Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing

Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 272; s. 110563
Hlavní autori: Agarwal, Gaurav, Gupta, Sachi, Ahuja, Rakesh, Rai, Atul Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 19.07.2023
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models.
AbstractList Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing structures are the categories of exchanged collateral structures with great demand from its initiation. Like other networking systems, the existing fog–cloud system based on multiprocessor systems faces some challenges. Due to the availability of excess clients and various services, scheduling and energy consumption issues are challenging. The existing problems must be resolved with proper planning to reduce makespan and energy consumption. To obtain this, an optimal scheduling approach is required. The proposed approach presents a novel methodology called Hybrid Genetic Algorithm and Energy Conscious Scheduling for better scheduling tasks over the processors. Here Genetic Algorithm and Energy conscious scheduling model are integrated. When only a Genetic Algorithm is chosen for the task scheduling approach, it becomes computationally expensive. Energy consumption becomes a huge challenge as it does not cope with complexity, making it extremely difficult to schedule appropriate tasks. When choosing the proposed hybrid Genetic algorithm, these issues can be overcome by considering optimal solutions with minimized makespan and consumed energy. A Genetic Algorithm is used to generate three primary chromosomes using priority approaches. The allocated resources are optimized through the Energy Conscious Scheduling model, and the proposed method is implemented using MATLAB. The existing methods, including genetic algorithm, particle swarm optimization, gravitational search algorithm, ant colony optimization and round robin models, are compared with the proposed method, proven comparatively better than existing models.
ArticleNumber 110563
Author Ahuja, Rakesh
Agarwal, Gaurav
Gupta, Sachi
Rai, Atul Kumar
Author_xml – sequence: 1
  givenname: Gaurav
  surname: Agarwal
  fullname: Agarwal, Gaurav
  organization: Department of Computer Science & Engineering, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
– sequence: 2
  givenname: Sachi
  surname: Gupta
  fullname: Gupta, Sachi
  email: shaurya13@gmail.com
  organization: Department of Computer Science & Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, India
– sequence: 3
  givenname: Rakesh
  surname: Ahuja
  fullname: Ahuja, Rakesh
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 4
  givenname: Atul Kumar
  surname: Rai
  fullname: Rai, Atul Kumar
  organization: Department of Computer Science & Engineering, Kothiwal Institute of Technology and Professional Studies, Moradabad, India
BookMark eNqFkEtOwzAQQC1UJErhBix8gQTb-bNAqioKSEVsYG259iR1msSV7VTqjjtwQ05CorBiAZuZzbwnzbtEs850gNANJSElNL2tw31n3MmFjLAopJQkaXSG5jTPWJDFpJihOSkSEmQkoRfo0rmaEMIYzeeofOkbrw_WSHDOWOyF22Mnd6D6RncV7t042_EoMNsapNdHwLvT1mqFK-jAa4mXTWWs9rsW6w6vTfX18Skb0yssTXvo_WC4QuelaBxc_-wFel8_vK2egs3r4_NquQlkRFIfSACVx9syFazIaQSZSmSRi4RJkrE4V6xUMcg4FyJOlUpSqYBGSRLlFFImCogW6G7ySmucs1Byqb3w2nTeCt1wSvhYjNd8KsbHYnwqNsDxL_hgdSvs6T_sfsJgeOyowXInNXQSlLZDL66M_lvwDa5kjlw
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_126060
crossref_primary_10_1109_JIOT_2025_3539574
crossref_primary_10_1016_j_energy_2024_133088
crossref_primary_10_1007_s42044_023_00163_8
crossref_primary_10_1109_ACCESS_2024_3435914
crossref_primary_10_1007_s10586_025_05526_3
crossref_primary_10_1007_s12008_024_01745_x
crossref_primary_10_1080_1206212X_2025_2550736
crossref_primary_10_1016_j_yofte_2023_103651
crossref_primary_10_1002_cpe_70065
crossref_primary_10_1007_s42979_023_02517_2
crossref_primary_10_1016_j_eswa_2025_129260
crossref_primary_10_1016_j_jnca_2023_103788
crossref_primary_10_1109_TNSM_2023_3317758
crossref_primary_10_7717_peerj_cs_2128
crossref_primary_10_1016_j_swevo_2024_101654
crossref_primary_10_1038_s41598_024_81055_0
crossref_primary_10_1007_s10586_024_04771_2
crossref_primary_10_1016_j_engappai_2025_110705
crossref_primary_10_1016_j_compenvurbsys_2025_102304
crossref_primary_10_3390_a16100473
crossref_primary_10_1016_j_knosys_2025_114153
crossref_primary_10_3389_fcomp_2023_1293209
Cites_doi 10.1080/03610918.2014.931971
10.1016/j.asoc.2020.106274
10.1016/j.cie.2021.107388
10.1016/j.swevo.2018.10.012
10.1109/ACCESS.2021.3130407
10.1016/j.comcom.2019.12.050
10.1016/j.eswa.2020.114230
10.1049/sil2.12015
10.1007/s10586-020-03075-5
10.26599/TST.2021.9010007
10.1007/s12652-020-02730-4
10.1016/j.jpdc.2019.12.012
10.1007/s11042-020-10118-x
10.1007/s11227-021-03685-9
10.3390/s22030920
10.1002/acs.3425
10.1016/j.sysarc.2019.06.003
10.1109/TCCN.2021.3051947
10.1109/TPDS.2019.2950251
10.1007/s11227-021-03764-x
10.1504/IJES.2021.120259
10.1016/j.eswa.2021.114699
10.1049/cdt2.12018
10.1007/s00521-022-06925-y
10.1016/j.engappai.2020.103540
10.3390/app13063433
10.1016/j.future.2019.02.019
10.3390/pr9091514
10.1109/ACCESS.2023.3241240
10.3390/a14080246
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2023.110563
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2023_110563
S0950705123003131
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-ceed84bf6a29813e7d5c98a52c07248d2fd4ec48aa46dd56cde1355381e62a9e3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:00 EST 2025
Tue Nov 18 22:35:06 EST 2025
Fri Feb 23 02:35:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiprocessor
Energy consumption
Genetic algorithm
Task scheduling
Makespan
Energy conscious scheduling
Fog–cloud system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ceed84bf6a29813e7d5c98a52c07248d2fd4ec48aa46dd56cde1355381e62a9e3
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2023_110563
crossref_primary_10_1016_j_knosys_2023_110563
elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110563
PublicationCentury 2000
PublicationDate 2023-07-19
PublicationDateYYYYMMDD 2023-07-19
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-19
  day: 19
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Michel, Lee (b28) 2022
Saif, Latip, Hanapi, Shafinah (b40) 2023
Yang, Wang, Zhang, Zuo (b9) 2021
Xie, Wu, Li (b8) 2021
Ali, Sallam, Moustafa, Chakraborty, Ryan, Choo (b37) 2020
Chandrashekar, Krishnadoss, Poornachary, Ananthakrishnan, Rangasamy (b39) 2023; 13
Agarwal, Om (b25) 2021; 80
Kumar, Mayank, Mondal (b3) 2019; 31
Lee, Cho, Jang, Lee, Woo (b7) 2021; 9
Abdel-Basset, Mohamed, Abouhawwash, Chakrabortty, Ryan (b26) 2021; 173
Zhao, Dai, Bate, Burns, Chang (b11) 2020
Tang, Zhu, Zhou, Xiong, Wei (b12) 2020; 138
Wu, Zhou, Wen (b19) 2021
Agarwal, Om (b22) 2021; 15
Alsheikhy (b20) 2021
Agarwal, Om (b21) 2021
Pereira, Afonso, Medeiros (b44) 2015; 44
Mubeen, Ibrahim, Bibi, Baz, Hamam, Cheikhrouhou (b2) 2021; 9
Agarwal, Srivastava (b35) 2021; 12
Stavrinides, Karatza, energy efficient (b15) 2019; 96
Bacanin, Zivkovic, Bezdan, Venkatachalam, Abouhawwash (b38) 2022; 34
Eric, Olusola, Esemokumo (b43) 2021; 7
Shukri, Al-Sayyed, Hudaib, Mirjalili (b32) 2021; 168
Hassan, Nagib, Ibrahiem (b27) 2021; 15
Cai, Zhou, Lei (b16) 2020; 90
Muhuri, Biswas (b10) 2020; 92
Jiang, Wang, Jingjing (b30) 2021; 26
Deng, Cao, Shen, Yan, Huang (b29) 2021; 77
Agarwal, Om, Gupta (b23) 2022
Sotskov, Mihova (b6) 2021; 14
Aïder, Baatout, Hifi (b34) 2021; 158
Rupanetti, Salamy (b14) 2019; 98
Krishnaraj, Prakash (b5) 2021
Kapoor, Panda (b17) 2021
Sulaiman, Halim, Waqas, Aydın (b18) 2021; 77
Agarwal, Maheshkar, Maheshkar, Gupta (b24) 2019
Qiao, Wang, Guan (b1) 2021; 14
Abualigah, Diabat (b31) 2021; 24
Luo, Ding, Zhang (b33) 2021; 7
Nabi, Ahmad, Ibrahim, Hamam (b4) 2022; 22
Elaziz, Abualigah, Ibrahim, Attiya (b42) 2021; 2021
Hoseiny, Azizi, Shojafar, Tafazolli (b36) 2021
Lavanya, Shanthi, Saravanan (b41) 2020; 151
Kurdi (b13) 2019; 44
Sulaiman (10.1016/j.knosys.2023.110563_b18) 2021; 77
Sotskov (10.1016/j.knosys.2023.110563_b6) 2021; 14
Rupanetti (10.1016/j.knosys.2023.110563_b14) 2019; 98
Yang (10.1016/j.knosys.2023.110563_b9) 2021
Wu (10.1016/j.knosys.2023.110563_b19) 2021
Bacanin (10.1016/j.knosys.2023.110563_b38) 2022; 34
Pereira (10.1016/j.knosys.2023.110563_b44) 2015; 44
Qiao (10.1016/j.knosys.2023.110563_b1) 2021; 14
Kurdi (10.1016/j.knosys.2023.110563_b13) 2019; 44
Lavanya (10.1016/j.knosys.2023.110563_b41) 2020; 151
Jiang (10.1016/j.knosys.2023.110563_b30) 2021; 26
Krishnaraj (10.1016/j.knosys.2023.110563_b5) 2021
Kumar (10.1016/j.knosys.2023.110563_b3) 2019; 31
Hassan (10.1016/j.knosys.2023.110563_b27) 2021; 15
Muhuri (10.1016/j.knosys.2023.110563_b10) 2020; 92
Hoseiny (10.1016/j.knosys.2023.110563_b36) 2021
Abdel-Basset (10.1016/j.knosys.2023.110563_b26) 2021; 173
Cai (10.1016/j.knosys.2023.110563_b16) 2020; 90
Luo (10.1016/j.knosys.2023.110563_b33) 2021; 7
Xie (10.1016/j.knosys.2023.110563_b8) 2021
Eric (10.1016/j.knosys.2023.110563_b43) 2021; 7
Abualigah (10.1016/j.knosys.2023.110563_b31) 2021; 24
Agarwal (10.1016/j.knosys.2023.110563_b21) 2021
Agarwal (10.1016/j.knosys.2023.110563_b23) 2022
Agarwal (10.1016/j.knosys.2023.110563_b24) 2019
Mubeen (10.1016/j.knosys.2023.110563_b2) 2021; 9
Ali (10.1016/j.knosys.2023.110563_b37) 2020
Michel (10.1016/j.knosys.2023.110563_b28) 2022
Saif (10.1016/j.knosys.2023.110563_b40) 2023
Elaziz (10.1016/j.knosys.2023.110563_b42) 2021; 2021
Alsheikhy (10.1016/j.knosys.2023.110563_b20) 2021
Deng (10.1016/j.knosys.2023.110563_b29) 2021; 77
Agarwal (10.1016/j.knosys.2023.110563_b22) 2021; 15
Agarwal (10.1016/j.knosys.2023.110563_b35) 2021; 12
Aïder (10.1016/j.knosys.2023.110563_b34) 2021; 158
Lee (10.1016/j.knosys.2023.110563_b7) 2021; 9
Chandrashekar (10.1016/j.knosys.2023.110563_b39) 2023; 13
Zhao (10.1016/j.knosys.2023.110563_b11) 2020
Agarwal (10.1016/j.knosys.2023.110563_b25) 2021; 80
Shukri (10.1016/j.knosys.2023.110563_b32) 2021; 168
Nabi (10.1016/j.knosys.2023.110563_b4) 2022; 22
Stavrinides (10.1016/j.knosys.2023.110563_b15) 2019; 96
Kapoor (10.1016/j.knosys.2023.110563_b17) 2021
Tang (10.1016/j.knosys.2023.110563_b12) 2020; 138
References_xml – volume: 7
  start-page: 44
  year: 2021
  end-page: 51
  ident: b43
  article-title: Statistical analysis of the median test and the Mann–Whitney U test
  publication-title: Int. J. Adv. Acad. Res.
– volume: 44
  start-page: 987
  year: 2019
  end-page: 1002
  ident: b13
  article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop
  publication-title: Swarm Evol. Comput.
– volume: 15
  start-page: 214
  year: 2021
  end-page: 222
  ident: b27
  article-title: A novel task scheduling approach for dependent non-preemptive tasks using fuzzy logic
  publication-title: IET Comput. Digit. Techniques
– volume: 77
  start-page: 10252
  year: 2021
  end-page: 10288
  ident: b18
  article-title: A hybrid list-based task scheduling scheme for heterogeneous computing
  publication-title: J. Supercomput.
– start-page: 131
  year: 2019
  end-page: 142
  ident: b24
  article-title: Vocal mood recognition: Text dependent sequential and parallel approach
  publication-title: Applications of Artificial Intelligence Techniques in Engineering
– year: 2023
  ident: b40
  article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing
  publication-title: IEEE Access
– volume: 9
  start-page: 1514
  year: 2021
  ident: b2
  article-title: Alts: An adaptive load balanced task scheduling approach for cloud computing
  publication-title: Processes
– volume: 13
  start-page: 3433
  year: 2023
  ident: b39
  article-title: HWACOA scheduler: Hybrid weighted ant colony optimization algorithm for task scheduling in cloud computing
  publication-title: Appl. Sci.
– start-page: 1
  year: 2021
  end-page: 16
  ident: b21
  article-title: Parallel training models of deep belief network using MapReduce for the classifications of emotions
  publication-title: Int. J. Syst. Assur. Eng. Manag.
– volume: 77
  start-page: 11643
  year: 2021
  end-page: 11681
  ident: b29
  article-title: Reliability-aware task scheduling for energy efficiency on heterogeneous multiprocessor systems
  publication-title: J. Supercomput.
– volume: 44
  start-page: 2636
  year: 2015
  end-page: 2653
  ident: b44
  article-title: Overview of Friedman’s test and post-hoc analysis
  publication-title: Comm. Statist. Simulation Comput.
– year: 2021
  ident: b8
  article-title: Carry-out interference optimization in WCRT analysis for global fixed-priority multiprocessor scheduling
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– volume: 173
  year: 2021
  ident: b26
  article-title: EA-MSCA: An effective energy-aware multi-objective modified sine-cosine algorithm for real-time task scheduling in multiprocessor systems: Methods and analysis
  publication-title: Expert Syst. Appl.
– start-page: 128
  year: 2020
  end-page: 140
  ident: b11
  article-title: DAG scheduling and analysis on multiprocessor systems: Exploitation of parallelism and dependency
  publication-title: 2020 IEEE Real-Time Systems Symposium
– year: 2021
  ident: b36
  article-title: Joint qos- aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system
– start-page: 1
  year: 2021
  end-page: 25
  ident: b9
  article-title: Semi-partitioned scheduling of mixed-criticality system on multiprocessor platforms
  publication-title: J. Supercomput.
– volume: 12
  start-page: 9855
  year: 2021
  end-page: 9875
  ident: b35
  article-title: Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing
  publication-title: J. Ambient Intell. Humaniz. Comput.
– year: 2022
  ident: b23
  article-title: A learning framework of modified deep recurrent neural network for classification and recognition of voice mood
  publication-title: Internat. J. Adapt. Control Signal Process.
– volume: 2021
  year: 2021
  ident: b42
  article-title: IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing
  publication-title: Comput. Intell. Neurosci.
– volume: 80
  start-page: 9961
  year: 2021
  end-page: 9992
  ident: b25
  article-title: Performance of deer hunting optimization based deep learning algorithm for speech emotion recognition
  publication-title: Multimedia Tools Appl.
– volume: 26
  start-page: 646
  year: 2021
  end-page: 663
  ident: b30
  article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Tsinghua Sci. Technol.
– volume: 151
  start-page: 183
  year: 2020
  end-page: 195
  ident: b41
  article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment
  publication-title: Comput. Commun.
– year: 2020
  ident: b37
  article-title: An automated task scheduling model using non-dominated sorting genetic Algorithm II for fog-cloud systems
  publication-title: IEEE Trans. Cloud Comput.
– volume: 31
  start-page: 871
  year: 2019
  end-page: 885
  ident: b3
  article-title: Reliability aware energy optimized scheduling of non-preemptive periodic real-time tasks on heterogeneous multiprocessor system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 14
  start-page: 246
  year: 2021
  ident: b6
  article-title: Scheduling multiprocessor tasks with equal processing times as a mixed graph coloring problem
  publication-title: Algorithms
– year: 2021
  ident: b19
  article-title: Endpoint communication contention-aware cloud workflow scheduling
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 135
  year: 2021
  end-page: 145
  ident: b5
  article-title: An intelligent fitness-scaling chaotic genetic ant colony algorithm based on task-scheduling in cloud computing environments
  publication-title: Artificial Intelligence Applications for Smart Societies
– volume: 96
  start-page: 216
  year: 2019
  end-page: 226
  ident: b15
  article-title: QoS-Aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations
  publication-title: Future Gener. Comput. Syst.
– year: 2021
  ident: b20
  article-title: Dynamic approach to minimize overhead and response time in scheduling periodic real-time tasks
– year: 2022
  ident: b28
  article-title: Energy conscious dynamic window scheduling of chip multiprocessors
– volume: 34
  start-page: 9043
  year: 2022
  end-page: 9068
  ident: b38
  article-title: Modified firefly algorithm for workflow scheduling in cloud–edge environment
  publication-title: Neural Comput. Appl.
– volume: 90
  year: 2020
  ident: b16
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 168
  year: 2021
  ident: b32
  article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 920
  year: 2022
  ident: b4
  article-title: AdPSO: Adaptive PSO-Based task scheduling approach for cloud computing
  publication-title: Sensors
– volume: 138
  start-page: 115
  year: 2020
  end-page: 127
  ident: b12
  article-title: Scheduling directed acyclic graphs with optimal duplication strategy on homogeneous multiprocessor systems
  publication-title: J. Parallel Distrib. Comput.
– start-page: 267
  year: 2021
  end-page: 276
  ident: b17
  article-title: Scheduling of parallel tasks in cloud environment using DAG MODEL
  publication-title: Intelligent Computing and Applications
– volume: 24
  start-page: 205
  year: 2021
  end-page: 223
  ident: b31
  article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
  publication-title: Cluster Comput.
– volume: 14
  start-page: 451
  year: 2021
  end-page: 464
  ident: b1
  article-title: A multiprocessor real-time scheduling embedded testbed based on Linux
  publication-title: Int. J. Embed. Syst.
– volume: 98
  start-page: 17
  year: 2019
  end-page: 26
  ident: b14
  article-title: Task allocation, migration and scheduling for energy-efficient real-time multiprocessor architectures
  publication-title: J. Syst. Archit.
– volume: 7
  start-page: 970
  year: 2021
  end-page: 984
  ident: b33
  article-title: Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 92
  year: 2020
  ident: b10
  article-title: Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks in heterogeneous multiprocessor systems
  publication-title: Appl. Soft Comput.
– volume: 9
  year: 2021
  ident: b7
  article-title: A global DAG task scheduler using deep reinforcement learning and graph convolution network
  publication-title: IEEE Access
– volume: 15
  start-page: 98
  year: 2021
  end-page: 121
  ident: b22
  article-title: An efficient supervised framework for music mood recognition using autoencoder-based optimized support vector regression model
  publication-title: IET Signal Process.
– volume: 158
  year: 2021
  ident: b34
  article-title: A look-ahead strategy-based method for scheduling multiprocessor tasks on two dedicated processors
  publication-title: Comput. Ind. Eng.
– volume: 44
  start-page: 2636
  issue: 10
  year: 2015
  ident: 10.1016/j.knosys.2023.110563_b44
  article-title: Overview of Friedman’s test and post-hoc analysis
  publication-title: Comm. Statist. Simulation Comput.
  doi: 10.1080/03610918.2014.931971
– volume: 92
  year: 2020
  ident: 10.1016/j.knosys.2023.110563_b10
  article-title: Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks in heterogeneous multiprocessor systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106274
– volume: 158
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b34
  article-title: A look-ahead strategy-based method for scheduling multiprocessor tasks on two dedicated processors
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107388
– volume: 44
  start-page: 987
  year: 2019
  ident: 10.1016/j.knosys.2023.110563_b13
  article-title: Ant colony system with a novel non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.012
– volume: 9
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b7
  article-title: A global DAG task scheduler using deep reinforcement learning and graph convolution network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130407
– volume: 151
  start-page: 183
  year: 2020
  ident: 10.1016/j.knosys.2023.110563_b41
  article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.12.050
– volume: 168
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b32
  article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114230
– start-page: 267
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b17
  article-title: Scheduling of parallel tasks in cloud environment using DAG MODEL
– volume: 15
  start-page: 98
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b22
  article-title: An efficient supervised framework for music mood recognition using autoencoder-based optimized support vector regression model
  publication-title: IET Signal Process.
  doi: 10.1049/sil2.12015
– volume: 24
  start-page: 205
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b31
  article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-020-03075-5
– year: 2021
  ident: 10.1016/j.knosys.2023.110563_b20
– volume: 26
  start-page: 646
  issue: 5
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b30
  article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2021.9010007
– year: 2021
  ident: 10.1016/j.knosys.2023.110563_b36
– volume: 12
  start-page: 9855
  issue: 10
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b35
  article-title: Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02730-4
– volume: 138
  start-page: 115
  year: 2020
  ident: 10.1016/j.knosys.2023.110563_b12
  article-title: Scheduling directed acyclic graphs with optimal duplication strategy on homogeneous multiprocessor systems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2019.12.012
– volume: 80
  start-page: 9961
  issue: 7
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b25
  article-title: Performance of deer hunting optimization based deep learning algorithm for speech emotion recognition
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-10118-x
– volume: 77
  start-page: 10252
  issue: 9
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b18
  article-title: A hybrid list-based task scheduling scheme for heterogeneous computing
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03685-9
– volume: 22
  start-page: 920
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2023.110563_b4
  article-title: AdPSO: Adaptive PSO-Based task scheduling approach for cloud computing
  publication-title: Sensors
  doi: 10.3390/s22030920
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b21
  article-title: Parallel training models of deep belief network using MapReduce for the classifications of emotions
  publication-title: Int. J. Syst. Assur. Eng. Manag.
– year: 2022
  ident: 10.1016/j.knosys.2023.110563_b28
– year: 2022
  ident: 10.1016/j.knosys.2023.110563_b23
  article-title: A learning framework of modified deep recurrent neural network for classification and recognition of voice mood
  publication-title: Internat. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3425
– start-page: 128
  year: 2020
  ident: 10.1016/j.knosys.2023.110563_b11
  article-title: DAG scheduling and analysis on multiprocessor systems: Exploitation of parallelism and dependency
– volume: 98
  start-page: 17
  year: 2019
  ident: 10.1016/j.knosys.2023.110563_b14
  article-title: Task allocation, migration and scheduling for energy-efficient real-time multiprocessor architectures
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.06.003
– volume: 7
  start-page: 970
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b33
  article-title: Optimization of task scheduling and dynamic service strategy for multi-UAV-enabled mobile-edge computing system
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2021.3051947
– volume: 31
  start-page: 871
  issue: 4
  year: 2019
  ident: 10.1016/j.knosys.2023.110563_b3
  article-title: Reliability aware energy optimized scheduling of non-preemptive periodic real-time tasks on heterogeneous multiprocessor system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2019.2950251
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b9
  article-title: Semi-partitioned scheduling of mixed-criticality system on multiprocessor platforms
  publication-title: J. Supercomput.
– volume: 77
  start-page: 11643
  issue: 10
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b29
  article-title: Reliability-aware task scheduling for energy efficiency on heterogeneous multiprocessor systems
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03764-x
– volume: 14
  start-page: 451
  issue: 5
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b1
  article-title: A multiprocessor real-time scheduling embedded testbed based on Linux
  publication-title: Int. J. Embed. Syst.
  doi: 10.1504/IJES.2021.120259
– volume: 173
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b26
  article-title: EA-MSCA: An effective energy-aware multi-objective modified sine-cosine algorithm for real-time task scheduling in multiprocessor systems: Methods and analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114699
– volume: 15
  start-page: 214
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b27
  article-title: A novel task scheduling approach for dependent non-preemptive tasks using fuzzy logic
  publication-title: IET Comput. Digit. Techniques
  doi: 10.1049/cdt2.12018
– volume: 34
  start-page: 9043
  issue: 11
  year: 2022
  ident: 10.1016/j.knosys.2023.110563_b38
  article-title: Modified firefly algorithm for workflow scheduling in cloud–edge environment
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06925-y
– start-page: 135
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b5
  article-title: An intelligent fitness-scaling chaotic genetic ant colony algorithm based on task-scheduling in cloud computing environments
– volume: 7
  start-page: 44
  issue: 9
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b43
  article-title: Statistical analysis of the median test and the Mann–Whitney U test
  publication-title: Int. J. Adv. Acad. Res.
– volume: 90
  year: 2020
  ident: 10.1016/j.knosys.2023.110563_b16
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103540
– volume: 2021
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b42
  article-title: IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing
  publication-title: Comput. Intell. Neurosci.
– volume: 13
  start-page: 3433
  issue: 6
  year: 2023
  ident: 10.1016/j.knosys.2023.110563_b39
  article-title: HWACOA scheduler: Hybrid weighted ant colony optimization algorithm for task scheduling in cloud computing
  publication-title: Appl. Sci.
  doi: 10.3390/app13063433
– volume: 96
  start-page: 216
  year: 2019
  ident: 10.1016/j.knosys.2023.110563_b15
  article-title: QoS-Aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.019
– year: 2021
  ident: 10.1016/j.knosys.2023.110563_b19
  article-title: Endpoint communication contention-aware cloud workflow scheduling
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 131
  year: 2019
  ident: 10.1016/j.knosys.2023.110563_b24
  article-title: Vocal mood recognition: Text dependent sequential and parallel approach
– volume: 9
  start-page: 1514
  issue: 9
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b2
  article-title: Alts: An adaptive load balanced task scheduling approach for cloud computing
  publication-title: Processes
  doi: 10.3390/pr9091514
– year: 2023
  ident: 10.1016/j.knosys.2023.110563_b40
  article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3241240
– year: 2020
  ident: 10.1016/j.knosys.2023.110563_b37
  article-title: An automated task scheduling model using non-dominated sorting genetic Algorithm II for fog-cloud systems
  publication-title: IEEE Trans. Cloud Comput.
– year: 2021
  ident: 10.1016/j.knosys.2023.110563_b8
  article-title: Carry-out interference optimization in WCRT analysis for global fixed-priority multiprocessor scheduling
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– volume: 14
  start-page: 246
  issue: 8
  year: 2021
  ident: 10.1016/j.knosys.2023.110563_b6
  article-title: Scheduling multiprocessor tasks with equal processing times as a mixed graph coloring problem
  publication-title: Algorithms
  doi: 10.3390/a14080246
SSID ssj0002218
Score 2.5204744
Snippet Multiprocessor task scheduling is an operation of processing more than two tasks simultaneously in the system. The Fog–cloud multiprocessor computing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110563
Title Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog–cloud computing
URI https://dx.doi.org/10.1016/j.knosys.2023.110563
Volume 272
WOSCitedRecordID wos001003872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj5RAFK60Mx68uBvHLXXw1qkOFEvBkZiZuCQTo2PSN1JQ9MoAoaEdb_4CL_5Df4mvFqpnMaNz8EIIKQq638d733t5C0KvAQLMzZyCxH4giO_NYpJFnkcykTmBAJ8oZ5kaNsGOj6PpNP44Gv0YamG2Jauq6Owsbv6rqOEaCFuWzt5A3HZTuADnIHQ4gtjh-E-CVyW1jc7_lymEfLMegwsLJkVVnvcqOKDyCEmdrbS-Gy--ycotOU9ZFjWOk3Jet8tucSrDIUf1fEiJ8PKy7lUdXNN3g9Ez1PbDEJ0j0jIK0yPaUvZkztuvXI_z4n3Ltzbzp280g_0s8zrt8kW_0ryWr4uNjVl_0tOzk64vxyo7_HzUgnoyHGp04xB-dAhzTLNZo4mpnuJjdCkQk0ArvytqXkccVpN1VcOPmcgHTHbLL3bVvmTtbA7ikN62SvUuqdwl1bvcQvuUBTEo-v3k3eH0vbXtlKqIsX37oRhTZQxefZs_k51zBObkPrprPA-caMQ8QKOieojuDVM9sFHyj9DsIoCwBBDeAQgrAOFLAMIaQNgACFsA4WWFAUC_vv9U0MEWOo_Rl6PDkzdviZnGQXJwKzsi2VTkZ7OQ0zhyvYKJII8jHtDcYdSPBJ0Jv8j9iHM_FCIIc1G4QGaBERYh5XHhPUF7VV0VTxEGlglEF9Yw8Maz0I8z4YYB58DGXcGZd4C84W9Lc9OqXk5MKdPrhHaAiL2r0a1a_rKeDRJJDd3UNDIFmF1757MbPuk5urP7Bl6gva7ti5fodr7tlpv2lcHYb_5gp8k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiprocessor+task+scheduling+using+multi-objective+hybrid+genetic+Algorithm+in+Fog%E2%80%93cloud+computing&rft.jtitle=Knowledge-based+systems&rft.au=Agarwal%2C+Gaurav&rft.au=Gupta%2C+Sachi&rft.au=Ahuja%2C+Rakesh&rft.au=Rai%2C+Atul+Kumar&rft.date=2023-07-19&rft.issn=0950-7051&rft.volume=272&rft.spage=110563&rft_id=info:doi/10.1016%2Fj.knosys.2023.110563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_110563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon