LLNet: A deep autoencoder approach to natural low-light image enhancement

In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or vide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 61; S. 650 - 662
Hauptverfasser: Lore, Kin Gwn, Akintayo, Adedotun, Sarkar, Soumik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2017
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or videos taken in a poorly-lit environment. Many applications aim to enhance brightness, contrast and reduce noise content from the images in an on-board real-time manner. We propose a deep autoencoder-based approach to identify signal features from low-light images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn from synthetically darkened and noise-added training examples to adaptively enhance images taken from natural low-light environment and/or are hardware-degraded. Results show significant credibility of the approach both visually and by quantitative comparison with various techniques. •Novel application of stacked sparse denoising autoencoder enhances low-light images.•Simultaneous learning of contrast-enhancement and denoising (LLNet).•Sequential learning of contrast-enhancement and denoising (Staged LLNet).•Synthetically trained model evaluated on natural low-light images.•Learned features visualized to gain insights about the model.
AbstractList In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or videos taken in a poorly-lit environment. Many applications aim to enhance brightness, contrast and reduce noise content from the images in an on-board real-time manner. We propose a deep autoencoder-based approach to identify signal features from low-light images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn from synthetically darkened and noise-added training examples to adaptively enhance images taken from natural low-light environment and/or are hardware-degraded. Results show significant credibility of the approach both visually and by quantitative comparison with various techniques. •Novel application of stacked sparse denoising autoencoder enhances low-light images.•Simultaneous learning of contrast-enhancement and denoising (LLNet).•Sequential learning of contrast-enhancement and denoising (Staged LLNet).•Synthetically trained model evaluated on natural low-light images.•Learned features visualized to gain insights about the model.
Author Lore, Kin Gwn
Akintayo, Adedotun
Sarkar, Soumik
Author_xml – sequence: 1
  givenname: Kin Gwn
  surname: Lore
  fullname: Lore, Kin Gwn
  email: kglore@iastate.edu
– sequence: 2
  givenname: Adedotun
  surname: Akintayo
  fullname: Akintayo, Adedotun
  email: akintayo@iastate.edu
– sequence: 3
  givenname: Soumik
  surname: Sarkar
  fullname: Sarkar, Soumik
  email: soumiks@iastate.edu
BookMark eNqFkM1qwzAQhEVpoUnaN-hBL2B3JdmWk0MhhP4ETHvJXajyKlFwLCMrLX37KqSnHloYWJZlhtlvSi573yMhdwxyBqy63-eDjsZvc562HJKgviATVkuRlazgl2QCIFgmOIhrMh3HPQCT6TAh66Z5xbigS9oiDlQfo8fe-BYD1cMQvDY7Gj3tdTwG3dHOf2ad2-4idQe9RYr9TvcGD9jHG3JldTfi7c-ckc3T42b1kjVvz-vVssmMgCpmxmI5L6tapgZQc86Qg9VSSi14O68raXlloeCyksIyEJVmunifWwFiXnIUM1KcY03w4xjQqiGkLuFLMVAnGmqvzjTUiYaCJKiTbfHLZlzU0fk-Bu26_8wPZzOmvz4cBjUalzBh6wKaqFrv_g74BgAafoU
CitedBy_id crossref_primary_10_1109_TCSVT_2021_3073371
crossref_primary_10_1049_ipr2_12173
crossref_primary_10_1016_j_infrared_2021_103690
crossref_primary_10_1016_j_image_2022_116916
crossref_primary_10_1049_ipr2_70059
crossref_primary_10_1145_3711929
crossref_primary_10_1109_TCSVT_2020_3004854
crossref_primary_10_1016_j_displa_2021_102091
crossref_primary_10_1109_TITS_2023_3342799
crossref_primary_10_1016_j_optcom_2023_130064
crossref_primary_10_1016_j_sigpro_2020_107936
crossref_primary_10_1049_iet_ipr_2019_1438
crossref_primary_10_1109_ACCESS_2022_3195499
crossref_primary_10_1109_TIP_2019_2922106
crossref_primary_10_1109_TMM_2020_2982045
crossref_primary_10_1016_j_cmpb_2019_05_004
crossref_primary_10_1109_TPAMI_2024_3432308
crossref_primary_10_1109_ACCESS_2020_3020844
crossref_primary_10_1109_TIM_2024_3500070
crossref_primary_10_1186_s13677_023_00533_4
crossref_primary_10_1109_ACCESS_2024_3502654
crossref_primary_10_1016_j_neucom_2024_129236
crossref_primary_10_1109_TETCI_2024_3378651
crossref_primary_10_1109_TPAMI_2019_2895793
crossref_primary_10_1016_j_neucom_2025_129992
crossref_primary_10_1186_s12880_024_01386_2
crossref_primary_10_1016_j_heliyon_2023_e14558
crossref_primary_10_1109_ACCESS_2025_3548151
crossref_primary_10_3390_s25113382
crossref_primary_10_1016_j_inffus_2025_103036
crossref_primary_10_1186_s13040_022_00303_z
crossref_primary_10_1007_s11227_023_05634_0
crossref_primary_10_1016_j_media_2023_102945
crossref_primary_10_1364_OE_546629
crossref_primary_10_1016_j_aei_2025_103463
crossref_primary_10_1007_s11042_023_15147_w
crossref_primary_10_1049_ipr2_70043
crossref_primary_10_1109_ACCESS_2021_3068534
crossref_primary_10_1109_TITS_2023_3308894
crossref_primary_10_1109_TII_2020_3008703
crossref_primary_10_1109_TCSVT_2024_3465875
crossref_primary_10_1109_TCSVT_2022_3190057
crossref_primary_10_1109_TCSVT_2018_2828141
crossref_primary_10_1016_j_patcog_2024_111076
crossref_primary_10_32604_cmc_2024_057662
crossref_primary_10_1007_s11760_024_03127_y
crossref_primary_10_1109_TITS_2022_3224769
crossref_primary_10_1007_s10044_020_00908_2
crossref_primary_10_3390_s25061825
crossref_primary_10_1007_s11042_024_19720_9
crossref_primary_10_3390_s24092711
crossref_primary_10_1007_s00371_023_02769_2
crossref_primary_10_1109_TCSVT_2023_3299232
crossref_primary_10_1016_j_jvcir_2022_103712
crossref_primary_10_1016_j_displa_2024_102954
crossref_primary_10_1177_1475921719893594
crossref_primary_10_1007_s00521_018_3893_3
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1007_s00034_023_02591_0
crossref_primary_10_1109_JSEN_2025_3592706
crossref_primary_10_1038_s41598_023_46693_w
crossref_primary_10_1088_1361_6560_ade844
crossref_primary_10_1109_ACCESS_2018_2870638
crossref_primary_10_1016_j_jvcir_2024_104148
crossref_primary_10_1016_j_patcog_2025_112203
crossref_primary_10_1117_1_JEI_31_5_053001
crossref_primary_10_1007_s11042_021_11590_9
crossref_primary_10_1016_j_compmedimag_2024_102487
crossref_primary_10_1109_TPAMI_2024_3524538
crossref_primary_10_1109_JSEN_2024_3446645
crossref_primary_10_1109_TCI_2024_3378091
crossref_primary_10_3788_LOP242249
crossref_primary_10_1109_TCI_2023_3288300
crossref_primary_10_3390_math11102404
crossref_primary_10_1109_TCSVT_2022_3169422
crossref_primary_10_1109_TITS_2021_3117868
crossref_primary_10_3390_s23187763
crossref_primary_10_1016_j_optlaseng_2023_107520
crossref_primary_10_1007_s11042_020_09562_6
crossref_primary_10_1109_TCSVT_2022_3181781
crossref_primary_10_3390_bioengineering9100522
crossref_primary_10_1007_s11760_021_01856_y
crossref_primary_10_1109_TGRS_2023_3279826
crossref_primary_10_1109_TMM_2021_3054509
crossref_primary_10_1016_j_cag_2023_12_014
crossref_primary_10_1371_journal_pone_0329533
crossref_primary_10_3389_fnbot_2022_837208
crossref_primary_10_1016_j_engappai_2025_111115
crossref_primary_10_1109_TETCI_2023_3235378
crossref_primary_10_3390_app15116295
crossref_primary_10_1109_TIP_2021_3050850
crossref_primary_10_3390_app131810336
crossref_primary_10_1145_3664653
crossref_primary_10_1007_s11042_020_09586_y
crossref_primary_10_1016_j_displa_2024_102738
crossref_primary_10_1109_ACCESS_2020_3015217
crossref_primary_10_1007_s11263_022_01745_y
crossref_primary_10_1016_j_patcog_2024_111033
crossref_primary_10_1049_ipr2_13076
crossref_primary_10_3390_s21154986
crossref_primary_10_1002_sdtp_17317
crossref_primary_10_1007_s13369_025_10264_0
crossref_primary_10_1109_ACCESS_2020_3048366
crossref_primary_10_1007_s10278_025_01592_6
crossref_primary_10_1016_j_engappai_2023_107793
crossref_primary_10_1016_j_knosys_2023_110730
crossref_primary_10_1155_2021_2436486
crossref_primary_10_1109_TETCI_2023_3314436
crossref_primary_10_1155_2022_9543893
crossref_primary_10_1016_j_compbiomed_2024_109456
crossref_primary_10_1016_j_eswa_2025_127638
crossref_primary_10_1109_TMM_2023_3268867
crossref_primary_10_1007_s40747_024_01681_z
crossref_primary_10_1109_ACCESS_2020_3007610
crossref_primary_10_1109_TMI_2020_3043495
crossref_primary_10_1007_s11517_019_01965_4
crossref_primary_10_1117_1_JEI_32_4_043024
crossref_primary_10_1109_TIP_2020_3008396
crossref_primary_10_1016_j_sigpro_2021_108280
crossref_primary_10_1109_TMM_2024_3521781
crossref_primary_10_3389_fnbot_2021_700011
crossref_primary_10_3390_s22166126
crossref_primary_10_1111_cgf_15209
crossref_primary_10_1016_j_patcog_2022_109249
crossref_primary_10_1109_ACCESS_2022_3178745
crossref_primary_10_1109_TMM_2022_3207330
crossref_primary_10_1109_TNNLS_2022_3190880
crossref_primary_10_3390_s22145464
crossref_primary_10_1088_1742_6596_1848_1_012085
crossref_primary_10_1016_j_optlastec_2024_112181
crossref_primary_10_1007_s40031_024_01004_3
crossref_primary_10_1111_cgf_15210
crossref_primary_10_1007_s10462_021_10039_7
crossref_primary_10_1016_j_ymeth_2021_11_004
crossref_primary_10_1007_s10489_021_02627_5
crossref_primary_10_1007_s00371_020_01910_9
crossref_primary_10_1016_j_infrared_2017_08_015
crossref_primary_10_1049_iet_ipr_2020_0100
crossref_primary_10_1109_TIM_2022_3222517
crossref_primary_10_1016_j_optlaseng_2023_107561
crossref_primary_10_1145_3498341
crossref_primary_10_1145_3569464
crossref_primary_10_3390_ai6070132
crossref_primary_10_3390_electronics12244950
crossref_primary_10_1007_s00530_024_01391_z
crossref_primary_10_1016_j_advengsoft_2024_103713
crossref_primary_10_1088_1742_6596_1345_2_022030
crossref_primary_10_1145_3745786
crossref_primary_10_1016_j_jvcir_2025_104478
crossref_primary_10_1109_JSEN_2023_3314898
crossref_primary_10_1109_TCSVT_2022_3146731
crossref_primary_10_1109_TMM_2023_3312851
crossref_primary_10_1109_TETCI_2023_3301337
crossref_primary_10_1109_TRO_2025_3548540
crossref_primary_10_1007_s00603_023_03490_1
crossref_primary_10_1109_TITS_2024_3495034
crossref_primary_10_1155_2023_6225923
crossref_primary_10_1145_3735973
crossref_primary_10_1007_s11831_025_10226_7
crossref_primary_10_1177_30504554251342571
crossref_primary_10_1109_ACCESS_2023_3269719
crossref_primary_10_1016_j_displa_2024_102774
crossref_primary_10_1016_j_sigpro_2018_04_025
crossref_primary_10_1016_j_cviu_2025_104439
crossref_primary_10_1109_TMM_2024_3413293
crossref_primary_10_3389_fmars_2022_921492
crossref_primary_10_3390_math11071657
crossref_primary_10_1109_ACCESS_2024_3461859
crossref_primary_10_3389_fgene_2021_799777
crossref_primary_10_1016_j_patcog_2022_109039
crossref_primary_10_1016_j_image_2022_116742
crossref_primary_10_1007_s00530_025_01891_6
crossref_primary_10_1109_TNNLS_2023_3289626
crossref_primary_10_1007_s00521_021_06551_0
crossref_primary_10_1016_j_dsp_2025_105272
crossref_primary_10_1016_j_neuroimage_2021_118687
crossref_primary_10_1109_ACCESS_2022_3202940
crossref_primary_10_1364_AO_486302
crossref_primary_10_1016_j_compeleceng_2025_110469
crossref_primary_10_1007_s11554_024_01532_7
crossref_primary_10_1016_j_jvcir_2023_104010
crossref_primary_10_1109_TETCI_2024_3369321
crossref_primary_10_1007_s00371_023_03249_3
crossref_primary_10_3390_electronics13183713
crossref_primary_10_1016_j_cag_2024_103921
crossref_primary_10_3390_math9202613
crossref_primary_10_1109_TIP_2019_2938310
crossref_primary_10_1007_s11263_022_01667_9
crossref_primary_10_1016_j_patcog_2019_107051
crossref_primary_10_1016_j_neunet_2025_107764
crossref_primary_10_1016_j_patcog_2019_107038
crossref_primary_10_1049_ipr2_12124
crossref_primary_10_3390_electronics12143162
crossref_primary_10_1109_ACCESS_2020_2995549
crossref_primary_10_1016_j_dsp_2025_105044
crossref_primary_10_1007_s00530_023_01228_1
crossref_primary_10_1016_j_jvcir_2024_104308
crossref_primary_10_1016_j_neucom_2021_02_059
crossref_primary_10_3390_mi12121458
crossref_primary_10_1109_TIP_2021_3135473
crossref_primary_10_1007_s11263_024_02250_0
crossref_primary_10_1109_ACCESS_2019_2924042
crossref_primary_10_1007_s00521_024_09687_x
crossref_primary_10_1109_TIP_2018_2869722
crossref_primary_10_1007_s11063_022_11107_x
crossref_primary_10_1016_j_autcon_2023_104930
crossref_primary_10_1080_13682199_2023_2198350
crossref_primary_10_1049_itr2_12534
crossref_primary_10_1016_j_compind_2023_103862
crossref_primary_10_1007_s00371_021_02289_x
crossref_primary_10_1007_s00521_021_06836_4
crossref_primary_10_1007_s11042_023_16871_z
crossref_primary_10_3390_math11194194
crossref_primary_10_1109_LSP_2024_3453120
crossref_primary_10_1109_TETCI_2024_3358200
crossref_primary_10_1109_JSTSP_2022_3175015
crossref_primary_10_1049_ipr2_12368
crossref_primary_10_1080_10589759_2023_2274011
crossref_primary_10_1145_3495258
crossref_primary_10_1016_j_eswa_2023_120271
crossref_primary_10_1016_j_knosys_2024_111958
crossref_primary_10_1016_j_dsp_2025_105221
crossref_primary_10_1038_s41598_024_80265_w
crossref_primary_10_1109_TCI_2023_3323835
crossref_primary_10_1109_ACCESS_2025_3573171
crossref_primary_10_1007_s12652_021_02947_x
crossref_primary_10_1007_s12200_024_00129_z
crossref_primary_10_1109_TIP_2022_3189805
crossref_primary_10_3233_JIFS_211664
crossref_primary_10_3390_rs16071134
crossref_primary_10_1016_j_compbiomed_2023_106961
crossref_primary_10_1016_j_knosys_2020_106617
crossref_primary_10_7717_peerj_cs_2799
crossref_primary_10_3390_biomimetics8020212
crossref_primary_10_1007_s11760_024_03621_3
crossref_primary_10_1038_s41598_024_67131_5
crossref_primary_10_1049_ipr2_13226
crossref_primary_10_3390_app15031604
crossref_primary_10_1007_s00371_022_02570_7
crossref_primary_10_1016_j_neucom_2025_131174
crossref_primary_10_3390_electronics13040788
crossref_primary_10_1016_j_eswa_2024_124923
crossref_primary_10_1109_JIOT_2024_3513545
crossref_primary_10_1016_j_jvcir_2024_104337
crossref_primary_10_1016_j_patcog_2024_110799
crossref_primary_10_3389_fmars_2023_1133881
crossref_primary_10_1155_2024_3328299
crossref_primary_10_1088_1742_6596_1345_4_042055
crossref_primary_10_1109_JSTSP_2020_3043590
crossref_primary_10_1016_j_image_2025_117276
crossref_primary_10_1007_s13042_022_01716_2
crossref_primary_10_1016_j_image_2025_117274
crossref_primary_10_1016_j_petrol_2020_106944
crossref_primary_10_1016_j_dsp_2022_103881
crossref_primary_10_1007_s11042_023_16650_w
crossref_primary_10_1016_j_jvcir_2025_104402
crossref_primary_10_1016_j_image_2021_116466
crossref_primary_10_1016_j_ymssp_2018_03_011
crossref_primary_10_1109_ACCESS_2021_3073090
crossref_primary_10_1007_s00034_021_01711_y
crossref_primary_10_1088_1361_6501_aa6e22
crossref_primary_10_3390_math10234472
crossref_primary_10_1002_aisy_202300239
crossref_primary_10_1016_j_neucom_2020_09_002
crossref_primary_10_1109_TGRS_2017_2777886
crossref_primary_10_1109_TNNLS_2024_3502424
crossref_primary_10_1007_s00371_025_03835_7
crossref_primary_10_1109_TIP_2024_3519997
crossref_primary_10_1360_SSI_2024_0394
crossref_primary_10_1016_j_inffus_2023_101949
crossref_primary_10_1016_j_sigpro_2022_108902
crossref_primary_10_1137_22M1543161
crossref_primary_10_1109_TCSVT_2021_3049940
crossref_primary_10_1038_s41598_025_10779_4
crossref_primary_10_1007_s11042_023_15447_1
crossref_primary_10_1016_j_cnsns_2023_107278
crossref_primary_10_1016_j_engappai_2023_106925
crossref_primary_10_1016_j_jfranklin_2023_02_023
crossref_primary_10_1038_s41598_025_95366_3
crossref_primary_10_1088_1742_6596_2258_1_012003
crossref_primary_10_1007_s11760_024_03768_z
crossref_primary_10_1007_s41095_021_0232_x
crossref_primary_10_1016_j_jksuci_2024_102234
crossref_primary_10_1016_j_jcp_2021_110532
crossref_primary_10_1007_s11760_023_02927_y
crossref_primary_10_3390_drones8080390
crossref_primary_10_1007_s11063_023_11303_3
crossref_primary_10_1016_j_neucom_2025_131383
crossref_primary_10_1109_TPAMI_2021_3063604
crossref_primary_10_1016_j_eswa_2024_123722
crossref_primary_10_1109_JBHI_2022_3168604
crossref_primary_10_1007_s00530_025_01929_9
crossref_primary_10_1109_JSYST_2023_3262593
crossref_primary_10_1109_ACCESS_2023_3344534
crossref_primary_10_1109_TPAMI_2021_3126387
crossref_primary_10_1007_s11760_025_04004_y
crossref_primary_10_1088_1757_899X_452_4_042202
crossref_primary_10_1016_j_cagd_2018_03_024
crossref_primary_10_1007_s11664_024_11079_9
crossref_primary_10_1007_s00371_025_03875_z
crossref_primary_10_1007_s40747_024_01762_z
crossref_primary_10_1016_j_sigpro_2017_08_021
crossref_primary_10_3390_s18103583
crossref_primary_10_1016_j_cogsys_2018_07_004
crossref_primary_10_1016_j_image_2023_116971
crossref_primary_10_3233_JCM_226858
crossref_primary_10_1080_08839514_2024_2349410
crossref_primary_10_1109_TII_2022_3172902
crossref_primary_10_1109_TIM_2024_3372230
crossref_primary_10_1016_j_cag_2022_12_001
crossref_primary_10_1016_j_measurement_2023_113567
crossref_primary_10_1016_j_inffus_2024_102467
crossref_primary_10_1109_ACCESS_2024_3406944
crossref_primary_10_3788_LOP241837
crossref_primary_10_1109_TMM_2024_3414328
crossref_primary_10_1186_s12544_023_00583_4
crossref_primary_10_1155_2021_6681202
crossref_primary_10_1007_s11042_022_13598_1
crossref_primary_10_1145_3618373
crossref_primary_10_1007_s11263_025_02551_y
crossref_primary_10_3390_sym15101850
crossref_primary_10_1049_cit2_12188
crossref_primary_10_3390_computers13060134
crossref_primary_10_1049_ipr2_12650
crossref_primary_10_1109_TCSVT_2023_3325357
crossref_primary_10_1016_j_inffus_2025_103400
crossref_primary_10_3390_electronics12040990
crossref_primary_10_1016_j_patcog_2023_109344
crossref_primary_10_1109_TCSVT_2024_3408007
crossref_primary_10_1155_2021_5563698
crossref_primary_10_1016_j_measurement_2025_118746
crossref_primary_10_1002_cpe_70255
crossref_primary_10_1109_TMM_2020_3021243
crossref_primary_10_1109_TIM_2022_3181280
crossref_primary_10_1007_s11760_025_03914_1
crossref_primary_10_1007_s11760_021_01915_4
crossref_primary_10_1109_TIP_2018_2810539
crossref_primary_10_1109_LSP_2020_3036312
crossref_primary_10_1007_s00521_022_07612_8
crossref_primary_10_1007_s11263_025_02542_z
crossref_primary_10_1007_s11042_023_15761_8
crossref_primary_10_1016_j_ins_2025_122625
crossref_primary_10_1109_TII_2021_3127188
crossref_primary_10_1111_coin_12648
crossref_primary_10_1007_s00371_024_03262_0
crossref_primary_10_3390_rs14102338
crossref_primary_10_1007_s11263_024_02084_w
crossref_primary_10_1016_j_patrec_2021_10_030
crossref_primary_10_1016_j_cma_2020_113291
crossref_primary_10_3390_electronics12245022
crossref_primary_10_1109_TCSVT_2023_3284856
crossref_primary_10_1109_TIM_2025_3557114
crossref_primary_10_1049_ipr2_12418
crossref_primary_10_1109_TCSVT_2023_3303574
crossref_primary_10_1016_j_neucom_2025_130005
crossref_primary_10_1109_JSEN_2019_2927414
crossref_primary_10_1007_s11554_025_01744_5
crossref_primary_10_1007_s00779_021_01627_z
crossref_primary_10_1109_JSEN_2023_3296167
crossref_primary_10_3390_electronics13204025
crossref_primary_10_1016_j_marenvres_2025_107510
crossref_primary_10_1109_TCSVT_2023_3313348
crossref_primary_10_1016_j_cviu_2025_104496
crossref_primary_10_1109_ACCESS_2021_3054505
crossref_primary_10_1109_ACCESS_2018_2812809
crossref_primary_10_1109_TCSVT_2023_3286802
crossref_primary_10_1016_j_dsp_2023_104071
crossref_primary_10_1007_s42979_022_01608_w
crossref_primary_10_1109_TIP_2020_2981922
crossref_primary_10_1007_s00371_025_03842_8
crossref_primary_10_3390_rs14184608
crossref_primary_10_3390_e24060815
crossref_primary_10_3390_sym12030446
crossref_primary_10_1109_TCSVT_2024_3377108
crossref_primary_10_3390_electronics12194077
crossref_primary_10_1016_j_cag_2025_104209
crossref_primary_10_1016_j_displa_2025_103219
crossref_primary_10_1007_s44174_025_00492_1
crossref_primary_10_1109_TIM_2022_3216880
crossref_primary_10_54691_fse_v3i11_5701
crossref_primary_10_3389_fmed_2023_1061357
crossref_primary_10_1109_ACCESS_2020_2992749
crossref_primary_10_1109_LSP_2022_3212641
crossref_primary_10_1007_s00521_024_10885_w
crossref_primary_10_1007_s00530_025_01940_0
crossref_primary_10_1109_TITS_2025_3534472
crossref_primary_10_3390_s23239593
crossref_primary_10_1080_09540091_2025_2546911
crossref_primary_10_1109_TETCI_2024_3508834
crossref_primary_10_1007_s00371_022_02412_6
crossref_primary_10_1007_s11042_024_18919_0
crossref_primary_10_1016_j_dsp_2024_104556
crossref_primary_10_1016_j_dsp_2023_104054
crossref_primary_10_1109_TGRS_2024_3351134
crossref_primary_10_1007_s11263_024_01995_y
crossref_primary_10_1007_s13042_023_01991_7
crossref_primary_10_1016_j_cviu_2023_103681
crossref_primary_10_1016_j_neucom_2021_05_025
crossref_primary_10_1016_j_patcog_2022_108983
crossref_primary_10_1109_TETCI_2024_3359051
crossref_primary_10_1016_j_eswa_2022_117564
crossref_primary_10_1016_j_compeleceng_2024_109622
crossref_primary_10_3390_rs13010062
crossref_primary_10_1016_j_patrec_2020_07_041
crossref_primary_10_1155_2024_4650233
crossref_primary_10_3390_sym14061165
crossref_primary_10_1109_ACCESS_2024_3523419
crossref_primary_10_1007_s00500_023_08788_4
crossref_primary_10_1109_TMM_2022_3232206
crossref_primary_10_1038_s41598_025_98484_0
crossref_primary_10_1007_s00530_025_01820_7
crossref_primary_10_1016_j_compeleceng_2023_108859
crossref_primary_10_3390_electronics13050950
crossref_primary_10_1109_TMM_2020_3039361
crossref_primary_10_1007_s10462_017_9576_0
crossref_primary_10_1109_TGRS_2024_3422314
crossref_primary_10_1016_j_ocecoaman_2023_106478
crossref_primary_10_1109_TCSVT_2024_3426527
crossref_primary_10_1109_ACCESS_2023_3328923
crossref_primary_10_1088_1742_6596_2822_1_012084
crossref_primary_10_1155_2020_3936975
crossref_primary_10_1155_2022_3903453
crossref_primary_10_1016_j_dsp_2019_06_014
crossref_primary_10_1109_TCE_2024_3367667
crossref_primary_10_1016_j_cviu_2024_103930
crossref_primary_10_1016_j_neucom_2025_130662
crossref_primary_10_1109_ACCESS_2020_2994969
crossref_primary_10_1016_j_imavis_2024_104933
crossref_primary_10_1017_S0373463321000783
crossref_primary_10_3390_electronics12163517
crossref_primary_10_1186_s13640_018_0362_y
crossref_primary_10_3390_app13148148
crossref_primary_10_3390_electronics13010230
crossref_primary_10_1016_j_dsp_2024_104521
crossref_primary_10_1109_JIOT_2024_3446036
crossref_primary_10_1016_j_displa_2023_102614
crossref_primary_10_1109_ACCESS_2018_2880279
crossref_primary_10_12677_JISP_2022_113013
crossref_primary_10_3390_app15116330
crossref_primary_10_1109_TITS_2025_3553106
crossref_primary_10_1109_TMM_2022_3193059
crossref_primary_10_3390_rs14163985
crossref_primary_10_1007_s41870_022_00931_y
crossref_primary_10_1007_s00371_022_02761_2
crossref_primary_10_3390_s22218244
crossref_primary_10_1007_s13042_023_02036_9
crossref_primary_10_1007_s11760_022_02319_8
crossref_primary_10_1109_TGRS_2023_3281741
crossref_primary_10_1109_ACCESS_2021_3057167
crossref_primary_10_1007_s42154_023_00249_w
crossref_primary_10_1109_TNNLS_2025_3566647
crossref_primary_10_3390_electronics12173576
crossref_primary_10_1007_s11063_023_11407_w
crossref_primary_10_1016_j_dsp_2023_104259
crossref_primary_10_1016_j_image_2023_117016
crossref_primary_10_1016_j_dsp_2024_104752
crossref_primary_10_1109_TIM_2024_3470234
crossref_primary_10_1007_s11042_023_15256_6
crossref_primary_10_1016_j_neucom_2025_129426
crossref_primary_10_1109_TCSI_2020_3010634
crossref_primary_10_1109_ACCESS_2020_3022393
crossref_primary_10_1109_LSP_2022_3162145
crossref_primary_10_32604_cmc_2024_059000
crossref_primary_10_3390_s24020673
crossref_primary_10_1016_j_engappai_2023_106062
crossref_primary_10_1016_j_patrec_2021_12_010
crossref_primary_10_1016_j_cviu_2024_103952
crossref_primary_10_1016_j_future_2020_02_068
crossref_primary_10_1007_s00530_023_01252_1
crossref_primary_10_1007_s11265_025_01945_y
crossref_primary_10_1016_j_sigpro_2022_108523
crossref_primary_10_1007_s00138_021_01223_4
crossref_primary_10_3390_su15021029
crossref_primary_10_1109_ACCESS_2021_3072331
crossref_primary_10_3390_electronics12081887
crossref_primary_10_3390_s20020495
crossref_primary_10_1007_s10489_022_04013_1
crossref_primary_10_1109_LSP_2022_3163686
crossref_primary_10_1155_2022_5818180
crossref_primary_10_1007_s00530_021_00757_x
crossref_primary_10_1016_j_cviu_2024_103948
crossref_primary_10_1007_s00170_024_13566_z
crossref_primary_10_1016_j_array_2025_100431
crossref_primary_10_1109_TIP_2021_3087943
crossref_primary_10_1016_j_cose_2020_102120
crossref_primary_10_1109_TMM_2023_3278380
crossref_primary_10_1109_TMM_2023_3278385
crossref_primary_10_1016_j_patcog_2021_108023
crossref_primary_10_1109_JSEN_2025_3543768
crossref_primary_10_1063_5_0087205
crossref_primary_10_1088_1742_6596_2074_1_012024
crossref_primary_10_1016_j_neucom_2020_12_057
crossref_primary_10_1016_j_dcan_2024_11_010
crossref_primary_10_1109_TMM_2022_3175634
crossref_primary_10_1145_3397322
crossref_primary_10_1016_j_neucom_2024_128011
crossref_primary_10_3390_electronics11010032
crossref_primary_10_1080_13682199_2024_2395751
crossref_primary_10_1109_ACCESS_2020_2988767
crossref_primary_10_1109_TIP_2024_3486610
crossref_primary_10_3390_s23208442
crossref_primary_10_1016_j_infrared_2024_105351
crossref_primary_10_3390_app14010332
crossref_primary_10_3390_sym11040574
crossref_primary_10_1016_j_sigpro_2022_108468
crossref_primary_10_1109_ACCESS_2021_3137993
crossref_primary_10_1109_TNNLS_2021_3052903
crossref_primary_10_3390_photonics11121198
crossref_primary_10_3390_electronics11223695
crossref_primary_10_1109_LSENS_2024_3380889
crossref_primary_10_1016_j_patcog_2024_111180
crossref_primary_10_1016_j_jksuci_2023_101666
crossref_primary_10_1016_j_image_2021_116527
crossref_primary_10_1016_j_jvcir_2024_104242
crossref_primary_10_1371_journal_pone_0303696
crossref_primary_10_1016_j_engappai_2024_109906
crossref_primary_10_3390_s22186904
crossref_primary_10_1109_TCBB_2023_3256709
crossref_primary_10_3389_fnhum_2021_638052
crossref_primary_10_1109_TMM_2023_3293736
crossref_primary_10_3390_electronics9061011
crossref_primary_10_1109_TII_2020_3026036
crossref_primary_10_1109_ACCESS_2022_3227069
crossref_primary_10_1016_j_eswa_2024_124132
crossref_primary_10_3389_fmars_2023_1163831
crossref_primary_10_1109_TCSVT_2024_3480930
crossref_primary_10_3390_s20185300
crossref_primary_10_1109_JSEN_2024_3396195
crossref_primary_10_1007_s11263_021_01466_8
crossref_primary_10_1016_j_image_2024_117229
crossref_primary_10_1109_TMM_2023_3254141
crossref_primary_10_1038_s41598_021_02085_6
crossref_primary_10_1016_j_eswa_2023_119739
crossref_primary_10_1049_ell2_70053
crossref_primary_10_1109_TIP_2021_3125394
crossref_primary_10_1017_S0373463322000467
crossref_primary_10_3390_electronics10232970
crossref_primary_10_1109_ACCESS_2025_3578916
crossref_primary_10_3390_s24155019
crossref_primary_10_3390_sym17091560
crossref_primary_10_3390_s23177605
crossref_primary_10_1007_s11227_024_06683_9
crossref_primary_10_1007_s42979_022_01261_3
crossref_primary_10_1109_TETCI_2024_3369858
crossref_primary_10_1109_TPAMI_2024_3487361
crossref_primary_10_1016_j_autcon_2021_103721
crossref_primary_10_1007_s11760_024_03431_7
crossref_primary_10_1007_s11263_023_01808_8
crossref_primary_10_1007_s11042_024_20086_1
crossref_primary_10_1016_j_dsp_2024_104802
crossref_primary_10_1049_ipr2_12097
crossref_primary_10_3390_e26030184
crossref_primary_10_1109_TIM_2023_3301049
crossref_primary_10_1109_TCE_2024_3516366
crossref_primary_10_3390_s24030772
crossref_primary_10_3390_s24165246
crossref_primary_10_1109_TNNLS_2023_3280037
crossref_primary_10_1016_j_displa_2024_102856
crossref_primary_10_1016_j_optlaseng_2024_108800
crossref_primary_10_1007_s11042_023_15242_y
crossref_primary_10_1145_3758097
crossref_primary_10_1017_eds_2023_41
crossref_primary_10_1016_j_dsp_2024_104808
crossref_primary_10_1109_TCYB_2021_3140202
crossref_primary_10_1109_TIM_2025_3604925
crossref_primary_10_1016_j_cmpb_2022_106800
crossref_primary_10_1109_JSEN_2023_3328995
crossref_primary_10_1109_TIP_2025_3553070
crossref_primary_10_1016_j_dsp_2022_103387
crossref_primary_10_3390_app14072846
crossref_primary_10_1016_j_image_2024_117246
crossref_primary_10_3389_fnins_2024_1297671
crossref_primary_10_1016_j_jvcir_2024_104050
crossref_primary_10_1007_s11082_023_05224_7
crossref_primary_10_1088_1742_6596_2035_1_012027
crossref_primary_10_1155_2022_1882464
crossref_primary_10_3390_s22155593
crossref_primary_10_1016_j_neucom_2022_12_007
crossref_primary_10_3390_electronics14112212
crossref_primary_10_1016_j_patrec_2025_07_026
crossref_primary_10_1016_j_displa_2024_102877
crossref_primary_10_1080_00032719_2021_1992417
crossref_primary_10_1007_s10586_024_04829_1
crossref_primary_10_1007_s12559_024_10347_4
crossref_primary_10_3390_jimaging11080253
crossref_primary_10_3724_SP_J_1089_2022_19719
crossref_primary_10_1371_journal_pone_0331746
crossref_primary_10_1155_2021_3742536
crossref_primary_10_1371_journal_pone_0247440
crossref_primary_10_1016_j_image_2022_116800
crossref_primary_10_1038_s41598_023_40899_8
crossref_primary_10_1109_TIE_2020_3013783
crossref_primary_10_1016_j_neucom_2022_07_058
crossref_primary_10_1038_srep46368
crossref_primary_10_1109_TIP_2019_2910412
crossref_primary_10_3390_rs15143580
crossref_primary_10_1016_j_matdes_2023_111852
crossref_primary_10_1109_ACCESS_2018_2889321
crossref_primary_10_1109_TETCI_2023_3243920
crossref_primary_10_1109_TIM_2022_3216391
crossref_primary_10_1007_s00034_025_03017_9
crossref_primary_10_1117_1_JEI_33_2_023040
crossref_primary_10_1109_TAI_2024_3405405
crossref_primary_10_1109_TASE_2019_2935314
crossref_primary_10_1016_j_bspc_2022_103586
crossref_primary_10_1108_IJICC_03_2021_0053
crossref_primary_10_1145_3457905
crossref_primary_10_1016_j_patcog_2025_111628
crossref_primary_10_1109_ACCESS_2022_3161527
crossref_primary_10_1016_j_image_2025_117332
crossref_primary_10_1016_j_imavis_2024_105313
crossref_primary_10_1007_s11760_024_03239_5
crossref_primary_10_1016_j_patcog_2024_110490
crossref_primary_10_1007_s11760_023_02850_2
crossref_primary_10_1109_TIM_2022_3232641
crossref_primary_10_1109_TITS_2024_3524117
crossref_primary_10_31854_1813_324X_2025_11_2_7_19
crossref_primary_10_1016_j_image_2023_116925
crossref_primary_10_1016_j_ndteint_2024_103049
crossref_primary_10_1109_TPAMI_2025_3545936
crossref_primary_10_1016_j_cag_2023_08_004
crossref_primary_10_1016_j_cviu_2024_104276
crossref_primary_10_1109_TAI_2024_3499950
crossref_primary_10_1016_j_image_2025_117336
crossref_primary_10_3390_s25051530
crossref_primary_10_1109_TPAMI_2025_3554639
crossref_primary_10_1007_s00530_025_01948_6
crossref_primary_10_1007_s00371_024_03452_w
crossref_primary_10_1016_j_asoc_2019_105889
crossref_primary_10_1007_s00371_022_02582_3
crossref_primary_10_1109_TMM_2020_3037526
crossref_primary_10_1016_j_cag_2025_104380
crossref_primary_10_1007_s10489_025_06771_0
crossref_primary_10_1109_TCSVT_2023_3323128
crossref_primary_10_3390_s20185147
crossref_primary_10_1117_1_JEI_33_2_023020
crossref_primary_10_3390_electronics13122403
crossref_primary_10_1016_j_bspc_2022_104450
crossref_primary_10_1016_j_patcog_2019_107163
crossref_primary_10_1016_j_patcog_2019_107166
crossref_primary_10_1016_j_procs_2024_03_021
crossref_primary_10_1007_s11554_024_01424_w
crossref_primary_10_1109_LSP_2022_3160652
crossref_primary_10_1007_s13721_022_00373_3
crossref_primary_10_1109_TMM_2025_3535333
crossref_primary_10_1007_s11042_024_18749_0
crossref_primary_10_1016_j_image_2022_116848
crossref_primary_10_1016_j_aei_2025_103165
crossref_primary_10_1016_j_measurement_2021_110545
crossref_primary_10_1109_ACCESS_2020_2973658
crossref_primary_10_1109_TPAMI_2022_3212995
crossref_primary_10_1016_j_biocon_2024_110713
crossref_primary_10_1016_j_eswa_2025_128653
crossref_primary_10_1631_FITEE_2400261
crossref_primary_10_1109_ACCESS_2020_2970143
crossref_primary_10_1109_TIP_2023_3266171
crossref_primary_10_1007_s11042_023_15908_7
crossref_primary_10_1109_ACCESS_2023_3328534
crossref_primary_10_1007_s11042_023_17527_8
crossref_primary_10_1109_TMM_2020_2969790
crossref_primary_10_1016_j_patcog_2019_107143
crossref_primary_10_1016_j_ins_2020_09_066
crossref_primary_10_3788_LOP241669
crossref_primary_10_3390_electronics11101627
crossref_primary_10_26599_TST_2022_9010047
crossref_primary_10_1109_JSEN_2020_3044392
crossref_primary_10_1016_j_knosys_2025_113055
crossref_primary_10_1111_cgf_15192
crossref_primary_10_1007_s10278_025_01509_3
crossref_primary_10_1007_s11042_021_10607_7
crossref_primary_10_1007_s11042_017_5448_5
crossref_primary_10_1109_ACCESS_2020_3032981
crossref_primary_10_1007_s10586_025_05494_8
crossref_primary_10_1016_j_dsp_2022_103547
crossref_primary_10_1016_j_dsp_2025_105342
crossref_primary_10_1016_j_image_2023_116966
crossref_primary_10_1109_ACCESS_2019_2951583
crossref_primary_10_1109_TMM_2020_2969782
crossref_primary_10_1109_LSP_2020_3029738
crossref_primary_10_1007_s00371_023_02986_9
crossref_primary_10_1109_TNNLS_2021_3071245
crossref_primary_10_1016_j_imavis_2025_105645
crossref_primary_10_1109_TMM_2025_3535342
crossref_primary_10_1016_j_compag_2024_109169
crossref_primary_10_3390_electronics12183907
crossref_primary_10_1109_ACCESS_2023_3290490
crossref_primary_10_3390_electronics14122419
crossref_primary_10_1109_TETCI_2024_3404015
crossref_primary_10_1109_TIP_2020_3045617
crossref_primary_10_1016_j_jvcir_2024_104211
crossref_primary_10_1049_ipr2_70116
crossref_primary_10_1007_s11263_020_01418_8
crossref_primary_10_1016_j_bspc_2021_103286
crossref_primary_10_1109_ACCESS_2021_3068861
crossref_primary_10_1007_s11042_022_13830_y
crossref_primary_10_1007_s00371_020_01964_9
crossref_primary_10_1109_TCSVT_2024_3472278
crossref_primary_10_1007_s00138_024_01651_y
crossref_primary_10_1016_j_cag_2025_104170
crossref_primary_10_1049_ipr2_12287
crossref_primary_10_1109_ACCESS_2024_3434599
crossref_primary_10_3233_JIFS_222644
crossref_primary_10_1007_s11042_020_10310_z
crossref_primary_10_3390_app122312476
crossref_primary_10_1007_s00371_020_01888_4
crossref_primary_10_1016_j_jvcir_2024_104223
crossref_primary_10_3788_gzxb20255406_0610001
crossref_primary_10_1007_s11263_020_01407_x
crossref_primary_10_1109_LGRS_2022_3181106
crossref_primary_10_1088_1361_6560_aae511
crossref_primary_10_7717_peerj_cs_2417
crossref_primary_10_1007_s11760_024_03733_w
crossref_primary_10_1109_ACCESS_2022_3207299
crossref_primary_10_3390_app13179645
crossref_primary_10_3390_app14124962
crossref_primary_10_3390_s19040969
crossref_primary_10_1016_j_jksuci_2023_101814
crossref_primary_10_1109_TPAMI_2020_3022406
crossref_primary_10_3390_app15168850
crossref_primary_10_3390_electronics12092081
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_TPAMI_2022_3152562
crossref_primary_10_1007_s00530_022_00913_x
crossref_primary_10_1007_s11042_020_09919_x
crossref_primary_10_1016_j_cma_2022_115768
crossref_primary_10_1038_s40494_025_01635_9
crossref_primary_10_1016_j_jvcir_2023_103780
crossref_primary_10_1109_ACCESS_2021_3059498
crossref_primary_10_3390_s25144433
crossref_primary_10_1007_s00530_024_01298_9
crossref_primary_10_1109_ACCESS_2025_3583723
crossref_primary_10_1016_j_image_2019_02_001
crossref_primary_10_1109_JSTARS_2024_3357093
crossref_primary_10_3390_s23020792
crossref_primary_10_1016_j_cviu_2018_10_010
crossref_primary_10_1007_s11042_022_13411_z
crossref_primary_10_1016_j_engappai_2024_108036
crossref_primary_10_1016_j_engappai_2025_110867
crossref_primary_10_1016_j_eswa_2025_129436
crossref_primary_10_1016_j_patcog_2023_110001
crossref_primary_10_1007_s11042_024_18773_0
crossref_primary_10_1016_j_vlsi_2023_102102
crossref_primary_10_1142_S0129156425401524
crossref_primary_10_1007_s00170_022_09054_x
crossref_primary_10_3233_JIFS_230643
crossref_primary_10_1109_TCSVT_2022_3141578
crossref_primary_10_1007_s11042_025_21051_2
crossref_primary_10_1007_s00371_021_02210_6
crossref_primary_10_1007_s11831_021_09587_6
crossref_primary_10_1007_s00371_023_03039_x
crossref_primary_10_1016_j_eswa_2025_127263
crossref_primary_10_1145_3665498
crossref_primary_10_1016_j_asoc_2022_109168
crossref_primary_10_1002_rob_22595
crossref_primary_10_1016_j_engappai_2022_105411
crossref_primary_10_1049_ipr2_12750
crossref_primary_10_1007_s00521_022_07713_4
crossref_primary_10_1155_2021_5577956
crossref_primary_10_1016_j_eswa_2022_118920
crossref_primary_10_1080_08839514_2021_1985799
crossref_primary_10_1007_s00371_021_02343_8
crossref_primary_10_1007_s00371_023_02896_w
crossref_primary_10_1109_TPAMI_2021_3130302
crossref_primary_10_1109_TCSVT_2025_3541429
crossref_primary_10_1016_j_jvcir_2023_103795
crossref_primary_10_1007_s11042_023_17158_z
crossref_primary_10_1109_ACCESS_2023_3278734
crossref_primary_10_1109_TCSVT_2024_3520802
crossref_primary_10_3390_s25051472
crossref_primary_10_1016_j_sigpro_2024_109689
crossref_primary_10_1109_TIP_2021_3062184
crossref_primary_10_1016_j_patcog_2021_108506
crossref_primary_10_1007_s00371_023_02883_1
crossref_primary_10_1016_j_neucom_2024_128974
crossref_primary_10_1016_j_knosys_2025_114073
crossref_primary_10_1049_ipr2_12757
crossref_primary_10_3390_rs15174327
crossref_primary_10_1016_j_engappai_2025_111501
crossref_primary_10_1109_LSP_2022_3167331
crossref_primary_10_1016_j_engappai_2022_105632
crossref_primary_10_1049_ipr2_12771
crossref_primary_10_1145_3555777
crossref_primary_10_1109_TCSVT_2023_3239511
crossref_primary_10_12677_mos_2025_148567
crossref_primary_10_1109_LSP_2025_3562822
crossref_primary_10_1109_TIP_2023_3245991
crossref_primary_10_1371_journal_pone_0272398
crossref_primary_10_3390_rs14041027
crossref_primary_10_1016_j_sigpro_2022_108821
crossref_primary_10_1007_s10489_024_05534_7
crossref_primary_10_1109_TMM_2025_3543015
crossref_primary_10_1007_s10851_024_01224_8
crossref_primary_10_1016_j_compeleceng_2024_109310
crossref_primary_10_3390_app15147762
crossref_primary_10_1007_s00034_024_02890_0
crossref_primary_10_1016_j_neucom_2025_129399
crossref_primary_10_1051_shsconf_202316601068
crossref_primary_10_1007_s11042_021_11422_w
crossref_primary_10_1007_s11554_024_01563_0
crossref_primary_10_1016_j_coal_2022_104046
crossref_primary_10_1088_1742_6596_2425_1_012027
crossref_primary_10_1109_TCSVT_2021_3113559
crossref_primary_10_3390_s22186799
crossref_primary_10_1007_s11760_023_02797_4
crossref_primary_10_1186_s42492_019_0031_8
crossref_primary_10_3390_sym17050798
crossref_primary_10_1016_j_cag_2022_04_002
crossref_primary_10_1049_iet_bmt_2018_5065
crossref_primary_10_3390_s25144463
crossref_primary_10_1109_ACCESS_2023_3297490
crossref_primary_10_3390_photonics10020198
crossref_primary_10_1007_s11042_024_19594_x
crossref_primary_10_1109_JPROC_2023_3338272
crossref_primary_10_1007_s00371_022_02402_8
crossref_primary_10_1007_s11042_022_12429_7
crossref_primary_10_1007_s11042_022_12407_z
crossref_primary_10_1016_j_cviu_2023_103916
crossref_primary_10_1016_j_cropro_2024_106734
crossref_primary_10_1016_j_ins_2019_05_015
crossref_primary_10_1109_LSP_2021_3134943
crossref_primary_10_3390_jimaging11040125
crossref_primary_10_1109_TNNLS_2024_3397886
crossref_primary_10_1007_s11063_024_11565_5
crossref_primary_10_3233_IDA_230631
crossref_primary_10_1016_j_neucom_2022_10_083
crossref_primary_10_3390_coatings15040478
crossref_primary_10_1109_TIP_2022_3140610
crossref_primary_10_1007_s00371_024_03735_2
crossref_primary_10_3390_math12193125
crossref_primary_10_1016_j_bspc_2020_102395
crossref_primary_10_1016_j_foodchem_2025_143799
crossref_primary_10_1109_LRA_2020_3048667
crossref_primary_10_1007_s00530_025_01708_6
crossref_primary_10_1016_j_patcog_2018_03_026
crossref_primary_10_1109_TMM_2024_3400668
crossref_primary_10_1109_TCSVT_2025_3549351
crossref_primary_10_1109_TCE_2023_3280467
crossref_primary_10_1016_j_patrec_2021_04_020
crossref_primary_10_3390_electronics13193883
crossref_primary_10_1016_j_engappai_2025_110841
crossref_primary_10_1016_j_neunet_2017_12_003
crossref_primary_10_1049_ipr2_12321
crossref_primary_10_1109_TGRS_2022_3201206
crossref_primary_10_3390_e26100882
crossref_primary_10_1016_j_knosys_2024_111779
crossref_primary_10_1109_TCSVT_2024_3398145
crossref_primary_10_3390_math13071119
crossref_primary_10_3390_electronics11172750
crossref_primary_10_1016_j_patcog_2022_108846
crossref_primary_10_1109_TETC_2024_3403935
crossref_primary_10_1016_j_imu_2022_101136
crossref_primary_10_1007_s11042_022_13139_w
crossref_primary_10_1007_s00530_025_01750_4
crossref_primary_10_1016_j_neucom_2025_131430
crossref_primary_10_1109_TIP_2020_2984098
crossref_primary_10_1049_iet_ipr_2018_6208
crossref_primary_10_1109_TIM_2023_3342229
crossref_primary_10_1016_j_compeleceng_2024_109750
crossref_primary_10_1016_j_engappai_2024_109521
crossref_primary_10_1109_TIP_2021_3051462
crossref_primary_10_1016_j_eswa_2025_129039
crossref_primary_10_1109_ACCESS_2024_3381514
crossref_primary_10_1007_s10489_019_01623_0
crossref_primary_10_1155_2018_3145947
crossref_primary_10_1155_2022_9613936
crossref_primary_10_1109_TIM_2024_3351255
crossref_primary_10_1109_TNNLS_2023_3274926
crossref_primary_10_1007_s40314_022_02140_6
crossref_primary_10_1016_j_patrec_2018_01_010
crossref_primary_10_1007_s11220_025_00611_8
crossref_primary_10_1016_j_engappai_2024_109749
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1016_j_aap_2021_106293
crossref_primary_10_1016_j_patcog_2022_108867
crossref_primary_10_1021_jacs_2c07957
crossref_primary_10_1109_TIP_2023_3286254
crossref_primary_10_1016_j_dsp_2024_104467
crossref_primary_10_3724_SP_J_1089_2022_18833
crossref_primary_10_1109_TCSVT_2022_3190916
crossref_primary_10_1016_j_patcog_2017_10_022
crossref_primary_10_1007_s11227_024_05952_x
crossref_primary_10_1016_j_knosys_2025_113827
crossref_primary_10_1109_TIV_2023_3347952
crossref_primary_10_1007_s11227_024_06177_8
crossref_primary_10_1109_TETCI_2021_3053253
crossref_primary_10_1007_s10489_020_02119_y
crossref_primary_10_1007_s11760_024_03299_7
crossref_primary_10_1016_j_isatra_2021_06_005
crossref_primary_10_1109_ACCESS_2023_3336411
crossref_primary_10_1002_lsm_23414
crossref_primary_10_1109_LSP_2020_2965824
crossref_primary_10_1109_TMM_2023_3284988
crossref_primary_10_1111_coin_12391
crossref_primary_10_1631_FITEE_2200344
crossref_primary_10_1016_j_neucom_2025_129572
crossref_primary_10_1109_ACCESS_2021_3097913
crossref_primary_10_1016_j_knosys_2023_111053
crossref_primary_10_1007_s11265_016_1209_3
crossref_primary_10_1186_s43593_022_00034_y
crossref_primary_10_1109_TCSVT_2020_2987874
crossref_primary_10_1016_j_displa_2025_103136
crossref_primary_10_1016_j_optlastec_2025_113547
crossref_primary_10_1016_j_ymssp_2021_108797
crossref_primary_10_1109_TIP_2022_3180213
crossref_primary_10_1109_TCSVT_2025_3544771
crossref_primary_10_1109_TMM_2022_3162493
crossref_primary_10_1109_TPAMI_2022_3167175
crossref_primary_10_3390_electronics13112040
crossref_primary_10_3390_app142311033
crossref_primary_10_3390_app15137382
crossref_primary_10_1109_ACCESS_2023_3340914
crossref_primary_10_1016_j_patcog_2021_108370
crossref_primary_10_3390_ijgi12100400
crossref_primary_10_1016_j_neucom_2022_08_042
crossref_primary_10_1016_j_cviu_2020_103095
crossref_primary_10_1142_S0218348X17400102
crossref_primary_10_3390_electronics13183695
crossref_primary_10_1109_JSEN_2022_3143709
crossref_primary_10_1109_ACCESS_2019_2932130
crossref_primary_10_1016_j_ijleo_2022_169023
crossref_primary_10_1007_s11063_022_10872_z
crossref_primary_10_1049_cit2_12279
crossref_primary_10_1109_ACCESS_2024_3437154
crossref_primary_10_1109_TMI_2021_3101937
crossref_primary_10_1016_j_neunet_2023_11_014
crossref_primary_10_1109_MMUL_2023_3314741
crossref_primary_10_34133_space_0293
crossref_primary_10_3390_app15010361
crossref_primary_10_1016_j_compeleceng_2023_108754
crossref_primary_10_1109_JSEN_2025_3590815
crossref_primary_10_3390_s25165192
crossref_primary_10_1007_s10489_024_06044_2
crossref_primary_10_3390_app15105556
crossref_primary_10_3390_app132011394
crossref_primary_10_1117_1_JEI_31_4_043050
crossref_primary_10_1016_j_neucom_2017_02_066
crossref_primary_10_1007_s00138_022_01365_z
crossref_primary_10_32604_cmc_2025_059669
crossref_primary_10_1016_j_engappai_2023_107234
crossref_primary_10_1007_s13042_023_01983_7
crossref_primary_10_1016_j_autcon_2024_105404
crossref_primary_10_1007_s10921_023_01013_0
crossref_primary_10_1007_s11760_023_02613_z
crossref_primary_10_1016_j_displa_2025_103163
crossref_primary_10_1016_j_patrec_2024_02_011
crossref_primary_10_1109_TCI_2023_3340617
crossref_primary_10_1109_TMI_2022_3147854
crossref_primary_10_1016_j_patcog_2023_109602
crossref_primary_10_1016_j_patcog_2025_112371
crossref_primary_10_1016_j_knosys_2023_111099
crossref_primary_10_1109_TCI_2023_3240087
crossref_primary_10_1016_j_measurement_2022_112013
crossref_primary_10_1016_j_engappai_2023_107003
crossref_primary_10_1109_ACCESS_2025_3558574
crossref_primary_10_1016_j_compeleceng_2024_109922
crossref_primary_10_1109_JSEN_2024_3481416
crossref_primary_10_3390_e25081201
crossref_primary_10_1109_ACCESS_2022_3178698
crossref_primary_10_3390_s25020327
crossref_primary_10_1007_s11042_023_15233_z
crossref_primary_10_1177_09544070211016254
Cites_doi 10.1007/978-3-319-11758-4_10
10.1109/CVPR.2012.6247952
10.1109/ICCPS.2016.7479095
10.1109/TIP.2006.881969
10.1016/j.dsp.2013.06.002
10.1016/j.dsp.2003.07.002
10.1016/S0734-189X(87)80186-X
10.1109/TIP.2010.2092438
10.36001/phmconf.2015.v7i1.2723
10.1109/ICPR.1992.202045
10.1109/TIP.2003.819861
10.1109/TIP.2007.901238
10.1109/ICME.2011.6012107
10.1109/CVPR.2004.1315150
10.1109/TIP.2005.852196
10.1145/1390156.1390294
10.25080/Majora-92bf1922-003
10.1007/s11265-016-1209-3
10.1109/ICPR.2008.4761424
10.1007/BF03178082
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2016.06.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 662
ExternalDocumentID 10_1016_j_patcog_2016_06_008
S003132031630125X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-cfe59568701708221e20fa777a32d9867f26f0427673f1036a1a4b9f303952e3
ISICitedReferencesCount 1301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385899400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:18 EST 2025
Tue Nov 18 22:23:32 EST 2025
Fri Feb 23 02:25:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image enhancement
Deep autoencoders
Natural low-light images
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-cfe59568701708221e20fa777a32d9867f26f0427673f1036a1a4b9f303952e3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_patcog_2016_06_008
crossref_citationtrail_10_1016_j_patcog_2016_06_008
elsevier_sciencedirect_doi_10_1016_j_patcog_2016_06_008
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References A. Yamasaki, H. Takauji, S. Kaneko, T. Kanade, H. Ohki, Denighting: Enhancement of nighttime images for a surveillance camera, in: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, IEEE, Tampa, FL, 2008, pp. 1–4.
Dabov, Foi, Katkovnik, Egiazarian (bib15) 2007; 16
Chan, Ho, Nikolova (bib17) 2005; 14
J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 341–349.
Pisano, Zong, Hemminger, DeLuce, Johnston, Muller, Braeuning, Pizer (bib10) 1998; 11
S. Sarkar, K.G. Lore, S. Sarkar, V. Ramanan, S.R. Chakravarthy, S. Phoha, A. Ray, Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, Proceedings of the Annual Conference of the Prognostics and Health Management Society, Coronado, California, 2015
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements, in: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
Bergstra, Bengio (bib32) 2012; 13
K.G. Lore, N. Sweet, K. Kumar, N. Ahmed, S. Sarkar, Deep value of information estimators for collaborative human–machine information gathering, in: International Conference of Cyber-physical Systems (ICCPS), Vienna, Austria, 2016.
Santoso, Nugroho, Suparta, Hidayat (bib26) 2011; 2
Kaur, Kaur, Kaur (bib12) 2011; 2
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada, 2012.
Paper PDF is found here
Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, IEEE, Washington, DC.,2004, pp. II–97.
S. Sarkar, V. Venugopalan, K. Reddy, J. Ryde, M. Giering, N. Jaitly, Occlusion edge detection in rgbd frames using deep convolutional neural networks, in: Proceedings of IEEE High Performance Extreme Computing Conference, Waltham, MA, 2015.
P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International conference on Machine Learning-ICML'08, 2008, pp. 1096–1103.
C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation using depth information, in: ICLR, 2013.
P. Trahanias, A. Venetsanopoulos, Color image enhancement through 3-d histogram equalization, in: Proceedings of 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, IEEE, The Hague, The Netherlands, 1992, pp. 545–548.
X. Dong, G. Wang, Y.A. Pang, W. Li, J.G. Wen, W. Meng, Y. Lu, Fast efficient algorithm for enhancement of low lighting video, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Barcelona, 2011, pp. 1–6.
Wu (bib13) 2011; 20
R. Gonzalex, R. Woods, Digital image Processing, 2nd Edition, no. 0-201-28075-8 in 0-201-28075-8, Prentice Hall, Upper saddle Rivers, New Jersey, 2001.
Elad, Aharon (bib16) 2006; 15
.
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib9) 1987; 39
Jain, Seung (bib19) 2008
F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in: Advances in Neural Information Processing Systems, 2013, pp. 1493–1501.
H.C. Burger, C.J. Schuler, S. Harmeling, Image denoising: Can plain neural networks compete with bm3d? in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, 2012, pp. 2392–2399.
Loza, Bull, Hill, Achim (bib6) 2013; 23
Wang, Bovik, Sheik, Simoncelli (bib27) 2004; 13
R. Krutsch, D. Tenorlo, Histogram equalization, Application Note AN4318, Freescale Semiconductors Inc, June 2011.
K. Fotiadou, G. Tsagkatakis, P. Tsakalides, Low light image enhancement via sparse representations, in: Image Analysis and Recognition, Springer, Vilamoura, Algarve, Portugal, 2014, pp. 84–93.
X. Zhang, P. Shen, L. Luo, L. Zhang, J. Song, Enhancement and noise reduction of very low light level images, in: 2012 21st International Conference on Pattern Recognition (ICPR), IEEE, Tsukuba Science City, Japan, 2012, pp. 2034–2037.
Cheng, Shi (bib29) 2004; 14
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPUmath expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral Presentation.
Cheng (10.1016/j.patcog.2016.06.008_bib29) 2004; 14
Wu (10.1016/j.patcog.2016.06.008_bib13) 2011; 20
Jain (10.1016/j.patcog.2016.06.008_bib19) 2008
10.1016/j.patcog.2016.06.008_bib28
Pizer (10.1016/j.patcog.2016.06.008_bib9) 1987; 39
10.1016/j.patcog.2016.06.008_bib25
10.1016/j.patcog.2016.06.008_bib24
10.1016/j.patcog.2016.06.008_bib23
10.1016/j.patcog.2016.06.008_bib22
10.1016/j.patcog.2016.06.008_bib21
Dabov (10.1016/j.patcog.2016.06.008_bib15) 2007; 16
10.1016/j.patcog.2016.06.008_bib31
10.1016/j.patcog.2016.06.008_bib30
Kaur (10.1016/j.patcog.2016.06.008_bib12) 2011; 2
Wang (10.1016/j.patcog.2016.06.008_bib27) 2004; 13
Elad (10.1016/j.patcog.2016.06.008_bib16) 2006; 15
10.1016/j.patcog.2016.06.008_bib18
Santoso (10.1016/j.patcog.2016.06.008_bib26) 2011; 2
10.1016/j.patcog.2016.06.008_bib14
Bergstra (10.1016/j.patcog.2016.06.008_bib32) 2012; 13
10.1016/j.patcog.2016.06.008_bib11
10.1016/j.patcog.2016.06.008_bib4
10.1016/j.patcog.2016.06.008_bib20
10.1016/j.patcog.2016.06.008_bib3
10.1016/j.patcog.2016.06.008_bib2
10.1016/j.patcog.2016.06.008_bib1
10.1016/j.patcog.2016.06.008_bib8
10.1016/j.patcog.2016.06.008_bib7
Pisano (10.1016/j.patcog.2016.06.008_bib10) 1998; 11
10.1016/j.patcog.2016.06.008_bib5
Loza (10.1016/j.patcog.2016.06.008_bib6) 2013; 23
Chan (10.1016/j.patcog.2016.06.008_bib17) 2005; 14
References_xml – volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib15
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– reference: Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, IEEE, Washington, DC.,2004, pp. II–97.
– reference: X. Dong, G. Wang, Y.A. Pang, W. Li, J.G. Wen, W. Meng, Y. Lu, Fast efficient algorithm for enhancement of low lighting video, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Barcelona, 2011, pp. 1–6.
– reference: A. Yamasaki, H. Takauji, S. Kaneko, T. Kanade, H. Ohki, Denighting: Enhancement of nighttime images for a surveillance camera, in: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, IEEE, Tampa, FL, 2008, pp. 1–4.
– reference: X. Zhang, P. Shen, L. Luo, L. Zhang, J. Song, Enhancement and noise reduction of very low light level images, in: 2012 21st International Conference on Pattern Recognition (ICPR), IEEE, Tsukuba Science City, Japan, 2012, pp. 2034–2037.
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib19
  article-title: Natural image denoising with convolutional networks
  publication-title: Neural Inf. Process. Stand.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib32
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– reference: P. Trahanias, A. Venetsanopoulos, Color image enhancement through 3-d histogram equalization, in: Proceedings of 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, IEEE, The Hague, The Netherlands, 1992, pp. 545–548.
– volume: 15
  start-page: 3736
  year: 2006
  end-page: 3745
  ident: bib16
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– reference: K. Fotiadou, G. Tsagkatakis, P. Tsakalides, Low light image enhancement via sparse representations, in: Image Analysis and Recognition, Springer, Vilamoura, Algarve, Portugal, 2014, pp. 84–93.
– reference: P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International conference on Machine Learning-ICML'08, 2008, pp. 1096–1103.
– volume: 2
  start-page: 137
  year: 2011
  end-page: 141
  ident: bib12
  article-title: Survey of contrast enhancement techniques based on histogram equalization
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– reference: C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation using depth information, in: ICLR, 2013.
– reference: F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in: Advances in Neural Information Processing Systems, 2013, pp. 1493–1501.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib27
  article-title: Image quality assessment
  publication-title: IEE Trans. Image Process.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada, 2012.
– reference: K.G. Lore, N. Sweet, K. Kumar, N. Ahmed, S. Sarkar, Deep value of information estimators for collaborative human–machine information gathering, in: International Conference of Cyber-physical Systems (ICCPS), Vienna, Austria, 2016.
– reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPUmath expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), 2010, oral Presentation.
– volume: 14
  start-page: 1479
  year: 2005
  end-page: 1485
  ident: bib17
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans. Image Process.
– reference: . Paper PDF is found here:
– reference: R. Krutsch, D. Tenorlo, Histogram equalization, Application Note AN4318, Freescale Semiconductors Inc, June 2011.
– reference: J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 341–349.
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: bib9
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 14
  start-page: 158
  year: 2004
  end-page: 170
  ident: bib29
  article-title: A simple and effective histogram equalization approach to image enhancement
  publication-title: Digit. Signal Process.
– reference: S. Sarkar, K.G. Lore, S. Sarkar, V. Ramanan, S.R. Chakravarthy, S. Phoha, A. Ray, Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, Proceedings of the Annual Conference of the Prognostics and Health Management Society, Coronado, California, 2015,
– reference: .
– reference: S. Sarkar, V. Venugopalan, K. Reddy, J. Ryde, M. Giering, N. Jaitly, Occlusion edge detection in rgbd frames using deep convolutional neural networks, in: Proceedings of IEEE High Performance Extreme Computing Conference, Waltham, MA, 2015.
– volume: 20
  start-page: 1262
  year: 2011
  end-page: 1272
  ident: bib13
  article-title: A linear programming approach for optimal contrast-tone mapping
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 1856
  year: 2013
  end-page: 1866
  ident: bib6
  article-title: Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients
  publication-title: Digit. Signal Process.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib26
  article-title: Compression ratio and peak signal to noise ratio in grayscale image compression using wavelet
  publication-title: Int. J. Comput. Sci. Technol.
– reference: H.C. Burger, C.J. Schuler, S. Harmeling, Image denoising: Can plain neural networks compete with bm3d? in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, 2012, pp. 2392–2399.
– reference: F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements, in: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
– volume: 11
  start-page: 193
  year: 1998
  end-page: 200
  ident: bib10
  article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms
  publication-title: J. Digit. Imaging
– reference: R. Gonzalex, R. Woods, Digital image Processing, 2nd Edition, no. 0-201-28075-8 in 0-201-28075-8, Prentice Hall, Upper saddle Rivers, New Jersey, 2001.
– ident: 10.1016/j.patcog.2016.06.008_bib30
– ident: 10.1016/j.patcog.2016.06.008_bib22
  doi: 10.1007/978-3-319-11758-4_10
– volume: 2
  start-page: 1
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2016.06.008_bib26
  article-title: Compression ratio and peak signal to noise ratio in grayscale image compression using wavelet
  publication-title: Int. J. Comput. Sci. Technol.
– ident: 10.1016/j.patcog.2016.06.008_bib21
  doi: 10.1109/CVPR.2012.6247952
– volume: 2
  start-page: 137
  issue: 7
  year: 2011
  ident: 10.1016/j.patcog.2016.06.008_bib12
  article-title: Survey of contrast enhancement techniques based on histogram equalization
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: 10.1016/j.patcog.2016.06.008_bib5
  doi: 10.1109/ICCPS.2016.7479095
– ident: 10.1016/j.patcog.2016.06.008_bib1
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 10.1016/j.patcog.2016.06.008_bib16
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– volume: 23
  start-page: 1856
  issue: 6
  year: 2013
  ident: 10.1016/j.patcog.2016.06.008_bib6
  article-title: Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.06.002
– volume: 14
  start-page: 158
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2016.06.008_bib29
  article-title: A simple and effective histogram equalization approach to image enhancement
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2003.07.002
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2016.06.008_bib32
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 10.1016/j.patcog.2016.06.008_bib9
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– volume: 20
  start-page: 1262
  issue: 5
  year: 2011
  ident: 10.1016/j.patcog.2016.06.008_bib13
  article-title: A linear programming approach for optimal contrast-tone mapping
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2092438
– ident: 10.1016/j.patcog.2016.06.008_bib11
– start-page: 1
  year: 2008
  ident: 10.1016/j.patcog.2016.06.008_bib19
  article-title: Natural image denoising with convolutional networks
  publication-title: Neural Inf. Process. Stand.
– ident: 10.1016/j.patcog.2016.06.008_bib4
  doi: 10.36001/phmconf.2015.v7i1.2723
– ident: 10.1016/j.patcog.2016.06.008_bib28
  doi: 10.1109/ICPR.1992.202045
– ident: 10.1016/j.patcog.2016.06.008_bib25
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.patcog.2016.06.008_bib27
  article-title: Image quality assessment
  publication-title: IEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2016.06.008_bib15
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– ident: 10.1016/j.patcog.2016.06.008_bib23
– ident: 10.1016/j.patcog.2016.06.008_bib7
  doi: 10.1109/ICME.2011.6012107
– ident: 10.1016/j.patcog.2016.06.008_bib2
– ident: 10.1016/j.patcog.2016.06.008_bib24
  doi: 10.1109/CVPR.2004.1315150
– volume: 14
  start-page: 1479
  issue: 10
  year: 2005
  ident: 10.1016/j.patcog.2016.06.008_bib17
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852196
– ident: 10.1016/j.patcog.2016.06.008_bib20
– ident: 10.1016/j.patcog.2016.06.008_bib18
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.patcog.2016.06.008_bib31
  doi: 10.25080/Majora-92bf1922-003
– ident: 10.1016/j.patcog.2016.06.008_bib3
  doi: 10.1007/s11265-016-1209-3
– ident: 10.1016/j.patcog.2016.06.008_bib8
  doi: 10.1109/ICPR.2008.4761424
– ident: 10.1016/j.patcog.2016.06.008_bib14
– volume: 11
  start-page: 193
  issue: 4
  year: 1998
  ident: 10.1016/j.patcog.2016.06.008_bib10
  article-title: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms
  publication-title: J. Digit. Imaging
  doi: 10.1007/BF03178082
SSID ssj0017142
Score 2.6953337
Snippet In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 650
SubjectTerms Deep autoencoders
Image enhancement
Natural low-light images
Title LLNet: A deep autoencoder approach to natural low-light image enhancement
URI https://dx.doi.org/10.1016/j.patcog.2016.06.008
Volume 61
WOSCitedRecordID wos000385899400050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUb3miGl7xgVxklzsMOuwoNMFBVI7VC3UWOY0OmnaQq6czw91zHjlsYxEtiY1Vp3VS-p9fHzrnHCL1IaBzpQCtCCyFIXCSScC00KYKSBSqGGaFTVX6csOmULxbZ6WCg-1qYixWra351la3_a6jhGgTblM7-Rbj9l8IFeA1BhxbCDu0fBX4ymSq73zcqlVqPxLZtjFulMY3oHcQN4-wsPSFAq-aSrMwSfVSdGwGPqj8bJHhFjGOup50Rpyl-cYqj3fP7idPqfqjq0dtLf3m8rOpWfLV1NKWC5e_WvzcTm6WVds-a7Xm13N98CNkPmw--KmYnQeqybBSSiAY2cSmbWDmLCJCz7zKvtWF3qTO1BrRuFk5tjr6W4O1ew9nLNUxUzScjzUs7_9WA7yY0LzOcWWdKaFLIYzRZ3EAHlCUZH6KD8cnx4r1_3sTC2PrKu1_eF1l2SsDr9_o5idkjJvO76LZbUeCxRcI9NFD1fXSnP60Du-T9AJ10wHiFx9jAAu_BAvewwG2DHSywhwXuYIH3YPEQzd8cz1-_I-4gDSJhRdgSqVViykKZMUsCRhgqGmjBGBMRLTOeMk1TbQ5dSVmkQ-A0IhRxkWmgN1lCVfQIDeumVocIMypLGScyEIGOGS-KKE5iJUVQaq50WByhqB-YXDqTeXPWySrv1YRnuR3O3Axn3okq-REivtfamqz85vOsH_PcEUVLAHOAyS97Pv7nnk_Qrd0f4CkatputeoZuyou2-rJ57vD0DaQXjhk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLNet%3A+A+deep+autoencoder+approach+to+natural+low-light+image+enhancement&rft.jtitle=Pattern+recognition&rft.au=Lore%2C+Kin+Gwn&rft.au=Akintayo%2C+Adedotun&rft.au=Sarkar%2C+Soumik&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=61&rft.spage=650&rft.epage=662&rft_id=info:doi/10.1016%2Fj.patcog.2016.06.008&rft.externalDocID=S003132031630125X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon