual Conference of the Prognostics and Health Management Society, Coronado, California, 2015 F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements, in: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012. Bergstra, Bengio (bib32) 2012; 13 K.G. Lore, N. Sweet, K. Kumar, N. Ahmed, S. Sarkar, Deep value of information estimators for collaborative human–machine information gathering, in: International Conference of Cyber-physical Systems (ICCPS), Vienna, Austria, 2016. Santoso, Nugroho, Suparta, Hidayat (bib26) 2011; 2 Kaur, Kaur, Kaur (bib12) 2011; 2 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada, 2012. Paper PDF is found here Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, IEEE, Washington, DC.,2004, pp. II–97. S. Sarkar, V. Venugopalan, K. Reddy, J. Ryde, M. Giering, N. Jaitly, Occlusion edge detection in rgbd frames using deep convolutional neural networks, in: Proceedings of IEEE High Performance Extreme Computing Conference, Waltham, MA, 2015. P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International conference on Machine Learning-ICML'08, 2008, pp. 1096–1103. C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation using depth information, in: ICLR, 2013. P. Trahanias, A. Venetsanopoulos, Color image enhancement through 3-d histogram equalization, in: Proceedings of 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, IEEE, The Hague, The Netherlands, 1992, pp. 545–548. X. Dong, G. Wang, Y.A. Pang, W. Li, J.G. Wen, W. Meng, Y. Lu, Fast efficient algorithm for enhancement of low lighting video, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Barcelona, 2011, pp. 1–6. Wu (bib13) 2011; 20 R. Gonzalex, R. Woods, Digital image Processing, 2nd Edition, no. 0-201-28075-8 in 0-201-28075-8, Prentice Hall, Upper saddle Rivers, New Jersey, 2001. Elad, Aharon (bib16) 2006; 15 . Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib9) 1987; 39 Jain, Seung (bib19) 2008 F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in: Advances in Neural Information Processing Systems, 2013, pp. 1493–1501. H.C. Burger, C.J. Schuler, S. Harmeling, Image denoising: Can plain neural networks compete with bm3d? in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, 2012, pp. 2392–2399. Loza, Bull, Hill, Achim (bib6) 2013; 23 Wang, Bovik, Sheik, Simoncelli (bib27) 2004; 13 R. Krutsch, D. Tenorlo, Histogram equalization, Application Note AN4318, Freescale Semiconductors Inc, June 2011. K. Fotiadou, G. Tsagkatakis, P. Tsakalides, Low light image enhancement via sparse representations, in: Image Analysis and Recognition, Springer, Vilamoura, Algarve, Portugal, 2014, pp. 84–93. X. Zhang, P. Shen, L. Luo, L. Zhang, J. Song, Enhancement and noise reduction of very low light level images, in: 2012 21st International Conference on Pattern Recognition (ICPR), IEEE, Tsukuba Science City, Japan, 2012, pp. 2034–2037. Cheng, Shi (bib29) 2004; 14 J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPUmath expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral Presentation. Cheng (10.1016/j.patcog.2016.06.008_bib29) 2004; 14 Wu (10.1016/j.patcog.2016.06.008_bib13) 2011; 20 Jain (10.1016/j.patcog.2016.06.008_bib19) 2008 10.1016/j.patcog.2016.06.008_bib28 Pizer (10.1016/j.patcog.2016.06.008_bib9) 1987; 39 10.1016/j.patcog.2016.06.008_bib25 10.1016/j.patcog.2016.06.008_bib24 10.1016/j.patcog.2016.06.008_bib23 10.1016/j.patcog.2016.06.008_bib22 10.1016/j.patcog.2016.06.008_bib21 Dabov (10.1016/j.patcog.2016.06.008_bib15) 2007; 16 10.1016/j.patcog.2016.06.008_bib31 10.1016/j.patcog.2016.06.008_bib30 Kaur (10.1016/j.patcog.2016.06.008_bib12) 2011; 2 Wang (10.1016/j.patcog.2016.06.008_bib27) 2004; 13 Elad (10.1016/j.patcog.2016.06.008_bib16) 2006; 15 10.1016/j.patcog.2016.06.008_bib18 Santoso (10.1016/j.patcog.2016.06.008_bib26) 2011; 2 10.1016/j.patcog.2016.06.008_bib14 Bergstra (10.1016/j.patcog.2016.06.008_bib32) 2012; 13 10.1016/j.patcog.2016.06.008_bib11 10.1016/j.patcog.2016.06.008_bib4 10.1016/j.patcog.2016.06.008_bib20 10.1016/j.patcog.2016.06.008_bib3 10.1016/j.patcog.2016.06.008_bib2 10.1016/j.patcog.2016.06.008_bib1 10.1016/j.patcog.2016.06.008_bib8 10.1016/j.patcog.2016.06.008_bib7 Pisano (10.1016/j.patcog.2016.06.008_bib10) 1998; 11 10.1016/j.patcog.2016.06.008_bib5 Loza (10.1016/j.patcog.2016.06.008_bib6) 2013; 23 Chan (10.1016/j.patcog.2016.06.008_bib17) 2005; 14 |
| References_xml | – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: bib15 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – reference: Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, IEEE, Washington, DC.,2004, pp. II–97. – reference: X. Dong, G. Wang, Y.A. Pang, W. Li, J.G. Wen, W. Meng, Y. Lu, Fast efficient algorithm for enhancement of low lighting video, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Barcelona, 2011, pp. 1–6. – reference: A. Yamasaki, H. Takauji, S. Kaneko, T. Kanade, H. Ohki, Denighting: Enhancement of nighttime images for a surveillance camera, in: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, IEEE, Tampa, FL, 2008, pp. 1–4. – reference: X. Zhang, P. Shen, L. Luo, L. Zhang, J. Song, Enhancement and noise reduction of very low light level images, in: 2012 21st International Conference on Pattern Recognition (ICPR), IEEE, Tsukuba Science City, Japan, 2012, pp. 2034–2037. – start-page: 1 year: 2008 end-page: 8 ident: bib19 article-title: Natural image denoising with convolutional networks publication-title: Neural Inf. Process. Stand. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib32 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – reference: P. Trahanias, A. Venetsanopoulos, Color image enhancement through 3-d histogram equalization, in: Proceedings of 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, IEEE, The Hague, The Netherlands, 1992, pp. 545–548. – volume: 15 start-page: 3736 year: 2006 end-page: 3745 ident: bib16 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – reference: K. Fotiadou, G. Tsagkatakis, P. Tsakalides, Low light image enhancement via sparse representations, in: Image Analysis and Recognition, Springer, Vilamoura, Algarve, Portugal, 2014, pp. 84–93. – reference: P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International conference on Machine Learning-ICML'08, 2008, pp. 1096–1103. – volume: 2 start-page: 137 year: 2011 end-page: 141 ident: bib12 article-title: Survey of contrast enhancement techniques based on histogram equalization publication-title: Int. J. Adv. Comput. Sci. Appl. – reference: C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation using depth information, in: ICLR, 2013. – reference: F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in: Advances in Neural Information Processing Systems, 2013, pp. 1493–1501. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib27 article-title: Image quality assessment publication-title: IEE Trans. Image Process. – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada, 2012. – reference: K.G. Lore, N. Sweet, K. Kumar, N. Ahmed, S. Sarkar, Deep value of information estimators for collaborative human–machine information gathering, in: International Conference of Cyber-physical Systems (ICCPS), Vienna, Austria, 2016. – reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPUmath expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral Presentation. – volume: 14 start-page: 1479 year: 2005 end-page: 1485 ident: bib17 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. – reference: . Paper PDF is found here: – reference: R. Krutsch, D. Tenorlo, Histogram equalization, Application Note AN4318, Freescale Semiconductors Inc, June 2011. – reference: J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 341–349. – volume: 39 start-page: 355 year: 1987 end-page: 368 ident: bib9 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. – volume: 14 start-page: 158 year: 2004 end-page: 170 ident: bib29 article-title: A simple and effective histogram equalization approach to image enhancement publication-title: Digit. Signal Process. – reference: S. Sarkar, K.G. Lore, S. Sarkar, V. Ramanan, S.R. Chakravarthy, S. Phoha, A. Ray, Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, Proceedings of the Annual Conference of the Prognostics and Health Management Society, Coronado, California, 2015, – reference: . – reference: S. Sarkar, V. Venugopalan, K. Reddy, J. Ryde, M. Giering, N. Jaitly, Occlusion edge detection in rgbd frames using deep convolutional neural networks, in: Proceedings of IEEE High Performance Extreme Computing Conference, Waltham, MA, 2015. – volume: 20 start-page: 1262 year: 2011 end-page: 1272 ident: bib13 article-title: A linear programming approach for optimal contrast-tone mapping publication-title: IEEE Trans. Image Process. – volume: 23 start-page: 1856 year: 2013 end-page: 1866 ident: bib6 article-title: Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients publication-title: Digit. Signal Process. – volume: 2 start-page: 1 year: 2011 end-page: 10 ident: bib26 article-title: Compression ratio and peak signal to noise ratio in grayscale image compression using wavelet publication-title: Int. J. Comput. Sci. Technol. – reference: H.C. Burger, C.J. Schuler, S. Harmeling, Image denoising: Can plain neural networks compete with bm3d? in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, 2012, pp. 2392–2399. – reference: F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements, in: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012. – volume: 11 start-page: 193 year: 1998 end-page: 200 ident: bib10 article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms publication-title: J. Digit. Imaging – reference: R. Gonzalex, R. Woods, Digital image Processing, 2nd Edition, no. 0-201-28075-8 in 0-201-28075-8, Prentice Hall, Upper saddle Rivers, New Jersey, 2001. – ident: 10.1016/j.patcog.2016.06.008_bib30 – ident: 10.1016/j.patcog.2016.06.008_bib22 doi: 10.1007/978-3-319-11758-4_10 – volume: 2 start-page: 1 issue: 2 year: 2011 ident: 10.1016/j.patcog.2016.06.008_bib26 article-title: Compression ratio and peak signal to noise ratio in grayscale image compression using wavelet publication-title: Int. J. Comput. Sci. Technol. – ident: 10.1016/j.patcog.2016.06.008_bib21 doi: 10.1109/CVPR.2012.6247952 – volume: 2 start-page: 137 issue: 7 year: 2011 ident: 10.1016/j.patcog.2016.06.008_bib12 article-title: Survey of contrast enhancement techniques based on histogram equalization publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: 10.1016/j.patcog.2016.06.008_bib5 doi: 10.1109/ICCPS.2016.7479095 – ident: 10.1016/j.patcog.2016.06.008_bib1 – volume: 15 start-page: 3736 issue: 12 year: 2006 ident: 10.1016/j.patcog.2016.06.008_bib16 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – volume: 23 start-page: 1856 issue: 6 year: 2013 ident: 10.1016/j.patcog.2016.06.008_bib6 article-title: Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.06.002 – volume: 14 start-page: 158 issue: 2 year: 2004 ident: 10.1016/j.patcog.2016.06.008_bib29 article-title: A simple and effective histogram equalization approach to image enhancement publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2003.07.002 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 10.1016/j.patcog.2016.06.008_bib32 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 10.1016/j.patcog.2016.06.008_bib9 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – volume: 20 start-page: 1262 issue: 5 year: 2011 ident: 10.1016/j.patcog.2016.06.008_bib13 article-title: A linear programming approach for optimal contrast-tone mapping publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2092438 – ident: 10.1016/j.patcog.2016.06.008_bib11 – start-page: 1 year: 2008 ident: 10.1016/j.patcog.2016.06.008_bib19 article-title: Natural image denoising with convolutional networks publication-title: Neural Inf. Process. Stand. – ident: 10.1016/j.patcog.2016.06.008_bib4 doi: 10.36001/phmconf.2015.v7i1.2723 – ident: 10.1016/j.patcog.2016.06.008_bib28 doi: 10.1109/ICPR.1992.202045 – ident: 10.1016/j.patcog.2016.06.008_bib25 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.patcog.2016.06.008_bib27 article-title: Image quality assessment publication-title: IEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.patcog.2016.06.008_bib15 article-title: Image denoising by sparse 3-d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – ident: 10.1016/j.patcog.2016.06.008_bib23 – ident: 10.1016/j.patcog.2016.06.008_bib7 doi: 10.1109/ICME.2011.6012107 – ident: 10.1016/j.patcog.2016.06.008_bib2 – ident: 10.1016/j.patcog.2016.06.008_bib24 doi: 10.1109/CVPR.2004.1315150 – volume: 14 start-page: 1479 issue: 10 year: 2005 ident: 10.1016/j.patcog.2016.06.008_bib17 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – ident: 10.1016/j.patcog.2016.06.008_bib20 – ident: 10.1016/j.patcog.2016.06.008_bib18 doi: 10.1145/1390156.1390294 – ident: 10.1016/j.patcog.2016.06.008_bib31 doi: 10.25080/Majora-92bf1922-003 – ident: 10.1016/j.patcog.2016.06.008_bib3 doi: 10.1007/s11265-016-1209-3 – ident: 10.1016/j.patcog.2016.06.008_bib8 doi: 10.1109/ICPR.2008.4761424 – ident: 10.1016/j.patcog.2016.06.008_bib14 – volume: 11 start-page: 193 issue: 4 year: 1998 ident: 10.1016/j.patcog.2016.06.008_bib10 article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms publication-title: J. Digit. Imaging doi: 10.1007/BF03178082 |
| SSID | ssj0017142 |
| Score | 2.6953337 |
| Snippet | In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 650 |
| SubjectTerms | Deep autoencoders Image enhancement Natural low-light images |
| Title | LLNet: A deep autoencoder approach to natural low-light image enhancement |
| URI | https://dx.doi.org/10.1016/j.patcog.2016.06.008 |
| Volume | 61 |
| WOSCitedRecordID | wos000385899400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUb3miGl7xgVxklzsMOuwoNMFBVI7VC3UWOY0OmnaQq6czw91zHjlsYxEtiY1Vp3VS-p9fHzrnHCL1IaBzpQCtCCyFIXCSScC00KYKSBSqGGaFTVX6csOmULxbZ6WCg-1qYixWra351la3_a6jhGgTblM7-Rbj9l8IFeA1BhxbCDu0fBX4ymSq73zcqlVqPxLZtjFulMY3oHcQN4-wsPSFAq-aSrMwSfVSdGwGPqj8bJHhFjGOup50Rpyl-cYqj3fP7idPqfqjq0dtLf3m8rOpWfLV1NKWC5e_WvzcTm6WVds-a7Xm13N98CNkPmw--KmYnQeqybBSSiAY2cSmbWDmLCJCz7zKvtWF3qTO1BrRuFk5tjr6W4O1ew9nLNUxUzScjzUs7_9WA7yY0LzOcWWdKaFLIYzRZ3EAHlCUZH6KD8cnx4r1_3sTC2PrKu1_eF1l2SsDr9_o5idkjJvO76LZbUeCxRcI9NFD1fXSnP60Du-T9AJ10wHiFx9jAAu_BAvewwG2DHSywhwXuYIH3YPEQzd8cz1-_I-4gDSJhRdgSqVViykKZMUsCRhgqGmjBGBMRLTOeMk1TbQ5dSVmkQ-A0IhRxkWmgN1lCVfQIDeumVocIMypLGScyEIGOGS-KKE5iJUVQaq50WByhqB-YXDqTeXPWySrv1YRnuR3O3Axn3okq-REivtfamqz85vOsH_PcEUVLAHOAyS97Pv7nnk_Qrd0f4CkatputeoZuyou2-rJ57vD0DaQXjhk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLNet%3A+A+deep+autoencoder+approach+to+natural+low-light+image+enhancement&rft.jtitle=Pattern+recognition&rft.au=Lore%2C+Kin+Gwn&rft.au=Akintayo%2C+Adedotun&rft.au=Sarkar%2C+Soumik&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=61&rft.spage=650&rft.epage=662&rft_id=info:doi/10.1016%2Fj.patcog.2016.06.008&rft.externalDocID=S003132031630125X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |