Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations

In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor saturations. The network-induced phenomena (e.g. the sensor saturations and the signal quantization) are assumed to be occurring randomly. A st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 291; s. 207 - 214
Hlavní autori: Men, Yunzhe, Huang, Xia, Wang, Zhen, Shen, Hao, Chen, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 24.05.2018
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, we study the quantized asynchronous dissipative state estimation issue for Markov jumping neural networks subject to randomly occurring sensor saturations. The network-induced phenomena (e.g. the sensor saturations and the signal quantization) are assumed to be occurring randomly. A stochastic Kronecker delta function is introduced to model such phenomena. The main work aims to design an asynchronous state estimator that assures the underlying error dynamics to be strictly (X,Y,Z)−γ−dissipative. Based on the stochastic Kronecker delta function method and stochastic analysis technique, we establish some conditions for the sake of guaranteeing the existence of the desired state estimator. We finally explain the effectiveness of the proposed design approach by means of a numerical example.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2018.02.071