Exploring high-order correlation for hyperspectral image denoising with hypergraph convolutional network

High-order correlation is an important property of hyperspectral images (HSIs) and has been widely investigated in model-based HSI denoising. However, the existing deep learning-based HSI denoising approaches have not fully utilized the high-order correlation. Hypergraph convolutional networks have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 227; S. 109718
Hauptverfasser: Zhang, Jun, Tan, Yaoxin, Wei, Xiaohui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2025
Schlagworte:
ISSN:0165-1684
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High-order correlation is an important property of hyperspectral images (HSIs) and has been widely investigated in model-based HSI denoising. However, the existing deep learning-based HSI denoising approaches have not fully utilized the high-order correlation. Hypergraph convolutional networks have shown great potential in capturing the high-order correlation. Therefore, in this paper, we propose a novel HSI denoising method by employing hypergraph convolution to characterize the high-order correlation at the patch level. Specifically, our framework is a symmetrically skip-connected 3D encoder–decoder architecture, which enhances the extraction and utilization of local features. Furthermore, to integrate competently the hypergraph convolutional modules into the 3D framework, we devise a dimensional transformation module that facilitates the fusion of 3D convolution and hypergraph convolution. Notably, in the hypergraph convolution operation, we use a data-driven technique to acquire the incidence matrix of a hypergraph, efficiently constructing the HSI into a high-order structure. Our proposed method excels in HSI denoising performance compared to state-of-the-art approaches, evidenced by extensive experiments on synthetic and real-world noisy HSIs. •We propose a novel HSI denoising method based on HGCN.•We present a learning-based technique to acquire the incidence matrix of a hypergraph.•The structure and complexity analysis of the proposed model are discussed.•Our proposed method excels in HSI denoising performance compared to state-of-the-art approaches.
AbstractList High-order correlation is an important property of hyperspectral images (HSIs) and has been widely investigated in model-based HSI denoising. However, the existing deep learning-based HSI denoising approaches have not fully utilized the high-order correlation. Hypergraph convolutional networks have shown great potential in capturing the high-order correlation. Therefore, in this paper, we propose a novel HSI denoising method by employing hypergraph convolution to characterize the high-order correlation at the patch level. Specifically, our framework is a symmetrically skip-connected 3D encoder–decoder architecture, which enhances the extraction and utilization of local features. Furthermore, to integrate competently the hypergraph convolutional modules into the 3D framework, we devise a dimensional transformation module that facilitates the fusion of 3D convolution and hypergraph convolution. Notably, in the hypergraph convolution operation, we use a data-driven technique to acquire the incidence matrix of a hypergraph, efficiently constructing the HSI into a high-order structure. Our proposed method excels in HSI denoising performance compared to state-of-the-art approaches, evidenced by extensive experiments on synthetic and real-world noisy HSIs. •We propose a novel HSI denoising method based on HGCN.•We present a learning-based technique to acquire the incidence matrix of a hypergraph.•The structure and complexity analysis of the proposed model are discussed.•Our proposed method excels in HSI denoising performance compared to state-of-the-art approaches.
ArticleNumber 109718
Author Tan, Yaoxin
Zhang, Jun
Wei, Xiaohui
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-3809-7023
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang0805@126.com
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Nanchang Institute of Technology, Nanchang 330099, Jiangxi, China
– sequence: 2
  givenname: Yaoxin
  surname: Tan
  fullname: Tan, Yaoxin
  email: tyaoxin@163.com
  organization: Jiangxi Province Key Laboratory of Smart Water Conservancy, Nanchang Institute of Technology, Nanchang 330099, Jiangxi, China
– sequence: 3
  givenname: Xiaohui
  surname: Wei
  fullname: Wei, Xiaohui
  email: xhweei@hunnu.edu.cn
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha 410081, Hunan, China
BookMark eNqFkM9OwzAMh3MYEtvgDTj0BTqSNmtTDkhoGn-kSVzgHGWJ22aUpHLKxt6ejHLiACdL9u-z7G9GJs47IOSK0QWjrLjeLYJtevSLjGY8tqqSiQmZxtEyZYXg52QWwo5SyvKCTkm7_uw7j9Y1SWubNvVoABPtEaFTg_UuqT0m7bEHDD3oAVWX2HfVQGLAeRtO4MEO7RhpUPVtpN3edx8nOqYdDAePbxfkrFZdgMufOiev9-uX1WO6eX54Wt1tUp3TYki1XhZCcSoM39IKSqq5ESVkZaW2LMspZ0VdachrTjWUItNGK9BM1NVyWxth8jnh416NPgSEWvYYD8ajZFSeDMmdHA3JkyE5GorYzS9M2-FbQHzZdv_BtyMM8bG9BZRBW3AajMXoTBpv_17wBe9MjRE
CitedBy_id crossref_primary_10_1016_j_cag_2025_104366
crossref_primary_10_1016_j_oceaneng_2025_122658
Cites_doi 10.1109/TGRS.2015.2452812
10.1109/CVPR.2016.207
10.1109/CVPR.2018.00262
10.1109/TGRS.2018.2859203
10.1109/TIP.2015.2496263
10.1109/TIP.2021.3138325
10.1145/3605776
10.1109/TGRS.2020.3045273
10.1109/ICCV51070.2023.01201
10.1109/TNNLS.2020.2978756
10.3390/rs15030694
10.1109/JSTARS.2012.2232904
10.1109/TGRS.2019.2897316
10.3390/rs14184598
10.1109/TGRS.2013.2284280
10.1109/TIP.2012.2210725
10.1109/TGRS.2018.2865197
10.1109/CVPR.2014.377
10.1109/TGRS.2023.3328922
10.1109/TGRS.2019.2901737
10.1109/TCYB.2017.2677944
10.1609/aaai.v33i01.33013558
10.1109/CVPR.2019.00703
10.1109/TIP.2003.819861
10.1109/TGRS.2014.2301415
10.1109/TGRS.2015.2457614
10.1016/j.neucom.2018.10.023
10.1109/TIP.2015.2393057
10.1109/TIP.2020.3013166
10.1109/JSTARS.2017.2779539
10.1109/TGRS.2022.3172371
10.1016/j.neucom.2022.01.057
10.1016/j.neucom.2020.04.138
10.1609/aaai.v37i1.25221
10.1109/TGRS.2022.3227735
10.1109/TPAMI.2023.3241756
10.1109/CVPR.2017.625
10.1109/CVPR52688.2022.01716
10.1109/TGRS.2019.2946050
10.1109/CVPR52729.2023.00562
10.3390/rs70202046
10.1109/TGRS.2012.2185054
10.1109/TCI.2019.2911881
10.1109/TGRS.2014.2321557
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2024.109718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2024_109718
S0165168424003384
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-cc568a408d4b09e70c4d87e279ab1230416f9ce3f40ce782cdcaec18f95bfd8d3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327876200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Tue Nov 18 20:55:41 EST 2025
Sat Nov 29 03:23:05 EST 2025
Sun Apr 06 06:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hyperspectral image denoising
High-order structure
High-order correlation
Hypergraph convolutional network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-cc568a408d4b09e70c4d87e279ab1230416f9ce3f40ce782cdcaec18f95bfd8d3
ORCID 0000-0003-3809-7023
ParticipantIDs crossref_primary_10_1016_j_sigpro_2024_109718
crossref_citationtrail_10_1016_j_sigpro_2024_109718
elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109718
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yuan, Zhang, Li, Shen, Zhang (b16) 2018; 57
Maggioni, Katkovnik, Egiazarian, Foi (b33) 2012; 22
Defferrard, Bresson, Vandergheynst (b58) 2016; 29
Van der Maaten, Hinton (b68) 2008; 9
R.H. Yuhas, J.W. Boardman, A.F. Goetz, Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques, in: JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, 1993.
Lai, Fu (b65) 2023
Lu, Li, Fang, Ma, Benediktsson (b14) 2015; 54
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, need (b54) 2017; 30
Wei, Fu (b9) 2019; 331
Valsesia, Fracastoro, Magli (b42) 2020; 29
Chen, He, Yokoya, Huang, Zhao (b47) 2019; 58
Xue, Zhao, Liao, Chan (b38) 2019; 57
Zhang, Zheng, Yuan, Song, Yu, Xiao (b41) 2023
Z. Lai, C. Yan, Y. Fu, Hybrid spectral denoising transformer with guided attention, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 13065–13075.
Wang, Peng, Zhao, Leung, Zhao, Meng (b7) 2017; 11
Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, B. Zhang, Decomposable nonlocal tensor dictionary learning for multispectral image denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2949–2956.
Zhou, Huang, Schölkopf (b57) 2006; 19
Antelmi, Cordasco, Polato, Scarano, Spagnuolo, Yang (b55) 2023; 56
Chen, Cao, Zhao, Meng, Xu (b66) 2017; 48
Duan, Luo, Fu, Niu, Gong (b31) 2023; 61
Xue, Zhao, Liao, Chan (b45) 2019; 57
Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph.neural. networks, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3558–3565.
S. Xu, Cao, Peng, Ke, Ma, Meng (b61) 2022; 60
Ma, Jiang, Zhang (b30) 2021; 60
Burai, Deák, Valkó, Tomor (b1) 2015; 7
Liu, Lee (b39) 2019; 57
Lai, Wei, Fu (b51) 2022; 481
Hong, Han, Yao, Gao, Zhang, Plaza, Chanus-sot (b3) 2021; 60
Zhang, He, Zhang, Shen, Yuan (b35) 2013; 52
Yuan, Zhang, Shen (b6) 2012; 50
Y. Chang, L. Yan, S. Zhong, Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4260–4268.
Bodrito, Zouaoui, Chanussot, Mairal (b67) 2021; 34
Qian, Ye (b12) 2012; 6
W. Shi, J. Caballero, F. Husźar, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
Dixit, Gupta, Gupta (b25) 2023
Shi, Tang, Yang, Liu, Zhang (b21) 2021; 59
Chen, He, Zhao, Huang, Zeng, Lin (b27) 2022; 60
Wang, Bovik, Sheikh, Simoncelli (b62) 2004; 13
Pan, Ma, Mei, Fan, Huang, Ma (b22) 2022; 60
M. A. Veganzones, Simoes, Licciardi, Yokoya, Bioucas-Dias, Chanussot (b64) 2015; 25
Shi, Han, Huang, Chang, Dong, Dancey, Han (b5) 2021; 60
Zhang, He, Zhang, Shen, Yuan (b10) 2013; 52
M. Li, Y. Fu, Y. Zhang, Spatial-spectral transformer for hyperspectral image denoising, in: Proceedings of the AAAI Conference on Artificial Intelligence, 37, (1) 2023, pp. 1368–1376.
Cao, Fu, Xu, Meng (b43) 2021; 60
Ronneberger, Fischer, Brox (b49) 2015
Fu, Xiao, Zhu, Liu, Wu, Zha (b29) 2023
Huang, Liu, Van Der Maaten, Weinberger (b52) 2017
Zhao, Yang (b13) 2014; 53
He, Zhang, Zhang, Shen (b8) 2015; 54
Zhao, Yang, Ma, Jiang, Ng, Huang (b46) 2021; 31
W. He, Q. Yao, C. Li, N. Yokoya, Q. Zhao, Non-local meets global: An integrated paradigm for hyperspectral denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6868–6877.
Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, H. Li, Uformer: A general u-shaped transformer for image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17683–17693.
Wu, Fu, Liu, Ni, Cheng, Li, Sun (b32) 2023; 15
M. Li, J. Liu, Y. Fu, Y. Zhang, D. Dou, Spectral enhanced rectangle transformer for hyperspectral image denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5805–5814.
Wei, Fu, Huang (b17) 2020; 32
Pang, Gu, Cao (b19) 2022; 14
Chang, Yan, Fang, Zhong, Liao (b15) 2018; 57
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472–2481.
Uzair, Mahmood, Mian (b4) 2015; 24
Xue, Zhao, Liao, Chan (b11) 2019; 57
J. Bradbury, S. Merity, C. Xiong, R. Socher, Quasi-recurrent neural networks, in: International Conference on Learning Representations, 2016.
Jiang, Zhuang, Huang, Zhao, Bioucas-Dias (b44) 2021; 60
Rasti, Sveinsson, Ulfarsson (b48) 2014; 52
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2016.
Fan, Liu, Liu (b59) 2022
Dong, Wang, Wu, Shi, Li (b40) 2019; 5
Azar, Meshgini, Rezaii, Beheshti (b2) 2020; 407
Zhao (10.1016/j.sigpro.2024.109718_b46) 2021; 31
Wang (10.1016/j.sigpro.2024.109718_b62) 2004; 13
Chang (10.1016/j.sigpro.2024.109718_b15) 2018; 57
S. Xu (10.1016/j.sigpro.2024.109718_b61) 2022; 60
Azar (10.1016/j.sigpro.2024.109718_b2) 2020; 407
10.1016/j.sigpro.2024.109718_b36
10.1016/j.sigpro.2024.109718_b37
Pang (10.1016/j.sigpro.2024.109718_b19) 2022; 14
10.1016/j.sigpro.2024.109718_b34
Wang (10.1016/j.sigpro.2024.109718_b7) 2017; 11
Shi (10.1016/j.sigpro.2024.109718_b5) 2021; 60
Wei (10.1016/j.sigpro.2024.109718_b9) 2019; 331
Zhang (10.1016/j.sigpro.2024.109718_b41) 2023
Qian (10.1016/j.sigpro.2024.109718_b12) 2012; 6
Rasti (10.1016/j.sigpro.2024.109718_b48) 2014; 52
Vaswani (10.1016/j.sigpro.2024.109718_b54) 2017; 30
Yuan (10.1016/j.sigpro.2024.109718_b16) 2018; 57
Maggioni (10.1016/j.sigpro.2024.109718_b33) 2012; 22
Ronneberger (10.1016/j.sigpro.2024.109718_b49) 2015
Valsesia (10.1016/j.sigpro.2024.109718_b42) 2020; 29
Wei (10.1016/j.sigpro.2024.109718_b17) 2020; 32
M. A. Veganzones (10.1016/j.sigpro.2024.109718_b64) 2015; 25
Zhang (10.1016/j.sigpro.2024.109718_b10) 2013; 52
Jiang (10.1016/j.sigpro.2024.109718_b44) 2021; 60
Yuan (10.1016/j.sigpro.2024.109718_b6) 2012; 50
Zhao (10.1016/j.sigpro.2024.109718_b13) 2014; 53
Wu (10.1016/j.sigpro.2024.109718_b32) 2023; 15
10.1016/j.sigpro.2024.109718_b50
Uzair (10.1016/j.sigpro.2024.109718_b4) 2015; 24
Lu (10.1016/j.sigpro.2024.109718_b14) 2015; 54
10.1016/j.sigpro.2024.109718_b18
Antelmi (10.1016/j.sigpro.2024.109718_b55) 2023; 56
Duan (10.1016/j.sigpro.2024.109718_b31) 2023; 61
Defferrard (10.1016/j.sigpro.2024.109718_b58) 2016; 29
Chen (10.1016/j.sigpro.2024.109718_b27) 2022; 60
Huang (10.1016/j.sigpro.2024.109718_b52) 2017
10.1016/j.sigpro.2024.109718_b53
Chen (10.1016/j.sigpro.2024.109718_b47) 2019; 58
10.1016/j.sigpro.2024.109718_b56
Hong (10.1016/j.sigpro.2024.109718_b3) 2021; 60
Xue (10.1016/j.sigpro.2024.109718_b45) 2019; 57
Fu (10.1016/j.sigpro.2024.109718_b29) 2023
He (10.1016/j.sigpro.2024.109718_b8) 2015; 54
Xue (10.1016/j.sigpro.2024.109718_b11) 2019; 57
Pan (10.1016/j.sigpro.2024.109718_b22) 2022; 60
10.1016/j.sigpro.2024.109718_b60
Ma (10.1016/j.sigpro.2024.109718_b30) 2021; 60
Lai (10.1016/j.sigpro.2024.109718_b65) 2023
Bodrito (10.1016/j.sigpro.2024.109718_b67) 2021; 34
Cao (10.1016/j.sigpro.2024.109718_b43) 2021; 60
10.1016/j.sigpro.2024.109718_b28
Burai (10.1016/j.sigpro.2024.109718_b1) 2015; 7
Zhou (10.1016/j.sigpro.2024.109718_b57) 2006; 19
10.1016/j.sigpro.2024.109718_b63
10.1016/j.sigpro.2024.109718_b20
10.1016/j.sigpro.2024.109718_b26
10.1016/j.sigpro.2024.109718_b23
Lai (10.1016/j.sigpro.2024.109718_b51) 2022; 481
10.1016/j.sigpro.2024.109718_b24
Zhang (10.1016/j.sigpro.2024.109718_b35) 2013; 52
Liu (10.1016/j.sigpro.2024.109718_b39) 2019; 57
Fan (10.1016/j.sigpro.2024.109718_b59) 2022
Chen (10.1016/j.sigpro.2024.109718_b66) 2017; 48
Dong (10.1016/j.sigpro.2024.109718_b40) 2019; 5
Xue (10.1016/j.sigpro.2024.109718_b38) 2019; 57
Dixit (10.1016/j.sigpro.2024.109718_b25) 2023
Van der Maaten (10.1016/j.sigpro.2024.109718_b68) 2008; 9
Shi (10.1016/j.sigpro.2024.109718_b21) 2021; 59
References_xml – reference: Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, H. Li, Uformer: A general u-shaped transformer for image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17683–17693.
– volume: 5
  start-page: 635
  year: 2019
  end-page: 648
  ident: b40
  article-title: Deep spatial–spectral repre- sentation learning for hyperspectral image denoising
  publication-title: IEEE Trans Comput. Imaging
– volume: 60
  start-page: 1
  year: 2021
  end-page: 13
  ident: b44
  article-title: Adaptive hyperspectral mixed noise removal
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 499
  year: 2012
  end-page: 515
  ident: b12
  article-title: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 22
  start-page: 119
  year: 2012
  end-page: 133
  ident: b33
  article-title: Nonlocal transformdomain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 5174
  year: 2019
  end-page: 5189
  ident: b11
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 5174
  year: 2019
  end-page: 5189
  ident: b45
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2016.
– volume: 53
  start-page: 296
  year: 2014
  end-page: 308
  ident: b13
  article-title: Hyperspectral image denoising via sparse representation and low-rank constraint
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph.neural. networks, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3558–3565.
– volume: 52
  start-page: 4729
  year: 2013
  end-page: 4743
  ident: b35
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 14
  ident: b43
  article-title: Deep spatial–spectral global reasoning network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 1205
  year: 2018
  end-page: 1218
  ident: b16
  article-title: Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 1348
  year: 2019
  end-page: 1362
  ident: b47
  article-title: Nonlocal tensor- ring decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, B. Zhang, Decomposable nonlocal tensor dictionary learning for multispectral image denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2949–2956.
– volume: 29
  year: 2016
  ident: b58
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: M. Li, Y. Fu, Y. Zhang, Spatial-spectral transformer for hyperspectral image denoising, in: Proceedings of the AAAI Conference on Artificial Intelligence, 37, (1) 2023, pp. 1368–1376.
– reference: W. Shi, J. Caballero, F. Husźar, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b52
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: b65
  article-title: Mixed attention network for hyperspectral image denoising
– volume: 48
  start-page: 1054
  year: 2017
  end-page: 1066
  ident: b66
  article-title: Denoising hyperspectral image with non-iid noise structure
  publication-title: IEEE Trans. Cybern.
– volume: 57
  start-page: 667
  year: 2018
  end-page: 682
  ident: b15
  article-title: Hsi-denet: Hyperspectral image restoration via convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 1227
  year: 2017
  end-page: 1243
  ident: b7
  article-title: Hyperspectral image restoration via total variation regularized low-rank tensor decomposition
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 18
  ident: b27
  article-title: Exploring nonlocal group sparsity under transform learning for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  start-page: 3660
  year: 2012
  end-page: 3677
  ident: b6
  article-title: Hyperspectral image denoising employing a spectral–spatial adaptive total variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 14
  ident: b30
  article-title: Hyperspectral image classification using feature fusion hypergraph convolution neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 20
  ident: b5
  article-title: A biologically interpretable two-stage deep neural network (bit-dnn) for vegetation recognition from hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Y. Chang, L. Yan, S. Zhong, Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4260–4268.
– volume: 57
  start-page: 5701
  year: 2019
  end-page: 5715
  ident: b39
  article-title: A 3-d atrous convolution neural network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: J. Bradbury, S. Merity, C. Xiong, R. Socher, Quasi-recurrent neural networks, in: International Conference on Learning Representations, 2016.
– reference: Z. Lai, C. Yan, Y. Fu, Hybrid spectral denoising transformer with guided attention, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 13065–13075.
– volume: 52
  start-page: 6688
  year: 2014
  end-page: 6698
  ident: b48
  article-title: Wavelet-based sparse reduced-rank regression for hyperspectral image restoration
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b49
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October (2015) 5-9, Proceedings, Part III 18
– volume: 14
  start-page: 4598
  year: 2022
  ident: b19
  article-title: Trq3dnet: A 3d quasi-recurrent and transformer based network for hyperspectral image denoising
  publication-title: Remote Sens.
– volume: 57
  start-page: 5174
  year: 2019
  end-page: 5189
  ident: b38
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 481
  start-page: 281
  year: 2022
  end-page: 293
  ident: b51
  article-title: Deep plug-and-play prior for hyperspectral image restoration
  publication-title: Neurocomputing
– start-page: 2333
  year: 2022
  end-page: 2337
  ident: b59
  article-title: Sunet: swin transformer unet for image denoising
  publication-title: 2022 IEEE International Symposium on Circuits and Systems
– reference: M. Li, J. Liu, Y. Fu, Y. Zhang, D. Dou, Spectral enhanced rectangle transformer for hyperspectral image denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5805–5814.
– year: 2023
  ident: b41
  article-title: Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 331
  start-page: 412
  year: 2019
  end-page: 423
  ident: b9
  article-title: Low-rank bayesian tensor factorization for hyperspectral image denoising
  publication-title: Neurocomputing
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b61
  article-title: Hyperspectral image denoising by asymmetric noise modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 407
  start-page: 12
  year: 2020
  end-page: 23
  ident: b2
  article-title: Hyperspectral image classification based on sparse modeling of spectral blocks
  publication-title: Neurocomputing
– reference: W. He, Q. Yao, C. Li, N. Yokoya, Q. Zhao, Non-local meets global: An integrated paradigm for hyperspectral denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6868–6877.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b62
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b22
  article-title: Sqad: Spatial-spectral quasi-attention recurrent network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 13
  ident: b31
  article-title: Classification via structure- preserved hypergraph convolution network for hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 8226
  year: 2020
  end-page: 8237
  ident: b42
  article-title: Deep graph-convolutional image denoising
  publication-title: IEEE Trans. Image Process.
– year: 2023
  ident: b29
  article-title: Continual image deraining with hypergraph convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  year: 2006
  ident: b57
  article-title: Learning with hypergraphs: Clustering, classification, and embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 274
  year: 2015
  end-page: 288
  ident: b64
  article-title: Hyperspectral super-resolution of locally low rank images from complementary multisource data
  publication-title: IEEE Trans. Image Process.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: b3
  article-title: Spectralformer: Rethinking hyperspectral image classification with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 2046
  year: 2015
  end-page: 2066
  ident: b1
  article-title: Classification of herbaceous vegetation using airborne hyperspectral imagery
  publication-title: Remote Sens.
– year: 2023
  ident: b25
  article-title: UNFOLD: 3D U-net, 3D CNN and 3D transformer based hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 5430
  year: 2021
  end-page: 5442
  ident: b67
  article-title: A trainable spectral- spatial sparse coding model for hyperspectral image restoration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 54
  start-page: 373
  year: 2015
  end-page: 385
  ident: b14
  article-title: Spectral–spatial adaptive sparse representation for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 24
  start-page: 1127
  year: 2015
  end-page: 1137
  ident: b4
  article-title: Hyperspectral face recognition with spatiospectral information fusion and pls regression
  publication-title: IEEE Trans. Image Process.
– reference: Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472–2481.
– reference: R.H. Yuhas, J.W. Boardman, A.F. Goetz, Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques, in: JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, 1993.
– volume: 56
  start-page: 1
  year: 2023
  end-page: 38
  ident: b55
  article-title: A survey on hypergraph representation learning
  publication-title: ACM Comput. Surv.
– volume: 54
  start-page: 178
  year: 2015
  end-page: 188
  ident: b8
  article-title: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 694
  year: 2023
  ident: b32
  article-title: A dual neighborhood hypergraph neural network for change detection in vhr remote sensing images
  publication-title: Remote Sens.
– volume: 31
  start-page: 984
  year: 2021
  end-page: 999
  ident: b46
  article-title: Tensor completion via complementary global, local, and nonlocal priors
  publication-title: IEEE Trans. Image Process.
– volume: 9
  year: 2008
  ident: b68
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 10348
  year: 2021
  end-page: 10363
  ident: b21
  article-title: Hyperspectral image denoising using a 3-d attention denoising network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  year: 2017
  ident: b54
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 52
  start-page: 4729
  year: 2013
  end-page: 4743
  ident: b10
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 32
  start-page: 363
  year: 2020
  end-page: 375
  ident: b17
  article-title: 3-d quasi-recurrent neural network for hyperspectral image denoising
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 54
  start-page: 178
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b8
  article-title: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2452812
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.sigpro.2024.109718_b68
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b43
  article-title: Deep spatial–spectral global reasoning network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.sigpro.2024.109718_b60
  doi: 10.1109/CVPR.2016.207
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b44
  article-title: Adaptive hyperspectral mixed noise removal
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.sigpro.2024.109718_b53
  doi: 10.1109/CVPR.2018.00262
– volume: 57
  start-page: 667
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2024.109718_b15
  article-title: Hsi-denet: Hyperspectral image restoration via convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2859203
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b30
  article-title: Hyperspectral image classification using feature fusion hypergraph convolution neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 25
  start-page: 274
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b64
  article-title: Hyperspectral super-resolution of locally low rank images from complementary multisource data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2496263
– volume: 31
  start-page: 984
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b46
  article-title: Tensor completion via complementary global, local, and nonlocal priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3138325
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b22
  article-title: Sqad: Spatial-spectral quasi-attention recurrent network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b55
  article-title: A survey on hypergraph representation learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3605776
– volume: 59
  start-page: 10348
  issue: 12
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b21
  article-title: Hyperspectral image denoising using a 3-d attention denoising network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3045273
– ident: 10.1016/j.sigpro.2024.109718_b50
  doi: 10.1109/ICCV51070.2023.01201
– year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b65
– volume: 32
  start-page: 363
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2024.109718_b17
  article-title: 3-d quasi-recurrent neural network for hyperspectral image denoising
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978756
– volume: 15
  start-page: 694
  issue: 3
  year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b32
  article-title: A dual neighborhood hypergraph neural network for change detection in vhr remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs15030694
– start-page: 4700
  year: 2017
  ident: 10.1016/j.sigpro.2024.109718_b52
  article-title: Densely connected convolutional networks
– volume: 6
  start-page: 499
  issue: 2
  year: 2012
  ident: 10.1016/j.sigpro.2024.109718_b12
  article-title: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2232904
– volume: 57
  start-page: 5174
  issue: 7
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b38
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2897316
– volume: 14
  start-page: 4598
  issue: 18
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b19
  article-title: Trq3dnet: A 3d quasi-recurrent and transformer based network for hyperspectral image denoising
  publication-title: Remote Sens.
  doi: 10.3390/rs14184598
– volume: 52
  start-page: 4729
  issue: 8
  year: 2013
  ident: 10.1016/j.sigpro.2024.109718_b10
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284280
– volume: 34
  start-page: 5430
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b67
  article-title: A trainable spectral- spatial sparse coding model for hyperspectral image restoration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 119
  issue: 1
  year: 2012
  ident: 10.1016/j.sigpro.2024.109718_b33
  article-title: Nonlocal transformdomain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2210725
– ident: 10.1016/j.sigpro.2024.109718_b23
  doi: 10.1109/ICCV51070.2023.01201
– volume: 57
  start-page: 1205
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2024.109718_b16
  article-title: Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2865197
– ident: 10.1016/j.sigpro.2024.109718_b34
  doi: 10.1109/CVPR.2014.377
– year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b41
  article-title: Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2333
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b59
  article-title: Sunet: swin transformer unet for image denoising
  publication-title: 2022 IEEE International Symposium on Circuits and Systems
– year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b25
  article-title: UNFOLD: 3D U-net, 3D CNN and 3D transformer based hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3328922
– volume: 57
  start-page: 5701
  issue: 8
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b39
  article-title: A 3-d atrous convolution neural network for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2901737
– volume: 48
  start-page: 1054
  issue: 3
  year: 2017
  ident: 10.1016/j.sigpro.2024.109718_b66
  article-title: Denoising hyperspectral image with non-iid noise structure
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2677944
– ident: 10.1016/j.sigpro.2024.109718_b28
  doi: 10.1609/aaai.v33i01.33013558
– ident: 10.1016/j.sigpro.2024.109718_b37
  doi: 10.1109/CVPR.2019.00703
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.sigpro.2024.109718_b62
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 52
  start-page: 6688
  issue: 10
  year: 2014
  ident: 10.1016/j.sigpro.2024.109718_b48
  article-title: Wavelet-based sparse reduced-rank regression for hyperspectral image restoration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2301415
– volume: 54
  start-page: 373
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b14
  article-title: Spectral–spatial adaptive sparse representation for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2457614
– volume: 331
  start-page: 412
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b9
  article-title: Low-rank bayesian tensor factorization for hyperspectral image denoising
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.023
– volume: 30
  year: 2017
  ident: 10.1016/j.sigpro.2024.109718_b54
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 1127
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b4
  article-title: Hyperspectral face recognition with spatiospectral information fusion and pls regression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2393057
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b31
  article-title: Classification via structure- preserved hypergraph convolution network for hyperspectral image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 8226
  year: 2020
  ident: 10.1016/j.sigpro.2024.109718_b42
  article-title: Deep graph-convolutional image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3013166
– volume: 11
  start-page: 1227
  issue: 4
  year: 2017
  ident: 10.1016/j.sigpro.2024.109718_b7
  article-title: Hyperspectral image restoration via total variation regularized low-rank tensor decomposition
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2779539
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b3
  article-title: Spectralformer: Rethinking hyperspectral image classification with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3172371
– volume: 19
  year: 2006
  ident: 10.1016/j.sigpro.2024.109718_b57
  article-title: Learning with hypergraphs: Clustering, classification, and embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 481
  start-page: 281
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b51
  article-title: Deep plug-and-play prior for hyperspectral image restoration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.057
– volume: 57
  start-page: 5174
  issue: 7
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b11
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2897316
– volume: 407
  start-page: 12
  year: 2020
  ident: 10.1016/j.sigpro.2024.109718_b2
  article-title: Hyperspectral image classification based on sparse modeling of spectral blocks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.138
– ident: 10.1016/j.sigpro.2024.109718_b24
  doi: 10.1609/aaai.v37i1.25221
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b61
  article-title: Hyperspectral image denoising by asymmetric noise modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3227735
– volume: 57
  start-page: 5174
  issue: 7
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b45
  article-title: Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2897316
– start-page: 234
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b49
  article-title: U-net: Convolutional networks for biomedical image segmentation
– year: 2023
  ident: 10.1016/j.sigpro.2024.109718_b29
  article-title: Continual image deraining with hypergraph convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3241756
– ident: 10.1016/j.sigpro.2024.109718_b36
  doi: 10.1109/CVPR.2017.625
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.sigpro.2024.109718_b27
  article-title: Exploring nonlocal group sparsity under transform learning for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.sigpro.2024.109718_b20
  doi: 10.1109/CVPR52688.2022.01716
– ident: 10.1016/j.sigpro.2024.109718_b63
– volume: 58
  start-page: 1348
  issue: 2
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b47
  article-title: Nonlocal tensor- ring decomposition for hyperspectral image denoising
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2946050
– ident: 10.1016/j.sigpro.2024.109718_b26
  doi: 10.1109/CVPR52729.2023.00562
– volume: 7
  start-page: 2046
  issue: 2
  year: 2015
  ident: 10.1016/j.sigpro.2024.109718_b1
  article-title: Classification of herbaceous vegetation using airborne hyperspectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs70202046
– volume: 50
  start-page: 3660
  issue: 10
  year: 2012
  ident: 10.1016/j.sigpro.2024.109718_b6
  article-title: Hyperspectral image denoising employing a spectral–spatial adaptive total variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2185054
– volume: 52
  start-page: 4729
  issue: 8
  year: 2013
  ident: 10.1016/j.sigpro.2024.109718_b35
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284280
– volume: 5
  start-page: 635
  issue: 4
  year: 2019
  ident: 10.1016/j.sigpro.2024.109718_b40
  article-title: Deep spatial–spectral repre- sentation learning for hyperspectral image denoising
  publication-title: IEEE Trans Comput. Imaging
  doi: 10.1109/TCI.2019.2911881
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109718_b5
  article-title: A biologically interpretable two-stage deep neural network (bit-dnn) for vegetation recognition from hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 296
  issue: 1
  year: 2014
  ident: 10.1016/j.sigpro.2024.109718_b13
  article-title: Hyperspectral image denoising via sparse representation and low-rank constraint
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2321557
– ident: 10.1016/j.sigpro.2024.109718_b18
– ident: 10.1016/j.sigpro.2024.109718_b56
– volume: 29
  year: 2016
  ident: 10.1016/j.sigpro.2024.109718_b58
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0001360
Score 2.4506483
Snippet High-order correlation is an important property of hyperspectral images (HSIs) and has been widely investigated in model-based HSI denoising. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109718
SubjectTerms High-order correlation
High-order structure
Hypergraph convolutional network
Hyperspectral image denoising
Title Exploring high-order correlation for hyperspectral image denoising with hypergraph convolutional network
URI https://dx.doi.org/10.1016/j.sigpro.2024.109718
Volume 227
WOSCitedRecordID wos001327876200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001360
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYf2gICCylM-9IaM8nCc-IgQqOWAkKDq9hQ5jsMGQXbF7qL9-YwfcbJQ0XLgEkVex7F2Ptszk29mEPoep6BXxKUgFZy2hJZwV_CQkoSrSLIyK6kQpthEenGRDYf80tHGpqacQNo02WLBJ-8qamgDYevQ2TeI2w8KDXAPQocriB2u_yX4jlWnUxETk1vzUOoiHHcdsXAE5qeNsjRZN-41cwd2oHE99c5Z08XkszbUdDdn6N1Y5nhfrb2qb_QvExt10J6GfX_0-bxj_Fqf6x8xXtS-8bcytIJhLcajed33RURJS1_u3JMsISGzRd_a_TWywf9uh9RfvO2O-2Lztn6E26NpfQPzBds9okdd9-Vc2c_OMM8sbElrt7kdJdej5HaUj2glSsGAGqCV45-nw3N_YoexiSb3s29DLA0P8OVs_q7C9NSS6zW06uwJfGxxsI4-qGYDfellmfyKRh4RuEME7iECAyLwEiKwQQT2iMAaEbhDBF5CBHaI2ES_zk6vT34QV2CDSLAUZ0TKhGWCBrAii4CrNJC0zFIVpVwUof5aELKKSxVXNJAKVElZSqFkmFU8KSpYx_EWGjTjRn1DOK5UULBMUSYULUIpCh3yXPGAB0XJFNtGcfuf5dJln9dFUO7y1yS2jYh_amKzr_yjf9qKI3capNUMc8DYq0_uvPFNu-hztwD20GD2MFf76JN8nNXThwMHsCc5aJtg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+high-order+correlation+for+hyperspectral+image+denoising+with+hypergraph+convolutional+network&rft.jtitle=Signal+processing&rft.au=Zhang%2C+Jun&rft.au=Tan%2C+Yaoxin&rft.au=Wei%2C+Xiaohui&rft.date=2025-02-01&rft.issn=0165-1684&rft.volume=227&rft.spage=109718&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2024_109718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon