A novel population robustness-based switching response framework for solving dynamic multi-objective problems

In this paper, a novel population robustness-based switching response framework (PR-SRF) is proposed to develop effective dynamic multi-objective optimization algorithm (DMOA), which integrates different response strategies to comprehensively cope with the dynamic behaviors. In particular, the popul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 583; S. 127601
Hauptverfasser: Li, Han, Fang, Zheng, Hu, Liwei, Liu, Haonan, Wu, Peishu, Zeng, Nianyin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 28.05.2024
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a novel population robustness-based switching response framework (PR-SRF) is proposed to develop effective dynamic multi-objective optimization algorithm (DMOA), which integrates different response strategies to comprehensively cope with the dynamic behaviors. In particular, the population robustness is described by the quantification of how severely the environmental changes affect current population, which is timely graded as three levels of weak, strong, and normal to enable the adaptive switch of three different responses of diversity-enhancement, diversity-maintenance, and the knowledge-transfer, respectively. In this way, associations between the adopted responses and the changing environments are successfully established, thereby facilitating more intelligent decision when handling the dynamic behaviors. According to the benchmark evaluation results, the proposed PR-SRF-DMOA yields better comprehensive performance than several other DMOAs with popular response strategies, and it also outperforms another three DMOAs with hybrid responses, which demonstrates the great competitiveness of our algorithm. In addition, ablation study proves that the proposed PR-SRF can sufficiently exploit the merits of different responses, which effectively alleviates the negative knowledge transfer in extremely fluctuating environments, thereby providing valuable references for the development of evolutionary transfer optimization (ETO) algorithms.
AbstractList In this paper, a novel population robustness-based switching response framework (PR-SRF) is proposed to develop effective dynamic multi-objective optimization algorithm (DMOA), which integrates different response strategies to comprehensively cope with the dynamic behaviors. In particular, the population robustness is described by the quantification of how severely the environmental changes affect current population, which is timely graded as three levels of weak, strong, and normal to enable the adaptive switch of three different responses of diversity-enhancement, diversity-maintenance, and the knowledge-transfer, respectively. In this way, associations between the adopted responses and the changing environments are successfully established, thereby facilitating more intelligent decision when handling the dynamic behaviors. According to the benchmark evaluation results, the proposed PR-SRF-DMOA yields better comprehensive performance than several other DMOAs with popular response strategies, and it also outperforms another three DMOAs with hybrid responses, which demonstrates the great competitiveness of our algorithm. In addition, ablation study proves that the proposed PR-SRF can sufficiently exploit the merits of different responses, which effectively alleviates the negative knowledge transfer in extremely fluctuating environments, thereby providing valuable references for the development of evolutionary transfer optimization (ETO) algorithms.
ArticleNumber 127601
Author Zeng, Nianyin
Hu, Liwei
Wu, Peishu
Li, Han
Fang, Zheng
Liu, Haonan
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0003-0276-9756
  surname: Li
  fullname: Li, Han
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0002-7858-4080
  surname: Fang
  fullname: Fang, Zheng
– sequence: 3
  givenname: Liwei
  orcidid: 0009-0007-0626-8840
  surname: Hu
  fullname: Hu, Liwei
– sequence: 4
  givenname: Haonan
  orcidid: 0000-0003-4382-8492
  surname: Liu
  fullname: Liu, Haonan
– sequence: 5
  givenname: Peishu
  orcidid: 0000-0001-9891-3809
  surname: Wu
  fullname: Wu, Peishu
– sequence: 6
  givenname: Nianyin
  orcidid: 0000-0002-6957-2942
  surname: Zeng
  fullname: Zeng, Nianyin
  email: zny@xmu.edu.cn
BookMark eNqFkMtKxDAUQIOM4MzoH7jID7Tm0XZaF8Iw-IIBN7oOSXqrqW1SkrbD_L0d68qFru6FyzlwzwotrLOA0DUlMSU0u6ljC4N2bcwIS2LKNhmhZ2hJ8w2LcpZnC7QkBUsjxim7QKsQakLohrJiidottm6EBneuGxrZG2exd2oIvYUQIiUDlDgcTK8_jH3HHkLnbABcednCwflPXDmPg2vG07k8Wtkajduh6U3kVA26NyPgblI20IZLdF7JJsDVz1yjt4f7191TtH95fN5t95HmJOsjLbnMlOKFTlJNOOQpFMC5YimRUOmkYgqmTZeQ5BXjRaJKncislEmaKV6lfI2S2au9C8FDJTpvWumPghJxSiZqMScTp2RiTjZht78wbfrvJr2XpvkPvpthmB4bDXgRtAGroTR-yiBKZ_4WfAHWzZDu
CitedBy_id crossref_primary_10_1007_s12065_024_00974_z
crossref_primary_10_1016_j_swevo_2025_102123
crossref_primary_10_1109_TFUZZ_2024_3443207
crossref_primary_10_1002_advs_202409130
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_1007_s44163_025_00317_6
crossref_primary_10_1016_j_neucom_2024_128378
crossref_primary_10_1016_j_neucom_2024_129315
crossref_primary_10_1016_j_neucom_2024_129045
crossref_primary_10_1109_JAS_2024_124941
Cites_doi 10.1016/j.swevo.2011.02.002
10.1109/TEVC.2021.3101697
10.1080/21642583.2022.2042424
10.1109/TEVC.2017.2771451
10.1109/TEVC.2007.892759
10.1080/21642583.2022.2137707
10.1016/j.neucom.2024.127241
10.1016/j.ins.2019.09.016
10.1007/978-3-319-31153-1_20
10.1109/CEC.2018.8477667
10.1080/21642583.2022.2071778
10.1109/TEVC.2020.3004027
10.1109/TCYB.2020.3029748
10.1109/TEVC.2008.920671
10.3390/app8091673
10.1080/00207721.2023.2209873
10.1109/CEC.2014.6900569
10.1016/j.asoc.2017.05.008
10.1016/j.eswa.2021.115237
10.1016/j.asoc.2017.08.004
10.1016/j.ins.2020.07.009
10.1016/j.asoc.2019.105783
10.1080/00207721.2023.2276095
10.1109/TNNLS.2019.2920887
10.1109/TEVC.2017.2669638
10.1080/00207721.2023.2245543
10.1109/TCYB.2013.2245892
10.1007/s00500-013-1085-8
10.1145/1273496.1273521
10.1109/TCYB.2019.2933499
10.1109/TEVC.2004.831456
10.1007/978-3-540-70928-2_62
10.1007/978-3-540-70928-2_60
10.1109/TSMC.2021.3096220
10.1109/CEC.2009.4983004
10.3390/math10122117
10.1080/00207721.2023.2209846
10.1007/s10489-022-03353-2
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2024.127601
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2024_127601
S0925231224003722
GrantInformation_xml – fundername: National Science and Technology Major Project
– fundername: Natural Science Foundation of China
  grantid: 62073271; 62275223
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 20720220076; 2023J06010
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Natural Science Foundation for Distinguished Young Scholars of the Fujian Province
  grantid: J2019-I-0013-0013
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-ca3a6bb39c45c03e85e9e33b250aefc4f2be0aecde48f2394bdc4a6da456b3f53
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001219649600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:16:28 EST 2025
Sat Nov 29 06:33:58 EST 2025
Sat Apr 13 16:38:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary transfer optimization (ETO)
Switching response framework
Population robustness
Dynamic multi-objective optimization algorithms (DMOAs)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ca3a6bb39c45c03e85e9e33b250aefc4f2be0aecde48f2394bdc4a6da456b3f53
ORCID 0009-0007-0626-8840
0000-0003-4382-8492
0000-0001-9891-3809
0000-0002-6957-2942
0000-0003-0276-9756
0000-0002-7858-4080
ParticipantIDs crossref_primary_10_1016_j_neucom_2024_127601
crossref_citationtrail_10_1016_j_neucom_2024_127601
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_127601
PublicationCentury 2000
PublicationDate 2024-05-28
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References W. Dai, Q. Yang, G. Xue, Y. Yu, Boosting for transfer learning, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 193–200.
Zhang, Zou, Liu, Ding, Hu (b6) 2023; 54
K. Deb, N. Rao, S. Karthik, Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 803–817.
Sun, Ma, Hu, Yang, Cui (b22) 2023; 53
Li, Wang, Lan, Wu, Zeng (b26) 2023
S. Jiang, S. Yang, X. Yao, K. Tan, M. Kaiser, N. Krasnogor, Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–18.
Sahmoud, Topcuoglu (b33) 2019; 85
Zhou, Jin an Q. Zhang (b32) 2014; 44
Li, Liu, Lan, Yin, Wu, Yan, Zeng (b11) 2023; 54
Xu, Tan, Zheng, Li (b20) 2018; 8
Liu, Zhan, Gu, Kwong, Lu, Duh, Zhang (b28) 2020; 31
Fang, Liu, Chen, Lauria, Miron, Liu (b14) 2023; 2
A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 832–846.
Wang, Li, Wang (b42) 2022; 10
Haque, Bhurjee, Kumar (b1) 2022; 10
Wang, Liu, Wang, Fadzil, Lauria, Liu (b2) 2023; 2
Shang, Jiao, Ren, Li, Wang (b41) 2014; 18
Song, Li, Cheng, Dong (b4) 2023; 11
Wang, Li (b13) 2022; 10
Liang, Xu, Liu, Tu, Zhu (b8) 2022; 26
Farina, Deb, Amato (b37) 2004; 8
Zheng, Zhou, Hu, Zhang (b10) 2023; 2
Goh, Tan (b38) 2009; 13
Zeng, Wang, Liu, Zhang, Hone, Liu (b15) 2022; 52
Zou, Li, Yang, Bai, Zheng (b21) 2017; 61
Liang, Liang, Wang, Ma, Liu, Zhu (b29) 2022; 52
Zhu, Li, Zhang (b9) 2023; 54
S. Sahmoud, H. Topcuoglu, A memory-based NSGA-II algorithm for dynamic multi-objective optimization problems, in: European Conference on the Applications of Evolutionary Computation, 2016, pp. 296–310.
Chen, Li, Yao (b31) 2018; 22
Y. Wang, B. Li, Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment, in: 2009 IEEE Congress on Evolutionary Computation, CEC, 2009, pp. 630–637.
R. Azzouz, S. Bechikh, L. Ben Said, A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 3168–3175.
Jiang, Huang, Qiu, Huang, Yen (b30) 2017; 22
Fang, Li, Hu, Zeng (b23) 2024; 574
Li, Wang, Lan, Wu, Zeng (b25) 2023
Zhang, Li (b43) 2008; 11
Jiang, Wang, Hong, Yen (b27) 2020; 25
Ma, Yang, Sun, Hu, Wei (b34) 2021; 545
Lyshevski (b3) 2024; 55
Sun, Zhou, Wang, Zhang (b35) 2021; 184
Zhang, Wang, Yang, Cui (b12) 2022; 10
Ruan, Yu, Zheng, Zou, Yang (b18) 2017; 58
Derrac, Garcia, Molina, Herrera (b44) 2011; 1
Wang, Zhan, Yu, Lin, Zhang, Gu, Zhang (b7) 2020; 50
Zou, Yen, Tang (b24) 2020; 509
Wang, Sun, Ding (b5) 2022; 1
Wang (10.1016/j.neucom.2024.127601_b7) 2020; 50
Fang (10.1016/j.neucom.2024.127601_b14) 2023; 2
Zeng (10.1016/j.neucom.2024.127601_b15) 2022; 52
Derrac (10.1016/j.neucom.2024.127601_b44) 2011; 1
Zou (10.1016/j.neucom.2024.127601_b21) 2017; 61
Zheng (10.1016/j.neucom.2024.127601_b10) 2023; 2
Liang (10.1016/j.neucom.2024.127601_b29) 2022; 52
10.1016/j.neucom.2024.127601_b45
Liang (10.1016/j.neucom.2024.127601_b8) 2022; 26
Li (10.1016/j.neucom.2024.127601_b11) 2023; 54
Jiang (10.1016/j.neucom.2024.127601_b30) 2017; 22
Wang (10.1016/j.neucom.2024.127601_b13) 2022; 10
Wang (10.1016/j.neucom.2024.127601_b2) 2023; 2
Ma (10.1016/j.neucom.2024.127601_b34) 2021; 545
10.1016/j.neucom.2024.127601_b40
Shang (10.1016/j.neucom.2024.127601_b41) 2014; 18
Goh (10.1016/j.neucom.2024.127601_b38) 2009; 13
Chen (10.1016/j.neucom.2024.127601_b31) 2018; 22
Li (10.1016/j.neucom.2024.127601_b26) 2023
Sun (10.1016/j.neucom.2024.127601_b35) 2021; 184
Wang (10.1016/j.neucom.2024.127601_b42) 2022; 10
Lyshevski (10.1016/j.neucom.2024.127601_b3) 2024; 55
Ruan (10.1016/j.neucom.2024.127601_b18) 2017; 58
Zhu (10.1016/j.neucom.2024.127601_b9) 2023; 54
Zou (10.1016/j.neucom.2024.127601_b24) 2020; 509
Zhang (10.1016/j.neucom.2024.127601_b6) 2023; 54
Zhou (10.1016/j.neucom.2024.127601_b32) 2014; 44
10.1016/j.neucom.2024.127601_b16
Song (10.1016/j.neucom.2024.127601_b4) 2023; 11
10.1016/j.neucom.2024.127601_b17
10.1016/j.neucom.2024.127601_b39
Wang (10.1016/j.neucom.2024.127601_b5) 2022; 1
10.1016/j.neucom.2024.127601_b19
Fang (10.1016/j.neucom.2024.127601_b23) 2024; 574
Liu (10.1016/j.neucom.2024.127601_b28) 2020; 31
Zhang (10.1016/j.neucom.2024.127601_b12) 2022; 10
Jiang (10.1016/j.neucom.2024.127601_b27) 2020; 25
Haque (10.1016/j.neucom.2024.127601_b1) 2022; 10
10.1016/j.neucom.2024.127601_b36
Li (10.1016/j.neucom.2024.127601_b25) 2023
Zhang (10.1016/j.neucom.2024.127601_b43) 2008; 11
Xu (10.1016/j.neucom.2024.127601_b20) 2018; 8
Farina (10.1016/j.neucom.2024.127601_b37) 2004; 8
Sun (10.1016/j.neucom.2024.127601_b22) 2023; 53
Sahmoud (10.1016/j.neucom.2024.127601_b33) 2019; 85
References_xml – volume: 10
  start-page: 899
  year: 2022
  end-page: 909
  ident: b1
  article-title: Multi-objective non-linear solid transportation problem with fixed charge, budget constraints under uncertain environments
  publication-title: Syst. Sci. Control Eng.
– volume: 55
  start-page: 453
  year: 2024
  end-page: 466
  ident: b3
  article-title: Analytic design of constrained control laws for nonlinear dynamic systems with symmetric and asymmetric limits
  publication-title: Internat. J. Systems Sci.
– volume: 22
  start-page: 501
  year: 2017
  end-page: 514
  ident: b30
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 157
  year: 2018
  end-page: 171
  ident: b31
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 743
  year: 2014
  end-page: 756
  ident: b41
  article-title: Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization
  publication-title: Soft Comput.
– volume: 53
  start-page: 1115
  year: 2023
  end-page: 1131
  ident: b22
  article-title: A two stages prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Intell.
– reference: R. Azzouz, S. Bechikh, L. Ben Said, A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 3168–3175.
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: b32
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 712
  year: 2008
  end-page: 731
  ident: b43
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– year: 2023
  ident: b25
  article-title: A novel dynamic multiobjective optimization algorithm with hierarchical response system
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 54
  start-page: 1855
  year: 2023
  end-page: 1872
  ident: b6
  article-title: A brief survey on nonlinear control using adaptive dynamic programming under engineering-oriented complexities
  publication-title: Internat. J. Systems Sci.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: b18
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 85
  year: 2019
  ident: b33
  article-title: Exploiting characterization of dynamism for enhancing dynamic multi-objective evolutionary algorithms
  publication-title: Appl. Soft Comput.
– reference: Y. Wang, B. Li, Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment, in: 2009 IEEE Congress on Evolutionary Computation, CEC, 2009, pp. 630–637.
– volume: 545
  start-page: 1
  year: 2021
  end-page: 24
  ident: b34
  article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inform. Sci.
– volume: 574
  year: 2024
  ident: b23
  article-title: A learnable population filter for dynamic multi-objective optimization
  publication-title: Neurocomputing
– volume: 31
  start-page: 1557
  year: 2020
  end-page: 1570
  ident: b28
  article-title: Neural network-based information transfer for dynamic optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b44
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– reference: K. Deb, N. Rao, S. Karthik, Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 803–817.
– reference: S. Sahmoud, H. Topcuoglu, A memory-based NSGA-II algorithm for dynamic multi-objective optimization problems, in: European Conference on the Applications of Evolutionary Computation, 2016, pp. 296–310.
– volume: 8
  start-page: 1673
  year: 2018
  ident: b20
  article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on
  publication-title: Appl. Sci.
– volume: 1
  start-page: 85
  year: 2022
  end-page: 98
  ident: b5
  article-title: Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques
  publication-title: Int. J. Netw. Dyn. Intell.
– reference: W. Dai, Q. Yang, G. Xue, Y. Yu, Boosting for transfer learning, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 193–200.
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: b37
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– year: 2023
  ident: b26
  article-title: A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: b38
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 184
  year: 2021
  ident: b35
  article-title: A new PC-PSO algorithm for Bayesian network structure learning with structure priors
  publication-title: Expert Syst. Appl.
– volume: 11
  year: 2023
  ident: b4
  article-title: An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function
  publication-title: Syst. Sci. Control Eng.
– volume: 25
  start-page: 117
  year: 2020
  end-page: 129
  ident: b27
  article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 52
  start-page: 4457
  year: 2022
  end-page: 4469
  ident: b29
  article-title: Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– reference: S. Jiang, S. Yang, X. Yao, K. Tan, M. Kaiser, N. Krasnogor, Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–18.
– volume: 2
  start-page: 24
  year: 2023
  end-page: 50
  ident: b14
  article-title: A survey of algorithms, applications and trends for particle swarm optimization
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 509
  start-page: 193
  year: 2020
  end-page: 209
  ident: b24
  article-title: A knee-guided prediction approach for dynamic multi-objective optimization
  publication-title: Inform. Sci.
– volume: 52
  start-page: 9290
  year: 2022
  end-page: 9301
  ident: b15
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 2
  year: 2023
  ident: b2
  article-title: A novel multi-objective optimization approach with flexible operation planning strategy for truck scheduling
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 54
  start-page: 2590
  year: 2023
  end-page: 2607
  ident: b9
  article-title: Model-free robust decoupling control of nonlinear nonaffine dynamic systems
  publication-title: Internat. J. Systems Sci.
– reference: A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 832–846.
– volume: 50
  start-page: 2715
  year: 2020
  end-page: 2729
  ident: b7
  article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling
  publication-title: IEEE Trans. Cybern.
– volume: 54
  start-page: 1713
  year: 2023
  end-page: 1728
  ident: b11
  article-title: SMWO/D: a decomposition-based switching multi-objective whale optimiser for structural optimisation of turbine disk in aero-engines
  publication-title: Internat. J. Systems Sci.
– volume: 2
  year: 2023
  ident: b10
  article-title: Dynamic scheduling for large-scale flexible job shop based on noisy DDQN
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 10
  start-page: 488
  year: 2022
  end-page: 495
  ident: b13
  article-title: Theoretical analysis of garden balsam optimization algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 26
  start-page: 319
  year: 2022
  end-page: 333
  ident: b8
  article-title: Evolutionary many-task optimization based on multisource knowledge transfer
  publication-title: IEEE Trans. Evol. Comput.
– volume: 61
  start-page: 806
  year: 2017
  end-page: 818
  ident: b21
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 2117
  year: 2022
  ident: b42
  article-title: Combining key-points-based transfer learning and hybrid prediction strategies for dynamic multi-objective optimization
  publication-title: Mathematics
– volume: 10
  start-page: 115
  year: 2022
  end-page: 125
  ident: b12
  article-title: Optimal dispatching of microgrid based on improved moth-flame optimization algorithm based on sine mapping and Gaussian mutation
  publication-title: Syst. Sci. Control Eng.
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2024.127601_b44
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 26
  start-page: 319
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b8
  article-title: Evolutionary many-task optimization based on multisource knowledge transfer
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3101697
– volume: 10
  start-page: 115
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b12
  article-title: Optimal dispatching of microgrid based on improved moth-flame optimization algorithm based on sine mapping and Gaussian mutation
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2022.2042424
– volume: 22
  start-page: 501
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2024.127601_b30
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– volume: 11
  start-page: 712
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2024.127601_b43
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 10
  start-page: 899
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b1
  article-title: Multi-objective non-linear solid transportation problem with fixed charge, budget constraints under uncertain environments
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2022.2137707
– volume: 574
  year: 2024
  ident: 10.1016/j.neucom.2024.127601_b23
  article-title: A learnable population filter for dynamic multi-objective optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127241
– volume: 509
  start-page: 193
  year: 2020
  ident: 10.1016/j.neucom.2024.127601_b24
  article-title: A knee-guided prediction approach for dynamic multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.09.016
– volume: 2
  start-page: 24
  issue: 1
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b14
  article-title: A survey of algorithms, applications and trends for particle swarm optimization
  publication-title: Int. J. Netw. Dyn. Intell.
– ident: 10.1016/j.neucom.2024.127601_b19
  doi: 10.1007/978-3-319-31153-1_20
– ident: 10.1016/j.neucom.2024.127601_b39
  doi: 10.1109/CEC.2018.8477667
– volume: 10
  start-page: 488
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b13
  article-title: Theoretical analysis of garden balsam optimization algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2022.2071778
– volume: 25
  start-page: 117
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.127601_b27
  article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004027
– volume: 52
  start-page: 9290
  issue: 9
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b15
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3029748
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2024.127601_b38
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 2
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b2
  article-title: A novel multi-objective optimization approach with flexible operation planning strategy for truck scheduling
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 8
  start-page: 1673
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2024.127601_b20
  article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on Lp decomposition
  publication-title: Appl. Sci.
  doi: 10.3390/app8091673
– volume: 2
  issue: 4
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b10
  article-title: Dynamic scheduling for large-scale flexible job shop based on noisy DDQN
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 54
  start-page: 1713
  issue: 8
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b11
  article-title: SMWO/D: a decomposition-based switching multi-objective whale optimiser for structural optimisation of turbine disk in aero-engines
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2023.2209873
– ident: 10.1016/j.neucom.2024.127601_b17
  doi: 10.1109/CEC.2014.6900569
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.neucom.2024.127601_b18
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– year: 2023
  ident: 10.1016/j.neucom.2024.127601_b26
  article-title: A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 184
  year: 2021
  ident: 10.1016/j.neucom.2024.127601_b35
  article-title: A new PC-PSO algorithm for Bayesian network structure learning with structure priors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115237
– volume: 61
  start-page: 806
  year: 2017
  ident: 10.1016/j.neucom.2024.127601_b21
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– volume: 545
  start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2024.127601_b34
  article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.07.009
– volume: 85
  year: 2019
  ident: 10.1016/j.neucom.2024.127601_b33
  article-title: Exploiting characterization of dynamism for enhancing dynamic multi-objective evolutionary algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105783
– volume: 55
  start-page: 453
  issue: 3
  year: 2024
  ident: 10.1016/j.neucom.2024.127601_b3
  article-title: Analytic design of constrained control laws for nonlinear dynamic systems with symmetric and asymmetric limits
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2023.2276095
– volume: 31
  start-page: 1557
  issue: 5
  year: 2020
  ident: 10.1016/j.neucom.2024.127601_b28
  article-title: Neural network-based information transfer for dynamic optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2920887
– volume: 22
  start-page: 157
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2024.127601_b31
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669638
– volume: 54
  start-page: 2590
  issue: 13
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b9
  article-title: Model-free robust decoupling control of nonlinear nonaffine dynamic systems
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2023.2245543
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2024.127601_b32
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 18
  start-page: 743
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2024.127601_b41
  article-title: Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1085-8
– volume: 11
  issue: 1
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b4
  article-title: An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function
  publication-title: Syst. Sci. Control Eng.
– ident: 10.1016/j.neucom.2024.127601_b36
  doi: 10.1145/1273496.1273521
– volume: 50
  start-page: 2715
  issue: 6
  year: 2020
  ident: 10.1016/j.neucom.2024.127601_b7
  article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2933499
– volume: 1
  start-page: 85
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b5
  article-title: Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques
  publication-title: Int. J. Netw. Dyn. Intell.
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.neucom.2024.127601_b37
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– ident: 10.1016/j.neucom.2024.127601_b40
  doi: 10.1007/978-3-540-70928-2_62
– ident: 10.1016/j.neucom.2024.127601_b16
  doi: 10.1007/978-3-540-70928-2_60
– year: 2023
  ident: 10.1016/j.neucom.2024.127601_b25
  article-title: A novel dynamic multiobjective optimization algorithm with hierarchical response system
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 52
  start-page: 4457
  issue: 7
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b29
  article-title: Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2021.3096220
– ident: 10.1016/j.neucom.2024.127601_b45
  doi: 10.1109/CEC.2009.4983004
– volume: 10
  start-page: 2117
  issue: 12
  year: 2022
  ident: 10.1016/j.neucom.2024.127601_b42
  article-title: Combining key-points-based transfer learning and hybrid prediction strategies for dynamic multi-objective optimization
  publication-title: Mathematics
  doi: 10.3390/math10122117
– volume: 54
  start-page: 1855
  issue: 8
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b6
  article-title: A brief survey on nonlinear control using adaptive dynamic programming under engineering-oriented complexities
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2023.2209846
– volume: 53
  start-page: 1115
  year: 2023
  ident: 10.1016/j.neucom.2024.127601_b22
  article-title: A two stages prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03353-2
SSID ssj0017129
Score 2.462034
Snippet In this paper, a novel population robustness-based switching response framework (PR-SRF) is proposed to develop effective dynamic multi-objective optimization...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127601
SubjectTerms Dynamic multi-objective optimization algorithms (DMOAs)
Evolutionary transfer optimization (ETO)
Population robustness
Switching response framework
Title A novel population robustness-based switching response framework for solving dynamic multi-objective problems
URI https://dx.doi.org/10.1016/j.neucom.2024.127601
Volume 583
WOSCitedRecordID wos001219649600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXvoskfYBDN0GBRYqSOApFgrYogg4pYHQRSIpCbTiyYctO_kD_d44iKSlukDZDF0EgRIrQfbw7nj7eIfQxoqwU5kRPCrYqBP9fhbAFg4VHhc6oBpOSyLbYRHp-nk2n_Pto9Nufhdkt0rrOrq_56r-KGtpA2Obo7APE3Q0KDXAPQocriB2u_yT4PKiXO70IVl1prmC9lNtNY5RaaKxWGWyuZo0lUa4tR1YHlWdptcRDmGIbaShtwXrLOwyXcm71Y-Dq0GyGvm2b50O1VSJc_CG_NGkYSoO5Lt7wzZbJ7kF55iLWP39pZ0VblNmAwZWe9R23tifsHephsILE5j87GejXCSfQQKNbCphldKBCI2JoOndqdxtomJ_UemuoPuYFJ_3jt5Np7xm5jnroWW3zwo5SmFEKO8ojdEBSxrMxOsi_nE6_dr-j0ojYpI1u9v4MZksU_HM2d_s4A7_l4jl66jYcOLdAeYFGun6JnvliHtjp9lfoMsctbnCPG7yPG9zhBnvc4A43GHCDHW6www3eww32uHmNfpydXnz6HLpaHKGCTWUTKkFFIiXlKmZqAouYaa4pleBBC12puCJSw50qdZxVhPJYlioWCegBlkhaMfoGjetlrQ8RZjziVawFiSIRT0QilGLlRCakLKtKJvwIUf_1CuUS1Zt6KYviPtkdobDrtbKJWv7yfOoFUzhn0zqRBaDt3p7HD3zTW_SkXwrv0LhZb_V79Fjtmtlm_cFB7QZhq6gJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+population+robustness-based+switching+response+framework+for+solving+dynamic+multi-objective+problems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Han&rft.au=Fang%2C+Zheng&rft.au=Hu%2C+Liwei&rft.au=Liu%2C+Haonan&rft.date=2024-05-28&rft.issn=0925-2312&rft.volume=583&rft.spage=127601&rft_id=info:doi/10.1016%2Fj.neucom.2024.127601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_127601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon