SPMGAE: Self-purified masked graph autoencoders release robust expression power

To tackle the scarcity of labeled graph data, graph self-supervised learning (SSL) has branched into two paradigms: Generative methods and Contrastive methods. Inspired by MAE and BERT in computer vision (CV) and natural language processing (NLP), masked graph autoencoders (MGAEs) are gaining popula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 611; s. 128631
Hlavní autoři: Song, Shuhan, Li, Ping, Dun, Ming, Zhang, Yuan, Cao, Huawei, Ye, Xiaochun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2025
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To tackle the scarcity of labeled graph data, graph self-supervised learning (SSL) has branched into two paradigms: Generative methods and Contrastive methods. Inspired by MAE and BERT in computer vision (CV) and natural language processing (NLP), masked graph autoencoders (MGAEs) are gaining popularity in the generative genre. However, prevailing MGAEs are mostly designed under the assumption that the data has high homophilic score and is out of adversarial distortion. When people deliberately improve the performance on homophilic graph datasets, they ignore a critical issue that both internal heterophily and artificial attack noise are quite common in the real world. Therefore, when data itself is highly heterophilic or confronted with attacks, they merely have no defensive capability. Especially under self-supervised conditions, it is much more difficult to detect internal heterophily and resist artificial attacks. In this paper, we propose a Self-Purified Masked Graph Autoencoder (SPMGAE) to make up for the shortcomings of prevailing MGAEs in terms of robustness. SPMGAE first utilizes a self-purified module to prune raw graph data and separate perturbation information. The purified graph provides a robust graph structure for the entire pre-training process. Next, the encoding module reuses perturbation information for auxiliary training to enhance robustness, while the decoding module reconstructs the effective graph data at a finer granularity. Extensive experiments on homophilic and heterophilic datasets attacked by various attack methods demonstrate SPMGAE has a considerable robust expressive ability. Especially on small datasets with large perturbations, the improvement of defensive performance could reaches 10%–25%. •We are the first to investigate the vulnerabilities of Mask Graph Autoencoders.•We analyze SOTA MGAEs to understand the reasons for their lack of robustness.•We propose a feasible plug-and-play self-purified scheme for MGAEs.•We propose a flexible robust pre-training network SPMGAE.
AbstractList To tackle the scarcity of labeled graph data, graph self-supervised learning (SSL) has branched into two paradigms: Generative methods and Contrastive methods. Inspired by MAE and BERT in computer vision (CV) and natural language processing (NLP), masked graph autoencoders (MGAEs) are gaining popularity in the generative genre. However, prevailing MGAEs are mostly designed under the assumption that the data has high homophilic score and is out of adversarial distortion. When people deliberately improve the performance on homophilic graph datasets, they ignore a critical issue that both internal heterophily and artificial attack noise are quite common in the real world. Therefore, when data itself is highly heterophilic or confronted with attacks, they merely have no defensive capability. Especially under self-supervised conditions, it is much more difficult to detect internal heterophily and resist artificial attacks. In this paper, we propose a Self-Purified Masked Graph Autoencoder (SPMGAE) to make up for the shortcomings of prevailing MGAEs in terms of robustness. SPMGAE first utilizes a self-purified module to prune raw graph data and separate perturbation information. The purified graph provides a robust graph structure for the entire pre-training process. Next, the encoding module reuses perturbation information for auxiliary training to enhance robustness, while the decoding module reconstructs the effective graph data at a finer granularity. Extensive experiments on homophilic and heterophilic datasets attacked by various attack methods demonstrate SPMGAE has a considerable robust expressive ability. Especially on small datasets with large perturbations, the improvement of defensive performance could reaches 10%–25%. •We are the first to investigate the vulnerabilities of Mask Graph Autoencoders.•We analyze SOTA MGAEs to understand the reasons for their lack of robustness.•We propose a feasible plug-and-play self-purified scheme for MGAEs.•We propose a flexible robust pre-training network SPMGAE.
ArticleNumber 128631
Author Song, Shuhan
Zhang, Yuan
Cao, Huawei
Ye, Xiaochun
Li, Ping
Dun, Ming
Author_xml – sequence: 1
  givenname: Shuhan
  surname: Song
  fullname: Song, Shuhan
  email: songshuhan19s@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  email: liping20b@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Ming
  surname: Dun
  fullname: Dun, Ming
  email: dunming@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Yuan
  surname: Zhang
  fullname: Zhang, Yuan
  email: zhangyuan-ams@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Huawei
  orcidid: 0000-0003-1176-2521
  surname: Cao
  fullname: Cao, Huawei
  email: caohuawei@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Xiaochun
  orcidid: 0000-0003-4598-1685
  surname: Ye
  fullname: Ye, Xiaochun
  email: yexiaochun@ict.ac.cn
  organization: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
BookMark eNqFkL1OwzAUhT0UibbwBgx5gQRfO4mTDkhVVQpSUZEKs-U4N-CSxpGd8PP2pAoTA0xn-o7O-WZk0tgGCbkCGgGF9PoQNdhre4wYZXEELEs5TMiU5iwJGQd2TmbeHygFASyfkt3-8WGzXC-CPdZV2PbOVAbL4Kj82xAvTrWvgeo7i422JTofOKxReQycLXrfBfjZOvTe2CZo7Qe6C3JWqdrj5U_OyfPt-ml1F253m_vVchtqTtMu1CWlBRQKWRnHokpFgYlOBFIGIHgGnJaUcZWDTkVS5QKLWKcVhyTNdF4kwOdkMfZqZ713WEltOtUNOzqnTC2BypMOeZCjDnnSIUcdAxz_gltnjsp9_YfdjBgOx94NOum1GcRgaRzqTpbW_F3wDWkpgHI
CitedBy_id crossref_primary_10_1038_s41598_025_08835_0
crossref_primary_10_1016_j_neucom_2025_129922
Cites_doi 10.1145/3580305.3599370
10.1145/3459637.3482092
10.1145/3539597.3570404
10.1145/3535101
10.1145/3219819.3220078
10.1145/3534678.3539484
10.1007/s10489-023-04836-6
10.1145/3394486.3403049
10.1109/TII.2020.2986316
10.1145/3132847.3132967
10.1145/3336191.3371789
10.1109/CVPR52688.2022.01553
10.1093/comnet/cnab014
10.1145/3308558.3313748
10.1145/3534678.3539321
10.1109/ICCV.2019.00662
10.1038/s41562-017-0290-3
10.1007/s10489-021-02587-w
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2024.128631
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2024_128631
S0925231224014024
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-cd00b1bae2d447f67be5c57e0211738130d023a91c675f97eb4c6f31568c9b513
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327273600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:34:01 EST 2025
Tue Nov 18 22:00:30 EST 2025
Sat Nov 16 15:55:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Masked graph autoencoders
Graph neural networks
Robustness
Graph adversarial attacks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-cd00b1bae2d447f67be5c57e0211738130d023a91c675f97eb4c6f31568c9b513
ORCID 0000-0003-1176-2521
0000-0003-4598-1685
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2024_128631
crossref_primary_10_1016_j_neucom_2024_128631
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128631
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Geisler, Schmidt, Şirin, Zügner, Bojchevski, Günnemann (b46) 2021; 34
Deng, Li, Feng, Zhang (b51) 2022
You, Chen, Wang, Shen (b37) 2020
Tu, Liao, Zhou, Peng, Ma, Liu, Liu, Cai (b14) 2023
Wu, Wang, Tyshetskiy, Docherty, Lu, Zhu (b49) 2019
Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch, Avila Pires, Guo, Gheshlaghi Azar (b41) 2020; 33
N. Entezari, S.A. Al-Sayouri, A. Darvishzadeh, E.E. Papalexakis, All you need is low (rank) defending against adversarial attacks on graphs, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 169–177.
Xiao, Zhu, Chen, Wang (b27) 2024; 36
Han, Karunasekera, Leckie (b3) 2020
Hassani, Khasahmadi (b23) 2020
Zhu, Yan, Zhao, Heimann, Akoglu, Koutra (b38) 2020; 33
K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
Li, Jin, Xu, Tang (b53) 2020
Hou, He, Cen, Liu, Dong, Kharlamov, Tang (b13) 2023
McInnes, Healy, Melville (b18) 2018
K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, Q. He, Reliable representations make a stronger defender: Unsupervised structure refinement for robust gnn, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 925–935.
Jin, Derr, Liu, Wang, Wang, Liu, Tang (b36) 2020
Chen, Wu, Xu, Chen, Zheng, Xuan (b21) 2018
Yuan, Yu, Cao, Song, Xie, Wang (b31) 2023; 53
You, Chen, Sui, Chen, Wang, Shen (b24) 2020; 33
Guo, Wang (b4) 2020; 17
Kipf, Welling (b43) 2016
W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, J. Tang, Graph structure learning for robust graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 66–74.
Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594–604.
Zügner, Günnemann (b19) 2019
C. Wu, C. Wang, J. Xu, Z. Liu, K. Zheng, X. Wang, Y. Song, K. Gai, Graph Contrastive Learning with Generative Adversarial Network, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 2721–2730.
Waniek, Michalak, Wooldridge, Rahwan (b22) 2018; 2
K. Li, Y. Liu, X. Ao, Q. He, Revisiting graph adversarial attack and defense from a data distribution perspective, in: The Eleventh International Conference on Learning Representations, 2022.
Xia, Wu, Wang, Chen, Li (b9) 2022
Garcia Duran, Niepert (b32) 2017; 30
Wang, Zhang, Zhu, Huang (b26) 2022
Wu, Sun, Zhang, Xie, Cui (b1) 2022; 55
Devlin, Chang, Lee, Toutanova (b10) 2018
Q. Tan, N. Liu, X. Huang, S.-H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-Supervised Graph Autoencoders are Generalizable Learners with Graph Masking, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 787–795.
Suresh, Li, Hao, Neville (b30) 2021; 34
Pan, Hu, Long, Jiang, Yao, Zhang (b34) 2018
Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b44) 2017; 1050
Rozemberczki, Allen, Sarkar (b48) 2021; 9
Kipf, Welling (b17) 2016
D. Zügner, A. Akbarnejad, S. Günnemann, Adversarial attacks on neural networks for graph data, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2847–2856.
Thakoor, Tallec, Azar, Azabou, Dyer, Munos, Veličković, Valko (b25) 2021
Xu, Liu, Jiang, Xu, Mao, Chen, Zhou (b6) 2021
A. Chin, Y. Chen, K. M. Altenburger, J. Ugander, Decoupled smoothing on graphs, in: The World Wide Web Conference, 2019, pp. 263–272.
C. Wang, S. Pan, G. Long, X. Zhu, J. Jiang, Mgae: Marginalized graph autoencoder for graph clustering, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 889–898.
J. Park, M. Lee, H.J. Chang, K. Lee, J.Y. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6519–6528.
Li, Wu, Sun, Chen, Tian, Zhu, Meng, Zheng, Wang (b15) 2022
Zhang, Zitnik (b52) 2020; 33
Y. Wang, Z. Liu, Z. Fan, L. Sun, P.S. Yu, Dskreg: Differentiable sampling on knowledge graph for recommendation with relational gnn, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 3513–3517.
Bui, Cho, Yi (b5) 2022; 52
Yang, Zhang, Yang (b28) 2021; 34
Velickovic, Fedus, Hamilton, Liò, Bengio, Hjelm (b7) 2019; 2
Sen, Namata, Bilgic, Getoor, Galligher, Eliassi-Rad (b42) 2008; 29
E. Chien, J. Peng, P. Li, O. Milenkovic, Adaptive universal generalized pagerank graph neural network, 2020, arXiv preprint.
Zhu, Xu, Yu, Liu, Wu, Wang (b8) 2020
McInnes (10.1016/j.neucom.2024.128631_b18) 2018
Xiao (10.1016/j.neucom.2024.128631_b27) 2024; 36
Zügner (10.1016/j.neucom.2024.128631_b19) 2019
Suresh (10.1016/j.neucom.2024.128631_b30) 2021; 34
Kipf (10.1016/j.neucom.2024.128631_b17) 2016
Hassani (10.1016/j.neucom.2024.128631_b23) 2020
Velickovic (10.1016/j.neucom.2024.128631_b44) 2017; 1050
10.1016/j.neucom.2024.128631_b29
Velickovic (10.1016/j.neucom.2024.128631_b7) 2019; 2
10.1016/j.neucom.2024.128631_b20
Waniek (10.1016/j.neucom.2024.128631_b22) 2018; 2
Zhang (10.1016/j.neucom.2024.128631_b52) 2020; 33
You (10.1016/j.neucom.2024.128631_b24) 2020; 33
Yang (10.1016/j.neucom.2024.128631_b28) 2021; 34
Garcia Duran (10.1016/j.neucom.2024.128631_b32) 2017; 30
Xu (10.1016/j.neucom.2024.128631_b6) 2021
Wu (10.1016/j.neucom.2024.128631_b1) 2022; 55
Wang (10.1016/j.neucom.2024.128631_b26) 2022
10.1016/j.neucom.2024.128631_b16
You (10.1016/j.neucom.2024.128631_b37) 2020
10.1016/j.neucom.2024.128631_b12
Chen (10.1016/j.neucom.2024.128631_b21) 2018
10.1016/j.neucom.2024.128631_b54
10.1016/j.neucom.2024.128631_b11
Rozemberczki (10.1016/j.neucom.2024.128631_b48) 2021; 9
10.1016/j.neucom.2024.128631_b50
10.1016/j.neucom.2024.128631_b2
Jin (10.1016/j.neucom.2024.128631_b36) 2020
Devlin (10.1016/j.neucom.2024.128631_b10) 2018
Thakoor (10.1016/j.neucom.2024.128631_b25) 2021
Deng (10.1016/j.neucom.2024.128631_b51) 2022
10.1016/j.neucom.2024.128631_b45
10.1016/j.neucom.2024.128631_b47
Han (10.1016/j.neucom.2024.128631_b3) 2020
Li (10.1016/j.neucom.2024.128631_b53) 2020
Kipf (10.1016/j.neucom.2024.128631_b43) 2016
10.1016/j.neucom.2024.128631_b40
Bui (10.1016/j.neucom.2024.128631_b5) 2022; 52
Geisler (10.1016/j.neucom.2024.128631_b46) 2021; 34
Grill (10.1016/j.neucom.2024.128631_b41) 2020; 33
Guo (10.1016/j.neucom.2024.128631_b4) 2020; 17
Wu (10.1016/j.neucom.2024.128631_b49) 2019
Pan (10.1016/j.neucom.2024.128631_b34) 2018
Li (10.1016/j.neucom.2024.128631_b15) 2022
Zhu (10.1016/j.neucom.2024.128631_b38) 2020; 33
Hou (10.1016/j.neucom.2024.128631_b13) 2023
Zhu (10.1016/j.neucom.2024.128631_b8) 2020
Sen (10.1016/j.neucom.2024.128631_b42) 2008; 29
10.1016/j.neucom.2024.128631_b39
Tu (10.1016/j.neucom.2024.128631_b14) 2023
10.1016/j.neucom.2024.128631_b35
Xia (10.1016/j.neucom.2024.128631_b9) 2022
Yuan (10.1016/j.neucom.2024.128631_b31) 2023; 53
10.1016/j.neucom.2024.128631_b33
References_xml – reference: N. Entezari, S.A. Al-Sayouri, A. Darvishzadeh, E.E. Papalexakis, All you need is low (rank) defending against adversarial attacks on graphs, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 169–177.
– start-page: 4116
  year: 2020
  end-page: 4126
  ident: b23
  article-title: Contrastive multi-view representation learning on graphs
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 5812
  year: 2020
  end-page: 5823
  ident: b24
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv. Neural Inform. Process. Syst
– volume: 9
  start-page: cnab014
  year: 2021
  ident: b48
  article-title: Multi-scale attributed node embedding
  publication-title: J. Complex Netw.
– year: 2022
  ident: b26
  article-title: Augmentation-free graph contrastive learning with performance guarantee
– volume: 36
  year: 2024
  ident: b27
  article-title: Simple and asymmetric graph contrastive learning without augmentations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 9263
  year: 2020
  end-page: 9275
  ident: b52
  article-title: Gnnguard: Defending graph neural networks against adversarial attacks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b53
  article-title: Deeprobust: A pytorch library for adversarial attacks and defenses
– reference: K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, Q. He, Reliable representations make a stronger defender: Unsupervised structure refinement for robust gnn, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 925–935.
– year: 2021
  ident: b25
  article-title: Large-scale representation learning on graphs via bootstrapping
– volume: 29
  start-page: 93
  year: 2008
  ident: b42
  article-title: Collective classification in network data
  publication-title: AI Mag.
– volume: 55
  start-page: 1
  year: 2022
  end-page: 37
  ident: b1
  article-title: Graph neural networks in recommender systems: a survey
  publication-title: ACM Comput. Surv.
– volume: 1050
  start-page: 10
  year: 2017
  end-page: 48550
  ident: b44
  article-title: Graph attention networks
  publication-title: Stat
– reference: J. Park, M. Lee, H.J. Chang, K. Lee, J.Y. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6519–6528.
– volume: 52
  start-page: 2763
  year: 2022
  end-page: 2774
  ident: b5
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl. Intell.
– volume: 2
  start-page: 139
  year: 2018
  end-page: 147
  ident: b22
  article-title: Hiding individuals and communities in a social network
  publication-title: Nat. Hum. Behav.
– volume: 34
  start-page: 15920
  year: 2021
  end-page: 15933
  ident: b30
  article-title: Adversarial graph augmentation to improve graph contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 2776
  year: 2020
  end-page: 2783
  ident: b4
  article-title: A deep graph neural network-based mechanism for social recommendations
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 10871
  year: 2020
  end-page: 10880
  ident: b37
  article-title: When does self-supervision help graph convolutional networks?
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 21271
  year: 2020
  end-page: 21284
  ident: b41
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: A. Chin, Y. Chen, K. M. Altenburger, J. Ugander, Decoupled smoothing on graphs, in: The World Wide Web Conference, 2019, pp. 263–272.
– reference: Q. Tan, N. Liu, X. Huang, S.-H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-Supervised Graph Autoencoders are Generalizable Learners with Graph Masking, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 787–795.
– year: 2022
  ident: b15
  article-title: Maskgae: masked graph modeling meets graph autoencoders
– year: 2016
  ident: b17
  article-title: Variational graph auto-encoders
– year: 2022
  ident: b51
  article-title: GARNET: Reduced-rank topology learning for robust and scalable graph neural networks
  publication-title: Learning on Graphs Conference
– volume: 34
  start-page: 7637
  year: 2021
  end-page: 7649
  ident: b46
  article-title: Robustness of graph neural networks at scale
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: E. Chien, J. Peng, P. Li, O. Milenkovic, Adaptive universal generalized pagerank graph neural network, 2020, arXiv preprint.
– reference: Y. Wang, Z. Liu, Z. Fan, L. Sun, P.S. Yu, Dskreg: Differentiable sampling on knowledge graph for recommendation with relational gnn, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 3513–3517.
– reference: C. Wang, S. Pan, G. Long, X. Zhu, J. Jiang, Mgae: Marginalized graph autoencoder for graph clustering, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 889–898.
– year: 2019
  ident: b49
  article-title: Adversarial examples on graph data: Deep insights into attack and defense
– reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
– year: 2018
  ident: b34
  article-title: Adversarially regularized graph autoencoder for graph embedding
– reference: C. Wu, C. Wang, J. Xu, Z. Liu, K. Zheng, X. Wang, Y. Song, K. Gai, Graph Contrastive Learning with Generative Adversarial Network, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 2721–2730.
– start-page: 24332
  year: 2022
  end-page: 24346
  ident: b9
  article-title: Progcl: Rethinking hard negative mining in graph contrastive learning
  publication-title: International Conference on Machine Learning
– year: 2018
  ident: b21
  article-title: Fast gradient attack on network embedding
– year: 2018
  ident: b18
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
– year: 2020
  ident: b8
  article-title: Deep graph contrastive representation learning
– volume: 53
  start-page: 25154
  year: 2023
  end-page: 25170
  ident: b31
  article-title: Self-supervised robust graph neural networks against noisy graphs and noisy labels
  publication-title: Appl. Intell.
– reference: D. Zügner, A. Akbarnejad, S. Günnemann, Adversarial attacks on neural networks for graph data, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2847–2856.
– year: 2018
  ident: b10
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– year: 2016
  ident: b43
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2020
  ident: b3
  article-title: Graph neural networks with continual learning for fake news detection from social media
– reference: Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594–604.
– volume: 30
  year: 2017
  ident: b32
  article-title: Learning graph representations with embedding propagation
  publication-title: Adv. Neural Inform Process. Syst
– volume: 34
  start-page: 14887
  year: 2021
  end-page: 14899
  ident: b28
  article-title: Graph adversarial self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b36
  article-title: Self-supervised learning on graphs: Deep insights and new direction
– reference: W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, J. Tang, Graph structure learning for robust graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 66–74.
– year: 2019
  ident: b19
  article-title: Adversarial attacks on graph neural networks via meta learning
  publication-title: International Conference on Learning Representations
– year: 2023
  ident: b14
  article-title: RARE: Robust masked graph autoencoder
– year: 2021
  ident: b6
  article-title: MAF-GNN: Multi-adaptive spatiotemporal-flow graph neural network for traffic speed forecasting
– volume: 2
  start-page: 4
  year: 2019
  ident: b7
  article-title: Deep graph infomax
  publication-title: ICLR (Poster)
– reference: K. Li, Y. Liu, X. Ao, Q. He, Revisiting graph adversarial attack and defense from a data distribution perspective, in: The Eleventh International Conference on Learning Representations, 2022.
– year: 2023
  ident: b13
  article-title: GraphMAE2: A decoding-enhanced masked self-supervised graph learner
– volume: 33
  start-page: 7793
  year: 2020
  end-page: 7804
  ident: b38
  article-title: Beyond homophily in graph neural networks: Current limitations and effective designs
  publication-title: Adv. Neural Inform. Process. Syst
– ident: 10.1016/j.neucom.2024.128631_b29
  doi: 10.1145/3580305.3599370
– year: 2020
  ident: 10.1016/j.neucom.2024.128631_b53
– year: 2022
  ident: 10.1016/j.neucom.2024.128631_b26
– ident: 10.1016/j.neucom.2024.128631_b45
– ident: 10.1016/j.neucom.2024.128631_b2
  doi: 10.1145/3459637.3482092
– ident: 10.1016/j.neucom.2024.128631_b16
  doi: 10.1145/3539597.3570404
– start-page: 24332
  year: 2022
  ident: 10.1016/j.neucom.2024.128631_b9
  article-title: Progcl: Rethinking hard negative mining in graph contrastive learning
– volume: 33
  start-page: 9263
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b52
  article-title: Gnnguard: Defending graph neural networks against adversarial attacks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: 10.1016/j.neucom.2024.128631_b6
– year: 2018
  ident: 10.1016/j.neucom.2024.128631_b10
– year: 2019
  ident: 10.1016/j.neucom.2024.128631_b19
  article-title: Adversarial attacks on graph neural networks via meta learning
– volume: 34
  start-page: 7637
  year: 2021
  ident: 10.1016/j.neucom.2024.128631_b46
  article-title: Robustness of graph neural networks at scale
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.neucom.2024.128631_b34
– volume: 33
  start-page: 7793
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b38
  article-title: Beyond homophily in graph neural networks: Current limitations and effective designs
  publication-title: Adv. Neural Inform. Process. Syst
– volume: 29
  start-page: 93
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2024.128631_b42
  article-title: Collective classification in network data
  publication-title: AI Mag.
– year: 2023
  ident: 10.1016/j.neucom.2024.128631_b14
– year: 2023
  ident: 10.1016/j.neucom.2024.128631_b13
– volume: 55
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.neucom.2024.128631_b1
  article-title: Graph neural networks in recommender systems: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3535101
– ident: 10.1016/j.neucom.2024.128631_b20
  doi: 10.1145/3219819.3220078
– ident: 10.1016/j.neucom.2024.128631_b40
  doi: 10.1145/3534678.3539484
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2024.128631_b32
  article-title: Learning graph representations with embedding propagation
  publication-title: Adv. Neural Inform Process. Syst
– year: 2020
  ident: 10.1016/j.neucom.2024.128631_b36
– volume: 53
  start-page: 25154
  issue: 21
  year: 2023
  ident: 10.1016/j.neucom.2024.128631_b31
  article-title: Self-supervised robust graph neural networks against noisy graphs and noisy labels
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04836-6
– volume: 34
  start-page: 15920
  year: 2021
  ident: 10.1016/j.neucom.2024.128631_b30
  article-title: Adversarial graph augmentation to improve graph contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.neucom.2024.128631_b43
– year: 2018
  ident: 10.1016/j.neucom.2024.128631_b21
– year: 2016
  ident: 10.1016/j.neucom.2024.128631_b17
– ident: 10.1016/j.neucom.2024.128631_b47
– volume: 33
  start-page: 21271
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b41
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 4
  issue: 3
  year: 2019
  ident: 10.1016/j.neucom.2024.128631_b7
  article-title: Deep graph infomax
  publication-title: ICLR (Poster)
– year: 2020
  ident: 10.1016/j.neucom.2024.128631_b8
– ident: 10.1016/j.neucom.2024.128631_b54
  doi: 10.1145/3394486.3403049
– volume: 17
  start-page: 2776
  issue: 4
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b4
  article-title: A deep graph neural network-based mechanism for social recommendations
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2986316
– start-page: 4116
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b23
  article-title: Contrastive multi-view representation learning on graphs
– volume: 34
  start-page: 14887
  year: 2021
  ident: 10.1016/j.neucom.2024.128631_b28
  article-title: Graph adversarial self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2024.128631_b33
  doi: 10.1145/3132847.3132967
– ident: 10.1016/j.neucom.2024.128631_b50
  doi: 10.1145/3336191.3371789
– year: 2021
  ident: 10.1016/j.neucom.2024.128631_b25
– start-page: 10871
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b37
  article-title: When does self-supervision help graph convolutional networks?
– volume: 36
  year: 2024
  ident: 10.1016/j.neucom.2024.128631_b27
  article-title: Simple and asymmetric graph contrastive learning without augmentations
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2024.128631_b11
  doi: 10.1109/CVPR52688.2022.01553
– year: 2022
  ident: 10.1016/j.neucom.2024.128631_b15
– year: 2020
  ident: 10.1016/j.neucom.2024.128631_b3
– year: 2022
  ident: 10.1016/j.neucom.2024.128631_b51
  article-title: GARNET: Reduced-rank topology learning for robust and scalable graph neural networks
– volume: 9
  start-page: cnab014
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2024.128631_b48
  article-title: Multi-scale attributed node embedding
  publication-title: J. Complex Netw.
  doi: 10.1093/comnet/cnab014
– ident: 10.1016/j.neucom.2024.128631_b39
  doi: 10.1145/3308558.3313748
– ident: 10.1016/j.neucom.2024.128631_b12
  doi: 10.1145/3534678.3539321
– volume: 1050
  start-page: 10
  issue: 20
  year: 2017
  ident: 10.1016/j.neucom.2024.128631_b44
  article-title: Graph attention networks
  publication-title: Stat
– year: 2018
  ident: 10.1016/j.neucom.2024.128631_b18
– volume: 33
  start-page: 5812
  year: 2020
  ident: 10.1016/j.neucom.2024.128631_b24
  article-title: Graph contrastive learning with augmentations
  publication-title: Adv. Neural Inform. Process. Syst
– ident: 10.1016/j.neucom.2024.128631_b35
  doi: 10.1109/ICCV.2019.00662
– year: 2019
  ident: 10.1016/j.neucom.2024.128631_b49
– volume: 2
  start-page: 139
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2024.128631_b22
  article-title: Hiding individuals and communities in a social network
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0290-3
– volume: 52
  start-page: 2763
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2024.128631_b5
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02587-w
SSID ssj0017129
Score 2.4432647
Snippet To tackle the scarcity of labeled graph data, graph self-supervised learning (SSL) has branched into two paradigms: Generative methods and Contrastive methods....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128631
SubjectTerms Graph adversarial attacks
Graph neural networks
Masked graph autoencoders
Robustness
Title SPMGAE: Self-purified masked graph autoencoders release robust expression power
URI https://dx.doi.org/10.1016/j.neucom.2024.128631
Volume 611
WOSCitedRecordID wos001327273600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa4NALbwQUkA_cVkHJOonj3lZoeVSCrrQgbU9R7NjimV3tJhU_v-NHstmCaDn0kkRW7ESZT-PPk_E3CB0D6VVCMOmxKONeSInwEkJyvYGZCC32QVRiik3Q6-tkNGID9wd_ZsoJ0KJIXl7Y5L-aGtrA2Hrr7AfM3QwKDXANRocjmB2O_2T44eDqvNfXK_2hfFLepJreK80zn7PZI5yMQnUnq8qxlrDUacymbgpMZp3pmFezUov-2-TYojPRNdTa_NVoeQhTCcLFGHrPWmoh17hqYgpDl-c7vKvuWjk_JnFgUM-Vlj3b1P15UxPA_lm5ni4k0Y1aIQkXW4Q2II4LbjZ2TtU6SpgWY-v-X_lwG054OClkpRN64AHhyfz2RcnsP6ayJsGwzl17SO0oqR4ltaN8RstdGjHw4su9y_7oe_PTiQZdK83o3r7eaWnSAV-_zdtMpsVObtbRqltW4J6Fwwb6JItNtFaX7MDOg2-hHxYd3_ACNrDFBjbYwG1sYIcNbLGB59jABhvb6Pasf3N64bmaGp6AxWHpidz3ecAz2c3DkKqYchmJiEqgegEF9kb8HFhcxgIBK0nFqOShiBWBVX4iGI8CsoOWinEhdxHmQSKzKFBhFLIQmB5XfpwomavApzz32R4i9fdJhROc13VPntL3rLOHvKbXxAqu_OV-Wn_61JFGSwZTwNO7Pfc_-KSv6Msc7AdoqZxW8hCtiF_l_Wx65MD0G_ksjdE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPMGAE%3A+Self-purified+masked+graph+autoencoders+release+robust+expression+power&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Song%2C+Shuhan&rft.au=Li%2C+Ping&rft.au=Dun%2C+Ming&rft.au=Zhang%2C+Yuan&rft.date=2025-01-01&rft.issn=0925-2312&rft.volume=611&rft.spage=128631&rft_id=info:doi/10.1016%2Fj.neucom.2024.128631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_128631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon