Buffer-loss estimation to address congestion in 6LoWPAN based resource-restricted ‘Internet of Healthcare Things’ network

The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare s...

Full description

Saved in:
Bibliographic Details
Published in:Computer communications Vol. 181; pp. 236 - 256
Main Authors: Verma, Himanshu, Chauhan, Naveen, Chand, Narottam, Awasthi, Lalit Kumar
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2022
Subjects:
ISSN:0140-3664, 1873-703X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare system. The pivotal functions of the 6LoWPAN protocol stack enable comprehensive integration of such networks from wearable wireless sensor networks (W-WSN) to IoHT, as TCP/IP does not suffice the requirements of IoHT networks. As a result, the congestion in the IoHT network increases with a growing number of devices, resulting in loss of critical medical information due to buffer loss and channel loss, which is unacceptable. In this paper, we explored different applications of patient-centric IoHT architectures to draw a realistic resource-limited topological layout of IoHT for congestion estimation. After critically reviewing existing congestion schemes for 6LoWPANs, we proposed an effective buffer-loss estimation model based on the Queuing Theory to determine the number of packets lost at the node’s buffer. The buffer is modeled as an M/M/1/K Markov Chain Queue. The M/M/1/K Queue equilibrium equation is used to establish a relationship between the probabilities of the buffer being empty or completely filled. We derived the expressions for total buffer-loss probability and expected mean packet delay for the resource-constraint IoHT network. Furthermore, to validate the buffer-loss estimation, an analytical model is used to compare buffer-loss probabilities, the number of packets dropped at leaf/intermediate nodes and the number of packets successfully received at the local sink node. The results show a close correlation between both the models on varying values of the number of leaf nodes, buffer size, offered packet load and available channel capacity. Thus, in resource-restrictive IoHT, the proposed model performs better than two related works.
AbstractList The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment (things) that connect over the internet to transform traditional healthcare into a smart, connected, proactive, patient-centric healthcare system. The pivotal functions of the 6LoWPAN protocol stack enable comprehensive integration of such networks from wearable wireless sensor networks (W-WSN) to IoHT, as TCP/IP does not suffice the requirements of IoHT networks. As a result, the congestion in the IoHT network increases with a growing number of devices, resulting in loss of critical medical information due to buffer loss and channel loss, which is unacceptable. In this paper, we explored different applications of patient-centric IoHT architectures to draw a realistic resource-limited topological layout of IoHT for congestion estimation. After critically reviewing existing congestion schemes for 6LoWPANs, we proposed an effective buffer-loss estimation model based on the Queuing Theory to determine the number of packets lost at the node’s buffer. The buffer is modeled as an M/M/1/K Markov Chain Queue. The M/M/1/K Queue equilibrium equation is used to establish a relationship between the probabilities of the buffer being empty or completely filled. We derived the expressions for total buffer-loss probability and expected mean packet delay for the resource-constraint IoHT network. Furthermore, to validate the buffer-loss estimation, an analytical model is used to compare buffer-loss probabilities, the number of packets dropped at leaf/intermediate nodes and the number of packets successfully received at the local sink node. The results show a close correlation between both the models on varying values of the number of leaf nodes, buffer size, offered packet load and available channel capacity. Thus, in resource-restrictive IoHT, the proposed model performs better than two related works.
Author Awasthi, Lalit Kumar
Chand, Narottam
Verma, Himanshu
Chauhan, Naveen
Author_xml – sequence: 1
  givenname: Himanshu
  orcidid: 0000-0002-6943-999X
  surname: Verma
  fullname: Verma, Himanshu
  email: himanshu@nith.ac.in
– sequence: 2
  givenname: Naveen
  orcidid: 0000-0001-9347-9345
  surname: Chauhan
  fullname: Chauhan, Naveen
  email: naveen@nith.ac.in
– sequence: 3
  givenname: Narottam
  orcidid: 0000-0001-9143-7037
  surname: Chand
  fullname: Chand, Narottam
  email: nar@nith.ac.in
– sequence: 4
  givenname: Lalit Kumar
  orcidid: 0000-0001-8396-9025
  surname: Awasthi
  fullname: Awasthi, Lalit Kumar
  email: lalit@nith.ac.in
BookMark eNqFkM9KAzEQxoNUsFbfwENeYNfsJvvPg1CL2kJRDxW9LdnsbJu6TSRJFQ9CH0Nfr09i1nryoDAww2_mG_i-Q9RTWgFCJxEJIxKlp8tQ6JWvMCZx5FHo4R7qR3lGg4zQxx7qk4iRgKYpO0CH1i4JISzLaB-9X6ybBkzQamsxWCdX3EmtsNOY17UBT4VW827jqVQ4neqHu-ENrriFGvsDvTYCAj84I4XzbLv5mCgHRoHDusFj4K1bCG4AzxZSze1284n97lWbpyO03_DWwvFPH6D7q8vZaBxMb68no-E0EJSkLhA546xKaF7EPEmSNK540dRVlsdFXtWM8YjmVUFjXjCSFCltEhBF57hugFUc6ACd7f4K430aaEoh3bdRZ7hsy4iUXZDlstwFWXZBdtRDL2a_xM_Gx2Te_pOd72Tgjb1IMKUVEpSAWhoQrqy1_PvBFzr1leM
CitedBy_id crossref_primary_10_1016_j_cosrev_2023_100591
crossref_primary_10_1007_s11277_023_10178_w
crossref_primary_10_1016_j_comnet_2025_111058
crossref_primary_10_1109_JIOT_2023_3257543
crossref_primary_10_3390_s22249825
crossref_primary_10_1016_j_cej_2022_139469
crossref_primary_10_1109_JIOT_2023_3339492
crossref_primary_10_1007_s11277_025_11757_9
crossref_primary_10_1109_TNSE_2025_3543376
crossref_primary_10_1109_TNSM_2022_3176365
crossref_primary_10_1016_j_comnet_2024_110862
crossref_primary_10_1016_j_jnca_2023_103749
Cites_doi 10.1109/IDAACS.2017.8095207
10.1109/TMC.2016.2585107
10.1109/PerComW.2012.6197495
10.1016/j.adhoc.2013.02.007
10.1080/1448837X.2017.1409920
10.1109/JIOT.2017.2666269
10.1109/TVT.2012.2201221
10.1109/COMST.2017.2759725
10.1016/j.icte.2017.11.001
10.1145/1161089.1161121
10.1145/1151659.1159922
10.1145/2753476.2753480
10.1109/JIOT.2020.2969272
10.1016/j.jnca.2015.03.002
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2021.10.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 256
ExternalDocumentID 10_1016_j_comcom_2021_10_016
S0140366421003947
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-c84a4b53892a55562ba9fdb78298bd44a138b932a9405963f5ec90140dfe4bae3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718942600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Tue Nov 18 22:42:21 EST 2025
Sat Nov 29 07:26:48 EST 2025
Fri Feb 23 02:42:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Congestion control
Buffer-overflow
IoT Healthcare
IoHT congestion
Buffer-loss
Packet-loss estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c84a4b53892a55562ba9fdb78298bd44a138b932a9405963f5ec90140dfe4bae3
ORCID 0000-0001-8396-9025
0000-0001-9347-9345
0000-0001-9143-7037
0000-0002-6943-999X
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2021_10_016
crossref_primary_10_1016_j_comcom_2021_10_016
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_10_016
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Al-Kashoash, Kemp (b1) 2016; 13
Di Marco, Park, Fischione, Johansson (b30) 2012; 61
Approved IEEE draft amendment to IEEE standard for information technology-telecommunications and information exchange between systems-Part 15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): Amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4), IEEE Approved Std P802.15.4a/D7, Jan 2007.
Lodhi, Rehman, Khan, Hussain (b20) 2015
Al-Kashoash, Amer, Mihaylova, Kemp (b25) 2017; 4
Kim, Paek, Bahk (b15) 2015
Little, Graves (b28) 2008
A. Strielkina, D. Uzun, V. Kharchenko, Modelling of healthcare IoT using the queueing theory, in: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 2017, pp. 849–852.
Liu, Guo, Bhatti, Orlik, Parsons (b22) 2013
Tang, Wei, Zhang, Zhang (b23) 2014; 11
Chowdhury, Benslimane, Giri (b6) 2020; 7
Al-Kashoash, Hassen, Kharrufa, Kemp (b5) 2018; 4
Ha, Kwon, Kim, Kong (b21) 2014
Gebali (b3) 2015
Sheu, Hu (b8) 2008
Kim, Kim, Paek, Bahk (b16) 2016; 16
Tang, Ma, Huang, Wei (b19) 2016
Winter, Thubert, Brandt, Hui, Kelsey, Levis, Pister, Struik, Vasseur, Alexander (b29) 2012; 6550
Ma, Sheu, Hsu (b18) 2016
Castellani, Rossi, Zorzi (b11) 2014; 18
H. Hellaoui, M. Koudil, Bird flocking congestion control for CoAP/RPL/6LoWPAN networks, in: Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems, 2015, pp. 25–30.
Al-Kashoash, Hafeez, Kemp (b12) 2017; 4
.
Al-Kashoash, Al-Nidawi, Kemp (b24) 2016
Raza, Aslam, Le-Minh, Hussain, Cao, Khan (b2) 2018; 20
V. Michopoulos, L. Guan, G. Oikonomou, I. Phillips, DCCC6: Duty Cycle-aware congestion control for 6LoWPAN networks, in: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, pp. 278–283.
Rangwala, Gummadi, Govindan, Psounis (b10) 2006; 36
Ghaffari (b27) 2015; 52
S. Chen, Z. Zhang, Localized algorithm for aggregate fairness in wireless sensor networks, in: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006, pp. 274–285.
Sheu, Hsu, Ma (b17) 2015
Al-Kashoash (b26) 2020
Michopoulos, Guan, Oikonomou, Phillips (b7) 2012
Kim (10.1016/j.comcom.2021.10.016_b15) 2015
Di Marco (10.1016/j.comcom.2021.10.016_b30) 2012; 61
Al-Kashoash (10.1016/j.comcom.2021.10.016_b26) 2020
Al-Kashoash (10.1016/j.comcom.2021.10.016_b5) 2018; 4
Al-Kashoash (10.1016/j.comcom.2021.10.016_b24) 2016
Lodhi (10.1016/j.comcom.2021.10.016_b20) 2015
Liu (10.1016/j.comcom.2021.10.016_b22) 2013
Chowdhury (10.1016/j.comcom.2021.10.016_b6) 2020; 7
Ha (10.1016/j.comcom.2021.10.016_b21) 2014
Tang (10.1016/j.comcom.2021.10.016_b19) 2016
Ghaffari (10.1016/j.comcom.2021.10.016_b27) 2015; 52
10.1016/j.comcom.2021.10.016_b14
Tang (10.1016/j.comcom.2021.10.016_b23) 2014; 11
10.1016/j.comcom.2021.10.016_b13
Al-Kashoash (10.1016/j.comcom.2021.10.016_b12) 2017; 4
10.1016/j.comcom.2021.10.016_b31
Michopoulos (10.1016/j.comcom.2021.10.016_b7) 2012
Kim (10.1016/j.comcom.2021.10.016_b16) 2016; 16
Little (10.1016/j.comcom.2021.10.016_b28) 2008
10.1016/j.comcom.2021.10.016_b9
Castellani (10.1016/j.comcom.2021.10.016_b11) 2014; 18
10.1016/j.comcom.2021.10.016_b4
Gebali (10.1016/j.comcom.2021.10.016_b3) 2015
Sheu (10.1016/j.comcom.2021.10.016_b17) 2015
Winter (10.1016/j.comcom.2021.10.016_b29) 2012; 6550
Al-Kashoash (10.1016/j.comcom.2021.10.016_b1) 2016; 13
Sheu (10.1016/j.comcom.2021.10.016_b8) 2008
Rangwala (10.1016/j.comcom.2021.10.016_b10) 2006; 36
Ma (10.1016/j.comcom.2021.10.016_b18) 2016
Al-Kashoash (10.1016/j.comcom.2021.10.016_b25) 2017; 4
Raza (10.1016/j.comcom.2021.10.016_b2) 2018; 20
References_xml – reference: A. Strielkina, D. Uzun, V. Kharchenko, Modelling of healthcare IoT using the queueing theory, in: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 2017, pp. 849–852.
– reference: S. Chen, Z. Zhang, Localized algorithm for aggregate fairness in wireless sensor networks, in: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006, pp. 274–285.
– volume: 7
  start-page: 4777
  year: 2020
  end-page: 4788
  ident: b6
  article-title: Noncooperative gaming for energy-efficient congestion control in 6LoWPAN
  publication-title: IEEE Internet Things J.
– start-page: 213
  year: 2008
  end-page: 217
  ident: b8
  article-title: Hybrid congestion control protocol in wireless sensor networks
  publication-title: VTC Spring 2008-IEEE Vehicular Technology Conference
– start-page: 87
  year: 2014
  end-page: 94
  ident: b21
  article-title: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN
  publication-title: 2014 IEEE International Conference on Internet of Things (IThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
– volume: 4
  start-page: 760
  year: 2017
  end-page: 771
  ident: b12
  article-title: Congestion control for 6LoWPAN networks: A game theoretic framework
  publication-title: IEEE Internet Things J.
– volume: 16
  start-page: 964
  year: 2016
  end-page: 979
  ident: b16
  article-title: Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks
  publication-title: IEEE Trans. Mob. Comput.
– start-page: 2238
  year: 2013
  end-page: 2243
  ident: b22
  article-title: Load balanced routing for low power and lossy networks
  publication-title: 2013 IEEE Wireless Communications and Networking Conference (WCNC)
– volume: 11
  start-page: 27
  year: 2014
  ident: b23
  article-title: Analysis and optimization strategy of multipath RPL based on the COOJA simulator
  publication-title: Int. J. Comput. Sci. Issues (IJCSI)
– volume: 61
  start-page: 3191
  year: 2012
  end-page: 3208
  ident: b30
  article-title: Analytical modeling of multi-hop IEEE 802.15. 4 networks
  publication-title: IEEE Trans. Veh. Technol.
– reference: V. Michopoulos, L. Guan, G. Oikonomou, I. Phillips, DCCC6: Duty Cycle-aware congestion control for 6LoWPAN networks, in: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, pp. 278–283.
– start-page: 659
  year: 2015
  end-page: 664
  ident: b17
  article-title: A game theory based congestion control protocol for wireless personal area networks
  publication-title: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 2
– volume: 6550
  start-page: 1
  year: 2012
  end-page: 157
  ident: b29
  article-title: RPL: IPv6 routing protocol for low-power and lossy networks
  publication-title: Rfc
– volume: 13
  start-page: 268
  year: 2016
  end-page: 274
  ident: b1
  article-title: Comparison of 6LoWPAN and LPWAN for the Internet of Things
  publication-title: Aust. J. Electr. Electron. Eng.
– start-page: 265
  year: 2015
  end-page: 273
  ident: b15
  article-title: QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications
  publication-title: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)
– volume: 52
  start-page: 101
  year: 2015
  end-page: 115
  ident: b27
  article-title: Congestion control mechanisms in wireless sensor networks: A survey
  publication-title: J. Netw. Comput. Appl.
– year: 2015
  ident: b3
  article-title: Analysis of Computer Networks
– start-page: 81
  year: 2008
  end-page: 100
  ident: b28
  article-title: Little’s Law
– reference: Approved IEEE draft amendment to IEEE standard for information technology-telecommunications and information exchange between systems-Part 15.4:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): Amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4), IEEE Approved Std P802.15.4a/D7, Jan 2007.
– volume: 4
  start-page: 209
  year: 2018
  end-page: 215
  ident: b5
  article-title: Analytical modelling of congestion for 6LoWPAN networks
  publication-title: ICT Express
– volume: 4
  start-page: 2070
  year: 2017
  end-page: 2081
  ident: b25
  article-title: Optimization-based hybrid congestion alleviation for 6LoWPAN networks
  publication-title: IEEE Internet Things J.
– volume: 36
  start-page: 63
  year: 2006
  end-page: 74
  ident: b10
  article-title: Interference-aware fair rate control in wireless sensor networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– volume: 20
  start-page: 39
  year: 2018
  end-page: 95
  ident: b2
  article-title: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 278
  year: 2012
  end-page: 283
  ident: b7
  article-title: DCCC6: Duty cycle-aware congestion control for 6LoWPAN networks
  publication-title: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops
– reference: .
– volume: 18
  start-page: 71
  year: 2014
  end-page: 84
  ident: b11
  article-title: Back pressure congestion control for CoAP/6LoWPAN networks
  publication-title: Ad Hoc Netw.
– start-page: 135
  year: 2020
  end-page: 156
  ident: b26
  article-title: Optimization-based hybrid congestion alleviation
  publication-title: Congestion Control for 6LoWPAN Wireless Sensor Networks: Toward the Internet of Things
– year: 2016
  ident: b19
  article-title: Toward improved RPL: A congestion avoidance multipath routing protocol with time factor for wireless sensor networks
  publication-title: J. Sens.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b24
  article-title: Congestion-aware RPL for 6L0WPAN networks
  publication-title: 2016 Wireless Telecommunications Symposium (WTS)
– year: 2016
  ident: b18
  article-title: A game theory based congestion control protocol for wireless personal area networks
  publication-title: J. Sens.
– reference: H. Hellaoui, M. Koudil, Bird flocking congestion control for CoAP/RPL/6LoWPAN networks, in: Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems, 2015, pp. 25–30.
– start-page: 279
  year: 2015
  end-page: 284
  ident: b20
  article-title: Multiple path RPL for low power lossy networks
  publication-title: 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)
– ident: 10.1016/j.comcom.2021.10.016_b4
  doi: 10.1109/IDAACS.2017.8095207
– volume: 16
  start-page: 964
  issue: 4
  year: 2016
  ident: 10.1016/j.comcom.2021.10.016_b16
  article-title: Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2585107
– ident: 10.1016/j.comcom.2021.10.016_b13
  doi: 10.1109/PerComW.2012.6197495
– start-page: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.10.016_b24
  article-title: Congestion-aware RPL for 6L0WPAN networks
– year: 2016
  ident: 10.1016/j.comcom.2021.10.016_b18
  article-title: A game theory based congestion control protocol for wireless personal area networks
  publication-title: J. Sens.
– volume: 18
  start-page: 71
  year: 2014
  ident: 10.1016/j.comcom.2021.10.016_b11
  article-title: Back pressure congestion control for CoAP/6LoWPAN networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2013.02.007
– volume: 13
  start-page: 268
  issue: 4
  year: 2016
  ident: 10.1016/j.comcom.2021.10.016_b1
  article-title: Comparison of 6LoWPAN and LPWAN for the Internet of Things
  publication-title: Aust. J. Electr. Electron. Eng.
  doi: 10.1080/1448837X.2017.1409920
– start-page: 279
  year: 2015
  ident: 10.1016/j.comcom.2021.10.016_b20
  article-title: Multiple path RPL for low power lossy networks
– start-page: 135
  year: 2020
  ident: 10.1016/j.comcom.2021.10.016_b26
  article-title: Optimization-based hybrid congestion alleviation
– volume: 4
  start-page: 760
  issue: 3
  year: 2017
  ident: 10.1016/j.comcom.2021.10.016_b12
  article-title: Congestion control for 6LoWPAN networks: A game theoretic framework
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2666269
– volume: 61
  start-page: 3191
  issue: 7
  year: 2012
  ident: 10.1016/j.comcom.2021.10.016_b30
  article-title: Analytical modeling of multi-hop IEEE 802.15. 4 networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2201221
– year: 2015
  ident: 10.1016/j.comcom.2021.10.016_b3
– year: 2016
  ident: 10.1016/j.comcom.2021.10.016_b19
  article-title: Toward improved RPL: A congestion avoidance multipath routing protocol with time factor for wireless sensor networks
  publication-title: J. Sens.
– start-page: 81
  year: 2008
  ident: 10.1016/j.comcom.2021.10.016_b28
– volume: 4
  start-page: 2070
  issue: 6
  year: 2017
  ident: 10.1016/j.comcom.2021.10.016_b25
  article-title: Optimization-based hybrid congestion alleviation for 6LoWPAN networks
  publication-title: IEEE Internet Things J.
– ident: 10.1016/j.comcom.2021.10.016_b31
– volume: 20
  start-page: 39
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.10.016_b2
  article-title: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2759725
– start-page: 265
  year: 2015
  ident: 10.1016/j.comcom.2021.10.016_b15
  article-title: QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications
– volume: 6550
  start-page: 1
  year: 2012
  ident: 10.1016/j.comcom.2021.10.016_b29
  article-title: RPL: IPv6 routing protocol for low-power and lossy networks
  publication-title: Rfc
– volume: 4
  start-page: 209
  issue: 4
  year: 2018
  ident: 10.1016/j.comcom.2021.10.016_b5
  article-title: Analytical modelling of congestion for 6LoWPAN networks
  publication-title: ICT Express
  doi: 10.1016/j.icte.2017.11.001
– start-page: 213
  year: 2008
  ident: 10.1016/j.comcom.2021.10.016_b8
  article-title: Hybrid congestion control protocol in wireless sensor networks
– ident: 10.1016/j.comcom.2021.10.016_b9
  doi: 10.1145/1161089.1161121
– volume: 36
  start-page: 63
  issue: 4
  year: 2006
  ident: 10.1016/j.comcom.2021.10.016_b10
  article-title: Interference-aware fair rate control in wireless sensor networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1151659.1159922
– ident: 10.1016/j.comcom.2021.10.016_b14
  doi: 10.1145/2753476.2753480
– volume: 11
  start-page: 27
  issue: 5
  year: 2014
  ident: 10.1016/j.comcom.2021.10.016_b23
  article-title: Analysis and optimization strategy of multipath RPL based on the COOJA simulator
  publication-title: Int. J. Comput. Sci. Issues (IJCSI)
– start-page: 278
  year: 2012
  ident: 10.1016/j.comcom.2021.10.016_b7
  article-title: DCCC6: Duty cycle-aware congestion control for 6LoWPAN networks
– volume: 7
  start-page: 4777
  issue: 6
  year: 2020
  ident: 10.1016/j.comcom.2021.10.016_b6
  article-title: Noncooperative gaming for energy-efficient congestion control in 6LoWPAN
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2969272
– start-page: 2238
  year: 2013
  ident: 10.1016/j.comcom.2021.10.016_b22
  article-title: Load balanced routing for low power and lossy networks
– volume: 52
  start-page: 101
  year: 2015
  ident: 10.1016/j.comcom.2021.10.016_b27
  article-title: Congestion control mechanisms in wireless sensor networks: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2015.03.002
– start-page: 659
  year: 2015
  ident: 10.1016/j.comcom.2021.10.016_b17
  article-title: A game theory based congestion control protocol for wireless personal area networks
– start-page: 87
  year: 2014
  ident: 10.1016/j.comcom.2021.10.016_b21
  article-title: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN
SSID ssj0004773
Score 2.3927698
Snippet The Internet of Healthcare Things (IoHT) consists of a wide variety of resource-restricted, heterogeneous, IoT-enabled, wearable/non-wearable medical equipment...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms Buffer-loss
Buffer-overflow
Congestion control
IoHT congestion
IoT Healthcare
Packet-loss estimation
Title Buffer-loss estimation to address congestion in 6LoWPAN based resource-restricted ‘Internet of Healthcare Things’ network
URI https://dx.doi.org/10.1016/j.comcom.2021.10.016
Volume 181
WOSCitedRecordID wos000718942600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-703X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004773
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIfmUHRFky7goTdDgSVRonR0gxRpERg5pK1vAklRcAJXCmzZySVAPqP9ov5HviQzImmpcdAN6EUwCMkmOM-z6c0MIW-lDiKdaNB-fh5CgBKHnmBae3kglYiZzxRvCoUP-WiUjMfpUa_3w9XCLKe8LJOLi_Tsv4oa1kDYWDr7F-JefSkswGcQOlxB7HD9I8G_W-DIE28K1q-PLTRMbSL6mKBkmsIQCIHxrZJlOcaH1Zej4aiP9gxLWUw638OZHaAj0SF1hIjEpA91Qx44aIljZvanuyvtl4Za3vV73fAIpLC3BSkrf_4z2ofGCsJ2y_lk0WEdLCYmRzsSS93WrWFVRG6WZ1Vdi68r5J6LeT2xNd8QY_QbEnk3uREEt5Ib61U3NgkKtiM23c93tVHcCQ890F7jnzW739XNYdwx84HpZ75mQUwy4xQBgHQi2JS_i_Q__1bD7sYFaKhxuBMInAdhyvg9shnwKAX1ujn8sD_-2JbockN2cFt3VZwN1XD9t-72kjqez_Ej8tCGLHRooPaY9HT5hGx1Glk-JZcd0NEWdLSuqAUdbUFHT0pqQUcb0NE7QEevr745uNGqoC3cqIHb9dV3aoH2jHx6v3-8d-DZwR6eggi19lTCBJNgatNARBF44FKkRS7BWU0TmTMm_DCREFiIlOF0qLCItMLX_YO80EwKHT4nG2VV6heEKgYnm2tw6rViUiWC8TzShSyYHPiF4NskdAeZKdv1HoevTDNHbzzNzPFnePy4CovbxFs9dWa6vvzmfu5klFnP1XikGcDql0_u_POTL8mD9h_zimzUs4V-Te6rZX0yn72x-LsBdcDE-A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buffer-loss+estimation+to+address+congestion+in+6LoWPAN+based+resource-restricted+%E2%80%98Internet+of+Healthcare+Things%E2%80%99+network&rft.jtitle=Computer+communications&rft.au=Verma%2C+Himanshu&rft.au=Chauhan%2C+Naveen&rft.au=Chand%2C+Narottam&rft.au=Awasthi%2C+Lalit+Kumar&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=181&rft.spage=236&rft.epage=256&rft_id=info:doi/10.1016%2Fj.comcom.2021.10.016&rft.externalDocID=S0140366421003947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon