Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing
Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fo...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 272; s. 110563 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
19.07.2023
|
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models. |
|---|---|
| AbstractList | Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models. |
| ArticleNumber | 110563 |
| Author | Ahuja, Rakesh Agarwal, Gaurav Gupta, Sachi Rai, Atul Kumar |
| Author_xml | – sequence: 1 givenname: Gaurav surname: Agarwal fullname: Agarwal, Gaurav organization: Department of Computer Science & Engineering, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India – sequence: 2 givenname: Sachi surname: Gupta fullname: Gupta, Sachi email: shaurya13@gmail.com organization: Department of Computer Science & Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, India – sequence: 3 givenname: Rakesh surname: Ahuja fullname: Ahuja, Rakesh organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 4 givenname: Atul Kumar surname: Rai fullname: Rai, Atul Kumar organization: Department of Computer Science & Engineering, Kothiwal Institute of Technology and Professional Studies, Moradabad, India |
| BookMark | eNqFkEtOwzAQQC1UJErhBix8gQTb-bNAqioKSEVsYG259iR1msSV7VTqjjtwQ05CorBiAZuZzbwnzbtEs850gNANJSElNL2tw31n3MmFjLAopJQkaXSG5jTPWJDFpJihOSkSEmQkoRfo0rmaEMIYzeeofOkbrw_WSHDOWOyF22Mnd6D6RncV7t042_EoMNsapNdHwLvT1mqFK-jAa4mXTWWs9rsW6w6vTfX18Skb0yssTXvo_WC4QuelaBxc_-wFel8_vK2egs3r4_NquQlkRFIfSACVx9syFazIaQSZSmSRi4RJkrE4V6xUMcg4FyJOlUpSqYBGSRLlFFImCogW6G7ySmucs1Byqb3w2nTeCt1wSvhYjNd8KsbHYnwqNsDxL_hgdSvs6T_sfsJgeOyowXInNXQSlLZDL66M_lvwDa5kjlw |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2025_126060 crossref_primary_10_1109_JIOT_2025_3539574 crossref_primary_10_1016_j_energy_2024_133088 crossref_primary_10_1007_s42044_023_00163_8 crossref_primary_10_1109_ACCESS_2024_3435914 crossref_primary_10_1007_s10586_025_05526_3 crossref_primary_10_1007_s12008_024_01745_x crossref_primary_10_1080_1206212X_2025_2550736 crossref_primary_10_1016_j_yofte_2023_103651 crossref_primary_10_1002_cpe_70065 crossref_primary_10_1007_s42979_023_02517_2 crossref_primary_10_1016_j_eswa_2025_129260 crossref_primary_10_1016_j_jnca_2023_103788 crossref_primary_10_1109_TNSM_2023_3317758 crossref_primary_10_7717_peerj_cs_2128 crossref_primary_10_1016_j_swevo_2024_101654 crossref_primary_10_1038_s41598_024_81055_0 crossref_primary_10_1007_s10586_024_04771_2 crossref_primary_10_1016_j_engappai_2025_110705 crossref_primary_10_1016_j_compenvurbsys_2025_102304 crossref_primary_10_3390_a16100473 crossref_primary_10_1016_j_knosys_2025_114153 crossref_primary_10_3389_fcomp_2023_1293209 |
| Cites_doi | 10.1080/03610918.2014.931971 10.1016/j.asoc.2020.106274 10.1016/j.cie.2021.107388 10.1016/j.swevo.2018.10.012 10.1109/ACCESS.2021.3130407 10.1016/j.comcom.2019.12.050 10.1016/j.eswa.2020.114230 10.1049/sil2.12015 10.1007/s10586-020-03075-5 10.26599/TST.2021.9010007 10.1007/s12652-020-02730-4 10.1016/j.jpdc.2019.12.012 10.1007/s11042-020-10118-x 10.1007/s11227-021-03685-9 10.3390/s22030920 10.1002/acs.3425 10.1016/j.sysarc.2019.06.003 10.1109/TCCN.2021.3051947 10.1109/TPDS.2019.2950251 10.1007/s11227-021-03764-x 10.1504/IJES.2021.120259 10.1016/j.eswa.2021.114699 10.1049/cdt2.12018 10.1007/s00521-022-06925-y 10.1016/j.engappai.2020.103540 10.3390/app13063433 10.1016/j.future.2019.02.019 10.3390/pr9091514 10.1109/ACCESS.2023.3241240 10.3390/a14080246 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2023.110563 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2023_110563 S0950705123003131 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-ceed84bf6a29813e7d5c98a52c07248d2fd4ec48aa46dd56cde1355381e62a9e3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:07:00 EST 2025 Tue Nov 18 22:35:06 EST 2025 Fri Feb 23 02:35:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiprocessor Energy consumption Genetic algorithm Task scheduling Makespan Energy conscious scheduling Fog–cloud system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-ceed84bf6a29813e7d5c98a52c07248d2fd4ec48aa46dd56cde1355381e62a9e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2023_110563 crossref_primary_10_1016_j_knosys_2023_110563 elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110563 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-19 |
| PublicationDateYYYYMMDD | 2023-07-19 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Michel, Lee (b28) 2022 Saif, Latip, Hanapi, Shafinah (b40) 2023 Yang, Wang, Zhang, Zuo (b9) 2021 Xie, Wu, Li (b8) 2021 Ali, Sallam, Moustafa, Chakraborty, Ryan, Choo (b37) 2020 Chandrashekar, Krishnadoss, Poornachary, Ananthakrishnan, Rangasamy (b39) 2023; 13 Agarwal, Om (b25) 2021; 80 Kumar, Mayank, Mondal (b3) 2019; 31 Lee, Cho, Jang, Lee, Woo (b7) 2021; 9 Abdel-Basset, Mohamed, Abouhawwash, Chakrabortty, Ryan (b26) 2021; 173 Zhao, Dai, Bate, Burns, Chang (b11) 2020 Tang, Zhu, Zhou, Xiong, Wei (b12) 2020; 138 Wu, Zhou, Wen (b19) 2021 Agarwal, Om (b22) 2021; 15 Alsheikhy (b20) 2021 Agarwal, Om (b21) 2021 Pereira, Afonso, Medeiros (b44) 2015; 44 Mubeen, Ibrahim, Bibi, Baz, Hamam, Cheikhrouhou (b2) 2021; 9 Agarwal, Srivastava (b35) 2021; 12 Stavrinides, Karatza, energy efficient (b15) 2019; 96 Bacanin, Zivkovic, Bezdan, Venkatachalam, Abouhawwash (b38) 2022; 34 Eric, Olusola, Esemokumo (b43) 2021; 7 Shukri, Al-Sayyed, Hudaib, Mirjalili (b32) 2021; 168 Hassan, Nagib, Ibrahiem (b27) 2021; 15 Cai, Zhou, Lei (b16) 2020; 90 Muhuri, Biswas (b10) 2020; 92 Jiang, Wang, Jingjing (b30) 2021; 26 Deng, Cao, Shen, Yan, Huang (b29) 2021; 77 Agarwal, Om, Gupta (b23) 2022 Sotskov, Mihova (b6) 2021; 14 Aïder, Baatout, Hifi (b34) 2021; 158 Rupanetti, Salamy (b14) 2019; 98 Krishnaraj, Prakash (b5) 2021 Kapoor, Panda (b17) 2021 Sulaiman, Halim, Waqas, Aydın (b18) 2021; 77 Agarwal, Maheshkar, Maheshkar, Gupta (b24) 2019 Qiao, Wang, Guan (b1) 2021; 14 Abualigah, Diabat (b31) 2021; 24 Luo, Ding, Zhang (b33) 2021; 7 Nabi, Ahmad, Ibrahim, Hamam (b4) 2022; 22 Elaziz, Abualigah, Ibrahim, Attiya (b42) 2021; 2021 Hoseiny, Azizi, Shojafar, Tafazolli (b36) 2021 Lavanya, Shanthi, Saravanan (b41) 2020; 151 Kurdi (b13) 2019; 44 Sulaiman (10.1016/j.knosys.2023.110563_b18) 2021; 77 Sotskov (10.1016/j.knosys.2023.110563_b6) 2021; 14 Rupanetti (10.1016/j.knosys.2023.110563_b14) 2019; 98 Yang (10.1016/j.knosys.2023.110563_b9) 2021 Wu (10.1016/j.knosys.2023.110563_b19) 2021 Bacanin (10.1016/j.knosys.2023.110563_b38) 2022; 34 Pereira (10.1016/j.knosys.2023.110563_b44) 2015; 44 Qiao (10.1016/j.knosys.2023.110563_b1) 2021; 14 Kurdi (10.1016/j.knosys.2023.110563_b13) 2019; 44 Lavanya (10.1016/j.knosys.2023.110563_b41) 2020; 151 Jiang (10.1016/j.knosys.2023.110563_b30) 2021; 26 Krishnaraj (10.1016/j.knosys.2023.110563_b5) 2021 Kumar (10.1016/j.knosys.2023.110563_b3) 2019; 31 Hassan (10.1016/j.knosys.2023.110563_b27) 2021; 15 Muhuri (10.1016/j.knosys.2023.110563_b10) 2020; 92 Hoseiny (10.1016/j.knosys.2023.110563_b36) 2021 Abdel-Basset (10.1016/j.knosys.2023.110563_b26) 2021; 173 Cai (10.1016/j.knosys.2023.110563_b16) 2020; 90 Luo (10.1016/j.knosys.2023.110563_b33) 2021; 7 Xie (10.1016/j.knosys.2023.110563_b8) 2021 Eric (10.1016/j.knosys.2023.110563_b43) 2021; 7 Abualigah (10.1016/j.knosys.2023.110563_b31) 2021; 24 Agarwal (10.1016/j.knosys.2023.110563_b21) 2021 Agarwal (10.1016/j.knosys.2023.110563_b23) 2022 Agarwal (10.1016/j.knosys.2023.110563_b24) 2019 Mubeen (10.1016/j.knosys.2023.110563_b2) 2021; 9 Ali (10.1016/j.knosys.2023.110563_b37) 2020 Michel (10.1016/j.knosys.2023.110563_b28) 2022 Saif (10.1016/j.knosys.2023.110563_b40) 2023 Elaziz (10.1016/j.knosys.2023.110563_b42) 2021; 2021 Alsheikhy (10.1016/j.knosys.2023.110563_b20) 2021 Deng (10.1016/j.knosys.2023.110563_b29) 2021; 77 Agarwal (10.1016/j.knosys.2023.110563_b22) 2021; 15 Agarwal (10.1016/j.knosys.2023.110563_b35) 2021; 12 Aïder (10.1016/j.knosys.2023.110563_b34) 2021; 158 Lee (10.1016/j.knosys.2023.110563_b7) 2021; 9 Chandrashekar (10.1016/j.knosys.2023.110563_b39) 2023; 13 Zhao (10.1016/j.knosys.2023.110563_b11) 2020 Agarwal (10.1016/j.knosys.2023.110563_b25) 2021; 80 Shukri (10.1016/j.knosys.2023.110563_b32) 2021; 168 Nabi (10.1016/j.knosys.2023.110563_b4) 2022; 22 Stavrinides (10.1016/j.knosys.2023.110563_b15) 2019; 96 Kapoor (10.1016/j.knosys.2023.110563_b17) 2021 Tang (10.1016/j.knosys.2023.110563_b12) 2020; 138 |
| References_xml | – volume: 7 start-page: 44 year: 2021 end-page: 51 ident: b43 article-title: Statistical analysis of the median test and the Mann–Whitney U test publication-title: Int. J. Adv. Acad. Res. – volume: 44 start-page: 987 year: 2019 end-page: 1002 ident: b13 article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop publication-title: Swarm Evol. Comput. – volume: 15 start-page: 214 year: 2021 end-page: 222 ident: b27 article-title: A novel task scheduling approach for dependent non-preemptive tasks using fuzzy logic publication-title: IET Comput. Digit. Techniques – volume: 77 start-page: 10252 year: 2021 end-page: 10288 ident: b18 article-title: A hybrid list-based task scheduling scheme for heterogeneous computing publication-title: J. Supercomput. – start-page: 131 year: 2019 end-page: 142 ident: b24 article-title: Vocal mood recognition: Text dependent sequential and parallel approach publication-title: Applications of Artificial Intelligence Techniques in Engineering – year: 2023 ident: b40 article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing publication-title: IEEE Access – volume: 9 start-page: 1514 year: 2021 ident: b2 article-title: Alts: An adaptive load balanced task scheduling approach for cloud computing publication-title: Processes – volume: 13 start-page: 3433 year: 2023 ident: b39 article-title: HWACOA scheduler: Hybrid weighted ant colony optimization algorithm for task scheduling in cloud computing publication-title: Appl. Sci. – start-page: 1 year: 2021 end-page: 16 ident: b21 article-title: Parallel training models of deep belief network using MapReduce for the classifications of emotions publication-title: Int. J. Syst. Assur. Eng. Manag. – volume: 77 start-page: 11643 year: 2021 end-page: 11681 ident: b29 article-title: Reliability-aware task scheduling for energy efficiency on heterogeneous multiprocessor systems publication-title: J. Supercomput. – volume: 44 start-page: 2636 year: 2015 end-page: 2653 ident: b44 article-title: Overview of Friedman’s test and post-hoc analysis publication-title: Comm. Statist. Simulation Comput. – year: 2021 ident: b8 article-title: Carry-out interference optimization in WCRT analysis for global fixed-priority multiprocessor scheduling publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – volume: 173 year: 2021 ident: b26 article-title: EA-MSCA: An effective energy-aware multi-objective modified sine-cosine algorithm for real-time task scheduling in multiprocessor systems: Methods and analysis publication-title: Expert Syst. Appl. – start-page: 128 year: 2020 end-page: 140 ident: b11 article-title: DAG scheduling and analysis on multiprocessor systems: Exploitation of parallelism and dependency publication-title: 2020 IEEE Real-Time Systems Symposium – year: 2021 ident: b36 article-title: Joint qos- aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system – start-page: 1 year: 2021 end-page: 25 ident: b9 article-title: Semi-partitioned scheduling of mixed-criticality system on multiprocessor platforms publication-title: J. Supercomput. – volume: 12 start-page: 9855 year: 2021 end-page: 9875 ident: b35 article-title: Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing publication-title: J. Ambient Intell. Humaniz. Comput. – year: 2022 ident: b23 article-title: A learning framework of modified deep recurrent neural network for classification and recognition of voice mood publication-title: Internat. J. Adapt. Control Signal Process. – volume: 2021 year: 2021 ident: b42 article-title: IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing publication-title: Comput. Intell. Neurosci. – volume: 80 start-page: 9961 year: 2021 end-page: 9992 ident: b25 article-title: Performance of deer hunting optimization based deep learning algorithm for speech emotion recognition publication-title: Multimedia Tools Appl. – volume: 26 start-page: 646 year: 2021 end-page: 663 ident: b30 article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Tsinghua Sci. Technol. – volume: 151 start-page: 183 year: 2020 end-page: 195 ident: b41 article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment publication-title: Comput. Commun. – year: 2020 ident: b37 article-title: An automated task scheduling model using non-dominated sorting genetic Algorithm II for fog-cloud systems publication-title: IEEE Trans. Cloud Comput. – volume: 31 start-page: 871 year: 2019 end-page: 885 ident: b3 article-title: Reliability aware energy optimized scheduling of non-preemptive periodic real-time tasks on heterogeneous multiprocessor system publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 14 start-page: 246 year: 2021 ident: b6 article-title: Scheduling multiprocessor tasks with equal processing times as a mixed graph coloring problem publication-title: Algorithms – year: 2021 ident: b19 article-title: Endpoint communication contention-aware cloud workflow scheduling publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 135 year: 2021 end-page: 145 ident: b5 article-title: An intelligent fitness-scaling chaotic genetic ant colony algorithm based on task-scheduling in cloud computing environments publication-title: Artificial Intelligence Applications for Smart Societies – volume: 96 start-page: 216 year: 2019 end-page: 226 ident: b15 article-title: QoS-Aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations publication-title: Future Gener. Comput. Syst. – year: 2021 ident: b20 article-title: Dynamic approach to minimize overhead and response time in scheduling periodic real-time tasks – year: 2022 ident: b28 article-title: Energy conscious dynamic window scheduling of chip multiprocessors – volume: 34 start-page: 9043 year: 2022 end-page: 9068 ident: b38 article-title: Modified firefly algorithm for workflow scheduling in cloud–edge environment publication-title: Neural Comput. Appl. – volume: 90 year: 2020 ident: b16 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Eng. Appl. Artif. Intell. – volume: 168 year: 2021 ident: b32 article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments publication-title: Expert Syst. Appl. – volume: 22 start-page: 920 year: 2022 ident: b4 article-title: AdPSO: Adaptive PSO-Based task scheduling approach for cloud computing publication-title: Sensors – volume: 138 start-page: 115 year: 2020 end-page: 127 ident: b12 article-title: Scheduling directed acyclic graphs with optimal duplication strategy on homogeneous multiprocessor systems publication-title: J. Parallel Distrib. Comput. – start-page: 267 year: 2021 end-page: 276 ident: b17 article-title: Scheduling of parallel tasks in cloud environment using DAG MODEL publication-title: Intelligent Computing and Applications – volume: 24 start-page: 205 year: 2021 end-page: 223 ident: b31 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Cluster Comput. – volume: 14 start-page: 451 year: 2021 end-page: 464 ident: b1 article-title: A multiprocessor real-time scheduling embedded testbed based on Linux publication-title: Int. J. Embed. Syst. – volume: 98 start-page: 17 year: 2019 end-page: 26 ident: b14 article-title: Task allocation, migration and scheduling for energy-efficient real-time multiprocessor architectures publication-title: J. Syst. Archit. – volume: 7 start-page: 970 year: 2021 end-page: 984 ident: b33 article-title: Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system publication-title: IEEE Trans. Cogn. Commun. Netw. – volume: 92 year: 2020 ident: b10 article-title: Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks in heterogeneous multiprocessor systems publication-title: Appl. Soft Comput. – volume: 9 year: 2021 ident: b7 article-title: A global DAG task scheduler using deep reinforcement learning and graph convolution network publication-title: IEEE Access – volume: 15 start-page: 98 year: 2021 end-page: 121 ident: b22 article-title: An efficient supervised framework for music mood recognition using autoencoder-based optimized support vector regression model publication-title: IET Signal Process. – volume: 158 year: 2021 ident: b34 article-title: A look-ahead strategy-based method for scheduling multiprocessor tasks on two dedicated processors publication-title: Comput. Ind. Eng. – volume: 44 start-page: 2636 issue: 10 year: 2015 ident: 10.1016/j.knosys.2023.110563_b44 article-title: Overview of Friedman’s test and post-hoc analysis publication-title: Comm. Statist. Simulation Comput. doi: 10.1080/03610918.2014.931971 – volume: 92 year: 2020 ident: 10.1016/j.knosys.2023.110563_b10 article-title: Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks in heterogeneous multiprocessor systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106274 – volume: 158 year: 2021 ident: 10.1016/j.knosys.2023.110563_b34 article-title: A look-ahead strategy-based method for scheduling multiprocessor tasks on two dedicated processors publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107388 – volume: 44 start-page: 987 year: 2019 ident: 10.1016/j.knosys.2023.110563_b13 article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.012 – volume: 9 year: 2021 ident: 10.1016/j.knosys.2023.110563_b7 article-title: A global DAG task scheduler using deep reinforcement learning and graph convolution network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3130407 – volume: 151 start-page: 183 year: 2020 ident: 10.1016/j.knosys.2023.110563_b41 article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.12.050 – volume: 168 year: 2021 ident: 10.1016/j.knosys.2023.110563_b32 article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114230 – start-page: 267 year: 2021 ident: 10.1016/j.knosys.2023.110563_b17 article-title: Scheduling of parallel tasks in cloud environment using DAG MODEL – volume: 15 start-page: 98 issue: 2 year: 2021 ident: 10.1016/j.knosys.2023.110563_b22 article-title: An efficient supervised framework for music mood recognition using autoencoder-based optimized support vector regression model publication-title: IET Signal Process. doi: 10.1049/sil2.12015 – volume: 24 start-page: 205 issue: 1 year: 2021 ident: 10.1016/j.knosys.2023.110563_b31 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Cluster Comput. doi: 10.1007/s10586-020-03075-5 – year: 2021 ident: 10.1016/j.knosys.2023.110563_b20 – volume: 26 start-page: 646 issue: 5 year: 2021 ident: 10.1016/j.knosys.2023.110563_b30 article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010007 – year: 2021 ident: 10.1016/j.knosys.2023.110563_b36 – volume: 12 start-page: 9855 issue: 10 year: 2021 ident: 10.1016/j.knosys.2023.110563_b35 article-title: Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02730-4 – volume: 138 start-page: 115 year: 2020 ident: 10.1016/j.knosys.2023.110563_b12 article-title: Scheduling directed acyclic graphs with optimal duplication strategy on homogeneous multiprocessor systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2019.12.012 – volume: 80 start-page: 9961 issue: 7 year: 2021 ident: 10.1016/j.knosys.2023.110563_b25 article-title: Performance of deer hunting optimization based deep learning algorithm for speech emotion recognition publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-10118-x – volume: 77 start-page: 10252 issue: 9 year: 2021 ident: 10.1016/j.knosys.2023.110563_b18 article-title: A hybrid list-based task scheduling scheme for heterogeneous computing publication-title: J. Supercomput. doi: 10.1007/s11227-021-03685-9 – volume: 22 start-page: 920 issue: 3 year: 2022 ident: 10.1016/j.knosys.2023.110563_b4 article-title: AdPSO: Adaptive PSO-Based task scheduling approach for cloud computing publication-title: Sensors doi: 10.3390/s22030920 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2023.110563_b21 article-title: Parallel training models of deep belief network using MapReduce for the classifications of emotions publication-title: Int. J. Syst. Assur. Eng. Manag. – year: 2022 ident: 10.1016/j.knosys.2023.110563_b28 – year: 2022 ident: 10.1016/j.knosys.2023.110563_b23 article-title: A learning framework of modified deep recurrent neural network for classification and recognition of voice mood publication-title: Internat. J. Adapt. Control Signal Process. doi: 10.1002/acs.3425 – start-page: 128 year: 2020 ident: 10.1016/j.knosys.2023.110563_b11 article-title: DAG scheduling and analysis on multiprocessor systems: Exploitation of parallelism and dependency – volume: 98 start-page: 17 year: 2019 ident: 10.1016/j.knosys.2023.110563_b14 article-title: Task allocation, migration and scheduling for energy-efficient real-time multiprocessor architectures publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.06.003 – volume: 7 start-page: 970 issue: 3 year: 2021 ident: 10.1016/j.knosys.2023.110563_b33 article-title: Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2021.3051947 – volume: 31 start-page: 871 issue: 4 year: 2019 ident: 10.1016/j.knosys.2023.110563_b3 article-title: Reliability aware energy optimized scheduling of non-preemptive periodic real-time tasks on heterogeneous multiprocessor system publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2019.2950251 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2023.110563_b9 article-title: Semi-partitioned scheduling of mixed-criticality system on multiprocessor platforms publication-title: J. Supercomput. – volume: 77 start-page: 11643 issue: 10 year: 2021 ident: 10.1016/j.knosys.2023.110563_b29 article-title: Reliability-aware task scheduling for energy efficiency on heterogeneous multiprocessor systems publication-title: J. Supercomput. doi: 10.1007/s11227-021-03764-x – volume: 14 start-page: 451 issue: 5 year: 2021 ident: 10.1016/j.knosys.2023.110563_b1 article-title: A multiprocessor real-time scheduling embedded testbed based on Linux publication-title: Int. J. Embed. Syst. doi: 10.1504/IJES.2021.120259 – volume: 173 year: 2021 ident: 10.1016/j.knosys.2023.110563_b26 article-title: EA-MSCA: An effective energy-aware multi-objective modified sine-cosine algorithm for real-time task scheduling in multiprocessor systems: Methods and analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114699 – volume: 15 start-page: 214 issue: 3 year: 2021 ident: 10.1016/j.knosys.2023.110563_b27 article-title: A novel task scheduling approach for dependent non-preemptive tasks using fuzzy logic publication-title: IET Comput. Digit. Techniques doi: 10.1049/cdt2.12018 – volume: 34 start-page: 9043 issue: 11 year: 2022 ident: 10.1016/j.knosys.2023.110563_b38 article-title: Modified firefly algorithm for workflow scheduling in cloud–edge environment publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06925-y – start-page: 135 year: 2021 ident: 10.1016/j.knosys.2023.110563_b5 article-title: An intelligent fitness-scaling chaotic genetic ant colony algorithm based on task-scheduling in cloud computing environments – volume: 7 start-page: 44 issue: 9 year: 2021 ident: 10.1016/j.knosys.2023.110563_b43 article-title: Statistical analysis of the median test and the Mann–Whitney U test publication-title: Int. J. Adv. Acad. Res. – volume: 90 year: 2020 ident: 10.1016/j.knosys.2023.110563_b16 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103540 – volume: 2021 year: 2021 ident: 10.1016/j.knosys.2023.110563_b42 article-title: IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing publication-title: Comput. Intell. Neurosci. – volume: 13 start-page: 3433 issue: 6 year: 2023 ident: 10.1016/j.knosys.2023.110563_b39 article-title: HWACOA scheduler: Hybrid weighted ant colony optimization algorithm for task scheduling in cloud computing publication-title: Appl. Sci. doi: 10.3390/app13063433 – volume: 96 start-page: 216 year: 2019 ident: 10.1016/j.knosys.2023.110563_b15 article-title: QoS-Aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.019 – year: 2021 ident: 10.1016/j.knosys.2023.110563_b19 article-title: Endpoint communication contention-aware cloud workflow scheduling publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 131 year: 2019 ident: 10.1016/j.knosys.2023.110563_b24 article-title: Vocal mood recognition: Text dependent sequential and parallel approach – volume: 9 start-page: 1514 issue: 9 year: 2021 ident: 10.1016/j.knosys.2023.110563_b2 article-title: Alts: An adaptive load balanced task scheduling approach for cloud computing publication-title: Processes doi: 10.3390/pr9091514 – year: 2023 ident: 10.1016/j.knosys.2023.110563_b40 article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241240 – year: 2020 ident: 10.1016/j.knosys.2023.110563_b37 article-title: An automated task scheduling model using non-dominated sorting genetic Algorithm II for fog-cloud systems publication-title: IEEE Trans. Cloud Comput. – year: 2021 ident: 10.1016/j.knosys.2023.110563_b8 article-title: Carry-out interference optimization in WCRT analysis for global fixed-priority multiprocessor scheduling publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – volume: 14 start-page: 246 issue: 8 year: 2021 ident: 10.1016/j.knosys.2023.110563_b6 article-title: Scheduling multiprocessor tasks with equal processing times as a mixed graph coloring problem publication-title: Algorithms doi: 10.3390/a14080246 |
| SSID | ssj0002218 |
| Score | 2.5204744 |
| Snippet | Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110563 |
| Title | Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing |
| URI | https://dx.doi.org/10.1016/j.knosys.2023.110563 |
| Volume | 272 |
| WOSCitedRecordID | wos001003872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj5RAFK60Mx68uBvHLXXw1qkOFEvBkZiZuCQTo2PSN1JQ9MoAoaEdb_4CL_5Df4mvFqpnMaNz8EIIKQq638d733t5C0KvAQLMzZyCxH4giO_NYpJFnkcykTmBAJ8oZ5kaNsGOj6PpNP44Gv0YamG2Jauq6Owsbv6rqOEaCFuWzt5A3HZTuADnIHQ4gtjh-E-CVyW1jc7_lymEfLMegwsLJkVVnvcqOKDyCEmdrbS-Gy--ycotOU9ZFjWOk3Jet8tucSrDIUf1fEiJ8PKy7lUdXNN3g9Ez1PbDEJ0j0jIK0yPaUvZkztuvXI_z4n3Ltzbzp280g_0s8zrt8kW_0ryWr4uNjVl_0tOzk64vxyo7_HzUgnoyHGp04xB-dAhzTLNZo4mpnuJjdCkQk0ArvytqXkccVpN1VcOPmcgHTHbLL3bVvmTtbA7ikN62SvUuqdwl1bvcQvuUBTEo-v3k3eH0vbXtlKqIsX37oRhTZQxefZs_k51zBObkPrprPA-caMQ8QKOieojuDVM9sFHyj9DsIoCwBBDeAQgrAOFLAMIaQNgACFsA4WWFAUC_vv9U0MEWOo_Rl6PDkzdviZnGQXJwKzsi2VTkZ7OQ0zhyvYKJII8jHtDcYdSPBJ0Jv8j9iHM_FCIIc1G4QGaBERYh5XHhPUF7VV0VTxEGlglEF9Yw8Maz0I8z4YYB58DGXcGZd4C84W9Lc9OqXk5MKdPrhHaAiL2r0a1a_rKeDRJJDd3UNDIFmF1757MbPuk5urP7Bl6gva7ti5fodr7tlpv2lcHYb_5gp8k |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiprocessor+task+scheduling+using+multi-objective+hybrid+genetic+Algorithm+in+Fog%E2%80%93cloud+computing&rft.jtitle=Knowledge-based+systems&rft.au=Agarwal%2C+Gaurav&rft.au=Gupta%2C+Sachi&rft.au=Ahuja%2C+Rakesh&rft.au=Rai%2C+Atul+Kumar&rft.date=2023-07-19&rft.issn=0950-7051&rft.volume=272&rft.spage=110563&rft_id=info:doi/10.1016%2Fj.knosys.2023.110563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_110563 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |