Buffer-loss estimation to address congestion in 6LoWPAN based resource-restricted ‘Internet of Healthcare Things’ network
The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare s...
Saved in:
| Published in: | Computer communications Vol. 181; pp. 236 - 256 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2022
|
| Subjects: | |
| ISSN: | 0140-3664, 1873-703X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare system. The pivotal functions of the 6LoWPAN protocol stack enable comprehensive integration of such networks from wearable wireless sensor networks (W-WSN) to IoHT, as TCP/IP does not suffice the requirements of IoHT networks. As a result, the congestion in the IoHT network increases with a growing number of devices, resulting in loss of critical medical information due to buffer loss and channel loss, which is unacceptable. In this paper, we explored different applications of patient-centric IoHT architectures to draw a realistic resource-limited topological layout of IoHT for congestion estimation. After critically reviewing existing congestion schemes for 6LoWPANs, we proposed an effective buffer-loss estimation model based on the Queuing Theory to determine the number of packets lost at the node’s buffer. The buffer is modeled as an M/M/1/K Markov Chain Queue. The M/M/1/K Queue equilibrium equation is used to establish a relationship between the probabilities of the buffer being empty or completely filled. We derived the expressions for total buffer-loss probability and expected mean packet delay for the resource-constraint IoHT network. Furthermore, to validate the buffer-loss estimation, an analytical model is used to compare buffer-loss probabilities, the number of packets dropped at leaf/intermediate nodes and the number of packets successfully received at the local sink node. The results show a close correlation between both the models on varying values of the number of leaf nodes, buffer size, offered packet load and available channel capacity. Thus, in resource-restrictive IoHT, the proposed model performs better than two related works. |
|---|---|
| AbstractList | The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare system. The pivotal functions of the 6LoWPAN protocol stack enable comprehensive integration of such networks from wearable wireless sensor networks (W-WSN) to IoHT, as TCP/IP does not suffice the requirements of IoHT networks. As a result, the congestion in the IoHT network increases with a growing number of devices, resulting in loss of critical medical information due to buffer loss and channel loss, which is unacceptable. In this paper, we explored different applications of patient-centric IoHT architectures to draw a realistic resource-limited topological layout of IoHT for congestion estimation. After critically reviewing existing congestion schemes for 6LoWPANs, we proposed an effective buffer-loss estimation model based on the Queuing Theory to determine the number of packets lost at the node’s buffer. The buffer is modeled as an M/M/1/K Markov Chain Queue. The M/M/1/K Queue equilibrium equation is used to establish a relationship between the probabilities of the buffer being empty or completely filled. We derived the expressions for total buffer-loss probability and expected mean packet delay for the resource-constraint IoHT network. Furthermore, to validate the buffer-loss estimation, an analytical model is used to compare buffer-loss probabilities, the number of packets dropped at leaf/intermediate nodes and the number of packets successfully received at the local sink node. The results show a close correlation between both the models on varying values of the number of leaf nodes, buffer size, offered packet load and available channel capacity. Thus, in resource-restrictive IoHT, the proposed model performs better than two related works. |
| Author | Awasthi, Lalit Kumar Chand, Narottam Verma, Himanshu Chauhan, Naveen |
| Author_xml | – sequence: 1 givenname: Himanshu orcidid: 0000-0002-6943-999X surname: Verma fullname: Verma, Himanshu email: himanshu@nith.ac.in – sequence: 2 givenname: Naveen orcidid: 0000-0001-9347-9345 surname: Chauhan fullname: Chauhan, Naveen email: naveen@nith.ac.in – sequence: 3 givenname: Narottam orcidid: 0000-0001-9143-7037 surname: Chand fullname: Chand, Narottam email: nar@nith.ac.in – sequence: 4 givenname: Lalit Kumar orcidid: 0000-0001-8396-9025 surname: Awasthi fullname: Awasthi, Lalit Kumar email: lalit@nith.ac.in |
| BookMark | eNqFkM9KAzEQxoNUsFbfwENeYNfsJvvPg1CL2kJRDxW9LdnsbJu6TSRJFQ9CH0Nfr09i1nryoDAww2_mG_i-Q9RTWgFCJxEJIxKlp8tQ6JWvMCZx5FHo4R7qR3lGg4zQxx7qk4iRgKYpO0CH1i4JISzLaB-9X6ybBkzQamsxWCdX3EmtsNOY17UBT4VW827jqVQ4neqHu-ENrriFGvsDvTYCAj84I4XzbLv5mCgHRoHDusFj4K1bCG4AzxZSze1284n97lWbpyO03_DWwvFPH6D7q8vZaBxMb68no-E0EJSkLhA546xKaF7EPEmSNK540dRVlsdFXtWM8YjmVUFjXjCSFCltEhBF57hugFUc6ACd7f4K430aaEoh3bdRZ7hsy4iUXZDlstwFWXZBdtRDL2a_xM_Gx2Te_pOd72Tgjb1IMKUVEpSAWhoQrqy1_PvBFzr1leM |
| CitedBy_id | crossref_primary_10_1016_j_cosrev_2023_100591 crossref_primary_10_1007_s11277_023_10178_w crossref_primary_10_1016_j_comnet_2025_111058 crossref_primary_10_1109_JIOT_2023_3257543 crossref_primary_10_3390_s22249825 crossref_primary_10_1016_j_cej_2022_139469 crossref_primary_10_1109_JIOT_2023_3339492 crossref_primary_10_1007_s11277_025_11757_9 crossref_primary_10_1109_TNSE_2025_3543376 crossref_primary_10_1109_TNSM_2022_3176365 crossref_primary_10_1016_j_comnet_2024_110862 crossref_primary_10_1016_j_jnca_2023_103749 |
| Cites_doi | 10.1109/IDAACS.2017.8095207 10.1109/TMC.2016.2585107 10.1109/PerComW.2012.6197495 10.1016/j.adhoc.2013.02.007 10.1080/1448837X.2017.1409920 10.1109/JIOT.2017.2666269 10.1109/TVT.2012.2201221 10.1109/COMST.2017.2759725 10.1016/j.icte.2017.11.001 10.1145/1161089.1161121 10.1145/1151659.1159922 10.1145/2753476.2753480 10.1109/JIOT.2020.2969272 10.1016/j.jnca.2015.03.002 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comcom.2021.10.016 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-703X |
| EndPage | 256 |
| ExternalDocumentID | 10_1016_j_comcom_2021_10_016 S0140366421003947 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-c84a4b53892a55562ba9fdb78298bd44a138b932a9405963f5ec90140dfe4bae3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718942600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-3664 |
| IngestDate | Tue Nov 18 22:42:21 EST 2025 Sat Nov 29 07:26:48 EST 2025 Fri Feb 23 02:42:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Congestion control Buffer-overflow IoT Healthcare IoHT congestion Buffer-loss Packet-loss estimation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-c84a4b53892a55562ba9fdb78298bd44a138b932a9405963f5ec90140dfe4bae3 |
| ORCID | 0000-0001-8396-9025 0000-0001-9347-9345 0000-0001-9143-7037 0000-0002-6943-999X |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2021_10_016 crossref_primary_10_1016_j_comcom_2021_10_016 elsevier_sciencedirect_doi_10_1016_j_comcom_2021_10_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 2022-01-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer communications |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Al-Kashoash, Kemp (b1) 2016; 13 Di Marco, Park, Fischione, Johansson (b30) 2012; 61 Approved IEEE draft amendment to IEEE standard for information technology-telecommunications and information exchange between systems-Part 15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): Amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4), IEEE Approved Std P802.15.4a/D7, Jan 2007. Lodhi, Rehman, Khan, Hussain (b20) 2015 Al-Kashoash, Amer, Mihaylova, Kemp (b25) 2017; 4 Kim, Paek, Bahk (b15) 2015 Little, Graves (b28) 2008 A. Strielkina, D. Uzun, V. Kharchenko, Modelling of healthcare IoT using the queueing theory, in: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 2017, pp. 849–852. Liu, Guo, Bhatti, Orlik, Parsons (b22) 2013 Tang, Wei, Zhang, Zhang (b23) 2014; 11 Chowdhury, Benslimane, Giri (b6) 2020; 7 Al-Kashoash, Hassen, Kharrufa, Kemp (b5) 2018; 4 Ha, Kwon, Kim, Kong (b21) 2014 Gebali (b3) 2015 Sheu, Hu (b8) 2008 Kim, Kim, Paek, Bahk (b16) 2016; 16 Tang, Ma, Huang, Wei (b19) 2016 Winter, Thubert, Brandt, Hui, Kelsey, Levis, Pister, Struik, Vasseur, Alexander (b29) 2012; 6550 Ma, Sheu, Hsu (b18) 2016 Castellani, Rossi, Zorzi (b11) 2014; 18 H. Hellaoui, M. Koudil, Bird flocking congestion control for CoAP/RPL/6LoWPAN networks, in: Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems, 2015, pp. 25–30. Al-Kashoash, Hafeez, Kemp (b12) 2017; 4 . Al-Kashoash, Al-Nidawi, Kemp (b24) 2016 Raza, Aslam, Le-Minh, Hussain, Cao, Khan (b2) 2018; 20 V. Michopoulos, L. Guan, G. Oikonomou, I. Phillips, DCCC6: Duty Cycle-aware congestion control for 6LoWPAN networks, in: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, pp. 278–283. Rangwala, Gummadi, Govindan, Psounis (b10) 2006; 36 Ghaffari (b27) 2015; 52 S. Chen, Z. Zhang, Localized algorithm for aggregate fairness in wireless sensor networks, in: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006, pp. 274–285. Sheu, Hsu, Ma (b17) 2015 Al-Kashoash (b26) 2020 Michopoulos, Guan, Oikonomou, Phillips (b7) 2012 Kim (10.1016/j.comcom.2021.10.016_b15) 2015 Di Marco (10.1016/j.comcom.2021.10.016_b30) 2012; 61 Al-Kashoash (10.1016/j.comcom.2021.10.016_b26) 2020 Al-Kashoash (10.1016/j.comcom.2021.10.016_b5) 2018; 4 Al-Kashoash (10.1016/j.comcom.2021.10.016_b24) 2016 Lodhi (10.1016/j.comcom.2021.10.016_b20) 2015 Liu (10.1016/j.comcom.2021.10.016_b22) 2013 Chowdhury (10.1016/j.comcom.2021.10.016_b6) 2020; 7 Ha (10.1016/j.comcom.2021.10.016_b21) 2014 Tang (10.1016/j.comcom.2021.10.016_b19) 2016 Ghaffari (10.1016/j.comcom.2021.10.016_b27) 2015; 52 10.1016/j.comcom.2021.10.016_b14 Tang (10.1016/j.comcom.2021.10.016_b23) 2014; 11 10.1016/j.comcom.2021.10.016_b13 Al-Kashoash (10.1016/j.comcom.2021.10.016_b12) 2017; 4 10.1016/j.comcom.2021.10.016_b31 Michopoulos (10.1016/j.comcom.2021.10.016_b7) 2012 Kim (10.1016/j.comcom.2021.10.016_b16) 2016; 16 Little (10.1016/j.comcom.2021.10.016_b28) 2008 10.1016/j.comcom.2021.10.016_b9 Castellani (10.1016/j.comcom.2021.10.016_b11) 2014; 18 10.1016/j.comcom.2021.10.016_b4 Gebali (10.1016/j.comcom.2021.10.016_b3) 2015 Sheu (10.1016/j.comcom.2021.10.016_b17) 2015 Winter (10.1016/j.comcom.2021.10.016_b29) 2012; 6550 Al-Kashoash (10.1016/j.comcom.2021.10.016_b1) 2016; 13 Sheu (10.1016/j.comcom.2021.10.016_b8) 2008 Rangwala (10.1016/j.comcom.2021.10.016_b10) 2006; 36 Ma (10.1016/j.comcom.2021.10.016_b18) 2016 Al-Kashoash (10.1016/j.comcom.2021.10.016_b25) 2017; 4 Raza (10.1016/j.comcom.2021.10.016_b2) 2018; 20 |
| References_xml | – reference: A. Strielkina, D. Uzun, V. Kharchenko, Modelling of healthcare IoT using the queueing theory, in: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 2017, pp. 849–852. – reference: S. Chen, Z. Zhang, Localized algorithm for aggregate fairness in wireless sensor networks, in: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006, pp. 274–285. – volume: 7 start-page: 4777 year: 2020 end-page: 4788 ident: b6 article-title: Noncooperative gaming for energy-efficient congestion control in 6LoWPAN publication-title: IEEE Internet Things J. – start-page: 213 year: 2008 end-page: 217 ident: b8 article-title: Hybrid congestion control protocol in wireless sensor networks publication-title: VTC Spring 2008-IEEE Vehicular Technology Conference – start-page: 87 year: 2014 end-page: 94 ident: b21 article-title: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN publication-title: 2014 IEEE International Conference on Internet of Things (IThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) – volume: 4 start-page: 760 year: 2017 end-page: 771 ident: b12 article-title: Congestion control for 6LoWPAN networks: A game theoretic framework publication-title: IEEE Internet Things J. – volume: 16 start-page: 964 year: 2016 end-page: 979 ident: b16 article-title: Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks publication-title: IEEE Trans. Mob. Comput. – start-page: 2238 year: 2013 end-page: 2243 ident: b22 article-title: Load balanced routing for low power and lossy networks publication-title: 2013 IEEE Wireless Communications and Networking Conference (WCNC) – volume: 11 start-page: 27 year: 2014 ident: b23 article-title: Analysis and optimization strategy of multipath RPL based on the COOJA simulator publication-title: Int. J. Comput. Sci. Issues (IJCSI) – volume: 61 start-page: 3191 year: 2012 end-page: 3208 ident: b30 article-title: Analytical modeling of multi-hop IEEE 802.15. 4 networks publication-title: IEEE Trans. Veh. Technol. – reference: V. Michopoulos, L. Guan, G. Oikonomou, I. Phillips, DCCC6: Duty Cycle-aware congestion control for 6LoWPAN networks, in: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, pp. 278–283. – start-page: 659 year: 2015 end-page: 664 ident: b17 article-title: A game theory based congestion control protocol for wireless personal area networks publication-title: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 2 – volume: 6550 start-page: 1 year: 2012 end-page: 157 ident: b29 article-title: RPL: IPv6 routing protocol for low-power and lossy networks publication-title: Rfc – volume: 13 start-page: 268 year: 2016 end-page: 274 ident: b1 article-title: Comparison of 6LoWPAN and LPWAN for the Internet of Things publication-title: Aust. J. Electr. Electron. Eng. – start-page: 265 year: 2015 end-page: 273 ident: b15 article-title: QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications publication-title: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) – volume: 52 start-page: 101 year: 2015 end-page: 115 ident: b27 article-title: Congestion control mechanisms in wireless sensor networks: A survey publication-title: J. Netw. Comput. Appl. – year: 2015 ident: b3 article-title: Analysis of Computer Networks – start-page: 81 year: 2008 end-page: 100 ident: b28 article-title: Little’s Law – reference: Approved IEEE draft amendment to IEEE standard for information technology-telecommunications and information exchange between systems-Part 15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): Amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4), IEEE Approved Std P802.15.4a/D7, Jan 2007. – volume: 4 start-page: 209 year: 2018 end-page: 215 ident: b5 article-title: Analytical modelling of congestion for 6LoWPAN networks publication-title: ICT Express – volume: 4 start-page: 2070 year: 2017 end-page: 2081 ident: b25 article-title: Optimization-based hybrid congestion alleviation for 6LoWPAN networks publication-title: IEEE Internet Things J. – volume: 36 start-page: 63 year: 2006 end-page: 74 ident: b10 article-title: Interference-aware fair rate control in wireless sensor networks publication-title: ACM SIGCOMM Comput. Commun. Rev. – volume: 20 start-page: 39 year: 2018 end-page: 95 ident: b2 article-title: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks publication-title: IEEE Commun. Surv. Tutor. – start-page: 278 year: 2012 end-page: 283 ident: b7 article-title: DCCC6: Duty cycle-aware congestion control for 6LoWPAN networks publication-title: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops – reference: . – volume: 18 start-page: 71 year: 2014 end-page: 84 ident: b11 article-title: Back pressure congestion control for CoAP/6LoWPAN networks publication-title: Ad Hoc Netw. – start-page: 135 year: 2020 end-page: 156 ident: b26 article-title: Optimization-based hybrid congestion alleviation publication-title: Congestion Control for 6LoWPAN Wireless Sensor Networks: Toward the Internet of Things – year: 2016 ident: b19 article-title: Toward improved RPL: A congestion avoidance multipath routing protocol with time factor for wireless sensor networks publication-title: J. Sens. – start-page: 1 year: 2016 end-page: 6 ident: b24 article-title: Congestion-aware RPL for 6L0WPAN networks publication-title: 2016 Wireless Telecommunications Symposium (WTS) – year: 2016 ident: b18 article-title: A game theory based congestion control protocol for wireless personal area networks publication-title: J. Sens. – reference: H. Hellaoui, M. Koudil, Bird flocking congestion control for CoAP/RPL/6LoWPAN networks, in: Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems, 2015, pp. 25–30. – start-page: 279 year: 2015 end-page: 284 ident: b20 article-title: Multiple path RPL for low power lossy networks publication-title: 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob) – ident: 10.1016/j.comcom.2021.10.016_b4 doi: 10.1109/IDAACS.2017.8095207 – volume: 16 start-page: 964 issue: 4 year: 2016 ident: 10.1016/j.comcom.2021.10.016_b16 article-title: Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2585107 – ident: 10.1016/j.comcom.2021.10.016_b13 doi: 10.1109/PerComW.2012.6197495 – start-page: 1 year: 2016 ident: 10.1016/j.comcom.2021.10.016_b24 article-title: Congestion-aware RPL for 6L0WPAN networks – year: 2016 ident: 10.1016/j.comcom.2021.10.016_b18 article-title: A game theory based congestion control protocol for wireless personal area networks publication-title: J. Sens. – volume: 18 start-page: 71 year: 2014 ident: 10.1016/j.comcom.2021.10.016_b11 article-title: Back pressure congestion control for CoAP/6LoWPAN networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2013.02.007 – volume: 13 start-page: 268 issue: 4 year: 2016 ident: 10.1016/j.comcom.2021.10.016_b1 article-title: Comparison of 6LoWPAN and LPWAN for the Internet of Things publication-title: Aust. J. Electr. Electron. Eng. doi: 10.1080/1448837X.2017.1409920 – start-page: 279 year: 2015 ident: 10.1016/j.comcom.2021.10.016_b20 article-title: Multiple path RPL for low power lossy networks – start-page: 135 year: 2020 ident: 10.1016/j.comcom.2021.10.016_b26 article-title: Optimization-based hybrid congestion alleviation – volume: 4 start-page: 760 issue: 3 year: 2017 ident: 10.1016/j.comcom.2021.10.016_b12 article-title: Congestion control for 6LoWPAN networks: A game theoretic framework publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2666269 – volume: 61 start-page: 3191 issue: 7 year: 2012 ident: 10.1016/j.comcom.2021.10.016_b30 article-title: Analytical modeling of multi-hop IEEE 802.15. 4 networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2012.2201221 – year: 2015 ident: 10.1016/j.comcom.2021.10.016_b3 – year: 2016 ident: 10.1016/j.comcom.2021.10.016_b19 article-title: Toward improved RPL: A congestion avoidance multipath routing protocol with time factor for wireless sensor networks publication-title: J. Sens. – start-page: 81 year: 2008 ident: 10.1016/j.comcom.2021.10.016_b28 – volume: 4 start-page: 2070 issue: 6 year: 2017 ident: 10.1016/j.comcom.2021.10.016_b25 article-title: Optimization-based hybrid congestion alleviation for 6LoWPAN networks publication-title: IEEE Internet Things J. – ident: 10.1016/j.comcom.2021.10.016_b31 – volume: 20 start-page: 39 issue: 1 year: 2018 ident: 10.1016/j.comcom.2021.10.016_b2 article-title: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2759725 – start-page: 265 year: 2015 ident: 10.1016/j.comcom.2021.10.016_b15 article-title: QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications – volume: 6550 start-page: 1 year: 2012 ident: 10.1016/j.comcom.2021.10.016_b29 article-title: RPL: IPv6 routing protocol for low-power and lossy networks publication-title: Rfc – volume: 4 start-page: 209 issue: 4 year: 2018 ident: 10.1016/j.comcom.2021.10.016_b5 article-title: Analytical modelling of congestion for 6LoWPAN networks publication-title: ICT Express doi: 10.1016/j.icte.2017.11.001 – start-page: 213 year: 2008 ident: 10.1016/j.comcom.2021.10.016_b8 article-title: Hybrid congestion control protocol in wireless sensor networks – ident: 10.1016/j.comcom.2021.10.016_b9 doi: 10.1145/1161089.1161121 – volume: 36 start-page: 63 issue: 4 year: 2006 ident: 10.1016/j.comcom.2021.10.016_b10 article-title: Interference-aware fair rate control in wireless sensor networks publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/1151659.1159922 – ident: 10.1016/j.comcom.2021.10.016_b14 doi: 10.1145/2753476.2753480 – volume: 11 start-page: 27 issue: 5 year: 2014 ident: 10.1016/j.comcom.2021.10.016_b23 article-title: Analysis and optimization strategy of multipath RPL based on the COOJA simulator publication-title: Int. J. Comput. Sci. Issues (IJCSI) – start-page: 278 year: 2012 ident: 10.1016/j.comcom.2021.10.016_b7 article-title: DCCC6: Duty cycle-aware congestion control for 6LoWPAN networks – volume: 7 start-page: 4777 issue: 6 year: 2020 ident: 10.1016/j.comcom.2021.10.016_b6 article-title: Noncooperative gaming for energy-efficient congestion control in 6LoWPAN publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2969272 – start-page: 2238 year: 2013 ident: 10.1016/j.comcom.2021.10.016_b22 article-title: Load balanced routing for low power and lossy networks – volume: 52 start-page: 101 year: 2015 ident: 10.1016/j.comcom.2021.10.016_b27 article-title: Congestion control mechanisms in wireless sensor networks: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2015.03.002 – start-page: 659 year: 2015 ident: 10.1016/j.comcom.2021.10.016_b17 article-title: A game theory based congestion control protocol for wireless personal area networks – start-page: 87 year: 2014 ident: 10.1016/j.comcom.2021.10.016_b21 article-title: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN |
| SSID | ssj0004773 |
| Score | 2.3927698 |
| Snippet | The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 236 |
| SubjectTerms | Buffer-loss Buffer-overflow Congestion control IoHT congestion IoT Healthcare Packet-loss estimation |
| Title | Buffer-loss estimation to address congestion in 6LoWPAN based resource-restricted ‘Internet of Healthcare Things’ network |
| URI | https://dx.doi.org/10.1016/j.comcom.2021.10.016 |
| Volume | 181 |
| WOSCitedRecordID | wos000718942600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-703X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004773 issn: 0140-3664 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIfmUHRFky7goTdDgSVRonR0gxRpERg5pK1vAklRcAJXCmzZySVAPqP9ov5HviQzImmpcdAN6EUwCMkmOM-z6c0MIW-lDiKdaNB-fh5CgBKHnmBae3kglYiZzxRvCoUP-WiUjMfpUa_3w9XCLKe8LJOLi_Tsv4oa1kDYWDr7F-JefSkswGcQOlxB7HD9I8G_W-DIE28K1q-PLTRMbSL6mKBkmsIQCIHxrZJlOcaH1Zej4aiP9gxLWUw638OZHaAj0SF1hIjEpA91Qx44aIljZvanuyvtl4Za3vV73fAIpLC3BSkrf_4z2ofGCsJ2y_lk0WEdLCYmRzsSS93WrWFVRG6WZ1Vdi68r5J6LeT2xNd8QY_QbEnk3uREEt5Ib61U3NgkKtiM23c93tVHcCQ890F7jnzW739XNYdwx84HpZ75mQUwy4xQBgHQi2JS_i_Q__1bD7sYFaKhxuBMInAdhyvg9shnwKAX1ujn8sD_-2JbockN2cFt3VZwN1XD9t-72kjqez_Ej8tCGLHRooPaY9HT5hGx1Glk-JZcd0NEWdLSuqAUdbUFHT0pqQUcb0NE7QEevr745uNGqoC3cqIHb9dV3aoH2jHx6v3-8d-DZwR6eggi19lTCBJNgatNARBF44FKkRS7BWU0TmTMm_DCREFiIlOF0qLCItMLX_YO80EwKHT4nG2VV6heEKgYnm2tw6rViUiWC8TzShSyYHPiF4NskdAeZKdv1HoevTDNHbzzNzPFnePy4CovbxFs9dWa6vvzmfu5klFnP1XikGcDql0_u_POTL8mD9h_zimzUs4V-Te6rZX0yn72x-LsBdcDE-A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buffer-loss+estimation+to+address+congestion+in+6LoWPAN+based+resource-restricted+%E2%80%98Internet+of+Healthcare+Things%E2%80%99+network&rft.jtitle=Computer+communications&rft.au=Verma%2C+Himanshu&rft.au=Chauhan%2C+Naveen&rft.au=Chand%2C+Narottam&rft.au=Awasthi%2C+Lalit+Kumar&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=181&rft.spage=236&rft.epage=256&rft_id=info:doi/10.1016%2Fj.comcom.2021.10.016&rft.externalDocID=S0140366421003947 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |