Jet Tomography in Heavy-Ion Collisions with Deep Learning

Deep learning techniques have the power to identify the degree of modification of high energy jets traversing deconfined QCD matter on a jet-by-jet basis. Such knowledge allows us to study jets based on their initial, rather than final, energy. We show how this new technique provides unique access t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 128; číslo 1; s. 012301
Hlavní autori: Du, Yi-Lun, Pablos, Daniel, Tywoniuk, Konrad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 07.01.2022
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Deep learning techniques have the power to identify the degree of modification of high energy jets traversing deconfined QCD matter on a jet-by-jet basis. Such knowledge allows us to study jets based on their initial, rather than final, energy. We show how this new technique provides unique access to the genuine configuration profile of jets over the transverse plane of the nuclear collision, both with respect to their production point and their orientation. By effectively removing the selection biases induced by final-state interactions, one can analyze the potential azimuthal anisotropies of jet production associated to initial-state effects. Additionally, we demonstrate the capability of our new method to locate with precision the production point of a dijet pair in the nuclear overlap region, in what constitutes an important step forward toward the long term quest of using jets as tomographic probes of the quark-gluon plasma.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.128.012301