A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem

Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 390; pp. 1 - 11
Main Authors: Gu, Shenshen, Hao, Tao, Yao, Hanmei
Format: Journal Article
Language:English
Published: Elsevier B.V 21.05.2020
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will also contribute to solving other combinatorial optimization problems. Pointer network is an end-to-end sequential decision structure and combines with deep learning technology. With the utilization of the structural characteristics of combinatorial optimization problems and the ability to extract the rule behind the data by deep learning, pointer network has been successfully applied to solve several classical combinatorial optimization problems. In this paper, a pointer network based algorithm is designed to solve UBQP problems. The network model is trained by supervised learning (SL) and deep reinforcement learning (DRL) respectively. Trained pointer network models are evaluated by self-generated benchmark dataset and ORLIB dataset respectively. Experimental results show that pointer network model trained by SL has strong learning ability to specific distributed dataset. Pointer network model trained by DRL can learn more general distribution data characteristics. In other words, it can quickly solve problems with great generalization ability. As a result, the framework proposed in this paper for UBQP has great potential to solve large scale combinatorial optimization problems.
AbstractList Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will also contribute to solving other combinatorial optimization problems. Pointer network is an end-to-end sequential decision structure and combines with deep learning technology. With the utilization of the structural characteristics of combinatorial optimization problems and the ability to extract the rule behind the data by deep learning, pointer network has been successfully applied to solve several classical combinatorial optimization problems. In this paper, a pointer network based algorithm is designed to solve UBQP problems. The network model is trained by supervised learning (SL) and deep reinforcement learning (DRL) respectively. Trained pointer network models are evaluated by self-generated benchmark dataset and ORLIB dataset respectively. Experimental results show that pointer network model trained by SL has strong learning ability to specific distributed dataset. Pointer network model trained by DRL can learn more general distribution data characteristics. In other words, it can quickly solve problems with great generalization ability. As a result, the framework proposed in this paper for UBQP has great potential to solve large scale combinatorial optimization problems.
Author Gu, Shenshen
Hao, Tao
Yao, Hanmei
Author_xml – sequence: 1
  givenname: Shenshen
  surname: Gu
  fullname: Gu, Shenshen
  email: gushenshen@shu.edu.cn
– sequence: 2
  givenname: Tao
  surname: Hao
  fullname: Hao, Tao
– sequence: 3
  givenname: Hanmei
  surname: Yao
  fullname: Yao, Hanmei
BookMark eNqFkMtOwzAQRS1UJErhD1j4BxL8IolZIFUVL6kSG1hbfkyKS2IXxwXx9yQqKxawmlnMubpzTtEsxAAIXVBSUkKry20ZYG9jXzJCZUmqklJ6hOa0qVnRsKaaoTmR7KpgnLITdDoMW0JoTZmco3aJd9GHDAkHyJ8xvWGjB3DYAexwBzoFHzZYd5uYfH7tcRsT3gcbw5CT9mG8ND7o9IXf99olnb3FuxQ3Sff9BI676aA_Q8et7gY4_5kL9HJ3-7x6KNZP94-r5bqwnFS5sJUjjaGmFoJyWbtaW1mZxjLhuNNOQNtqKY2tBdGuAc6FYbqVDjSvwAnGF-j6kGtTHIYErbI-j6VimNp2ihI1GVNbdTCmJmOKVGo0NsLiF7xLvh9_-w-7OWAwPvbhIanBeggWnE9gs3LR_x3wDXoYjes
CitedBy_id crossref_primary_10_1016_j_neucom_2022_08_005
crossref_primary_10_1109_TAI_2024_3499946
crossref_primary_10_1109_TCST_2025_3552543
crossref_primary_10_1016_j_jpdc_2022_06_007
crossref_primary_10_3390_math8020298
crossref_primary_10_1007_s00521_022_07604_8
crossref_primary_10_4018_IJCINI_361012
crossref_primary_10_1007_s11590_023_02009_5
crossref_primary_10_1088_1742_6596_2181_1_012002
crossref_primary_10_1007_s10898_024_01364_6
crossref_primary_10_1007_s00500_023_08381_9
crossref_primary_10_3390_pr11041203
crossref_primary_10_1016_j_neunet_2020_07_033
crossref_primary_10_1109_TCSS_2024_3462934
crossref_primary_10_1109_TKDE_2021_3057361
crossref_primary_10_1016_j_jestch_2025_102031
crossref_primary_10_1007_s10586_021_03454_6
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_3390_ijgi11050270
Cites_doi 10.1287/opre.36.3.493
10.1023/A:1022672621406
10.1016/j.knosys.2017.11.009
10.1016/j.neucom.2013.12.063
10.1090/dimacs/055/05
10.1287/ijoc.5.2.97
10.1016/S0167-5060(08)70343-1
10.1007/s00291-003-0153-3
10.1007/s10878-014-9734-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.06.111
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 11
ExternalDocumentID 10_1016_j_neucom_2019_06_111
S0925231220303398
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-c6d08b1b7441397d7ac96b8c24d3dad4effa99bc740ad8e334b2af9dea36ed423
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531729000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:58 EST 2025
Tue Nov 18 21:44:12 EST 2025
Fri Feb 23 02:47:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Pointer network
UBQP
Supervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c6d08b1b7441397d7ac96b8c24d3dad4effa99bc740ad8e334b2af9dea36ed423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2019_06_111
crossref_primary_10_1016_j_neucom_2019_06_111
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_06_111
PublicationCentury 2000
PublicationDate 2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-21
  day: 21
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hansen (bib0021) 1979; 5
Gu, Cui (bib0014) 2015; 149
Gu, Hao (bib0009) 2018
Sak, Senior, Beaufays (bib0026) 2014
McBride, Yormack (bib0012) 1980; 26
M.X. Zhou, A benchmark generator for boolean quadratic programming, 2014. arXiv
Chiu, Sainath, Wu (bib0001) 2018
Kochenberger, Glover, Alidaee (bib0018) 2004; 26
Vinyals, Fortunato, Jaitly (bib0005) 2015
Zhou, Wang, Wu (bib0015) 2018; 141
Hansen, Jaumard, Mathon (bib0022) 1993; 5
I. Bello, H. Pham, Q.V. Le, et al., Neural combinatorial optimization with reinforcement learning[j]. arXiv preprint arXiv
Gu, Yang (bib0010) 2018
Zaccone, R. Karim, Menshawy (bib0029) 2017
Iasemidis, Shiau, Sackellares, Pardalos (bib0013) 2010; 55
Sutskever, Vinyals, Le (bib0004) 2014
Kochenberger, Hao, Glover (bib0019) 2014; 28
Hammer, Rudeanu (bib0020) 1968
J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming problem, 1998. London, England.
.
Williams (bib0024) 1992; 8
Krizhevsky, Sutskever, Hinton (bib0002) 2012; 60
Khalil, Dai, Zhang (bib0017) 2017
Gu, Hao, Yang (bib0008) 2018
Milan, Rezatofighi, Garg (bib0027) 2017
Mirhoseini, Pham, Le (bib0007) 2017
(2016).
Nakajima, Iima (bib0016) 2017
Yang, Jin, Liu (bib0003) 2018
Grotschel, Junger, Reinelt (bib0011) 1988; 36
Mottini, Acuna-Agost (bib0028) 2017
Williams (10.1016/j.neucom.2019.06.111_bib0024) 1992; 8
10.1016/j.neucom.2019.06.111_bib0006
Grotschel (10.1016/j.neucom.2019.06.111_bib0011) 1988; 36
Gu (10.1016/j.neucom.2019.06.111_sbref0009) 2018
McBride (10.1016/j.neucom.2019.06.111_bib0012) 1980; 26
10.1016/j.neucom.2019.06.111_bib0025
Nakajima (10.1016/j.neucom.2019.06.111_bib0016) 2017
Krizhevsky (10.1016/j.neucom.2019.06.111_bib0002) 2012; 60
10.1016/j.neucom.2019.06.111_bib0023
Sak (10.1016/j.neucom.2019.06.111_bib0026) 2014
Gu (10.1016/j.neucom.2019.06.111_bib0009) 2018
Zhou (10.1016/j.neucom.2019.06.111_bib0015) 2018; 141
Hansen (10.1016/j.neucom.2019.06.111_bib0021) 1979; 5
Hammer (10.1016/j.neucom.2019.06.111_bib0020) 1968
Gu (10.1016/j.neucom.2019.06.111_bib0014) 2015; 149
Sutskever (10.1016/j.neucom.2019.06.111_bib0004) 2014
Zaccone (10.1016/j.neucom.2019.06.111_bib0029) 2017
Chiu (10.1016/j.neucom.2019.06.111_bib0001) 2018
Kochenberger (10.1016/j.neucom.2019.06.111_bib0018) 2004; 26
Yang (10.1016/j.neucom.2019.06.111_bib0003) 2018
Iasemidis (10.1016/j.neucom.2019.06.111_bib0013) 2010; 55
Vinyals (10.1016/j.neucom.2019.06.111_bib0005) 2015
Mirhoseini (10.1016/j.neucom.2019.06.111_bib0007) 2017
Kochenberger (10.1016/j.neucom.2019.06.111_bib0019) 2014; 28
Hansen (10.1016/j.neucom.2019.06.111_bib0022) 1993; 5
Mottini (10.1016/j.neucom.2019.06.111_sbref0025) 2017
Milan (10.1016/j.neucom.2019.06.111_bib0027) 2017
Gu (10.1016/j.neucom.2019.06.111_sbref0007) 2018
Khalil (10.1016/j.neucom.2019.06.111_bib0017) 2017
References_xml – volume: 5
  start-page: 53
  year: 1979
  end-page: 70
  ident: bib0021
  article-title: Methods of nonlinear 0–1 programming
  publication-title: Ann. Discret. Math.
– year: 2018
  ident: bib0008
  article-title: The Implementation of a Pointer Network Model for Traveling Salesman Problem on a Xilinx Pynq Board
  publication-title: Proceedings of the International Symposium on Neural Networks
– year: 2017
  ident: bib0029
  article-title: Deep Learning with Tensorflow
– volume: 60
  start-page: 1097
  year: 2012
  end-page: C1105
  ident: bib0002
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– reference: J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming problem, 1998. London, England.
– reference: I. Bello, H. Pham, Q.V. Le, et al., Neural combinatorial optimization with reinforcement learning[j]. arXiv preprint arXiv:
– volume: 36
  start-page: 493
  year: 1988
  end-page: 513
  ident: bib0011
  article-title: An application of combinatorial optimization to statistical physics and circuit layout design
  publication-title: Oper. Res.
– volume: 149
  start-page: 13
  year: 2015
  end-page: 21
  ident: bib0014
  article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network
  publication-title: Neurocomputing
– reference: (2016).
– volume: 28
  start-page: 58
  year: 2014
  end-page: 81
  ident: bib0019
  article-title: The unconstrained binary quadratic programming problem: a survey
  publication-title: J. Comb. Optim.
– volume: 26
  year: 1980
  ident: bib0012
  article-title: An implicit enumeration algorithm for quadratic integer programming
  publication-title: Manag. Sci.
– start-page: 6348
  year: 2017
  end-page: 6358
  ident: bib0017
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 726
  year: 2018
  end-page: 739
  ident: bib0003
  article-title: Boosting dynamic programming with neural networks for solving NP-hard problems
  publication-title: Proceedings of the Asian Conference on Machine Learning
– year: 2018
  ident: bib0009
  article-title: A Pointer Network Based Deep Learning Algorithm for 0-1 Knapsack Problem. Advanced Computational Intelligence (ICACI)
  publication-title: 2018 Tenth International Conference on. pp. 473–477
– start-page: 4774
  year: 2018
  end-page: 4778
  ident: bib0001
  article-title: State-of-the-art speech recognition with sequence-to-sequence models
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib0004
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst
– start-page: 78
  year: 2017
  end-page: 82
  ident: bib0016
  article-title: The Solution of Combinatorial Optimization Problems Based on Reinforcement Learning
  publication-title: Proceedings of the International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence
– volume: 5
  year: 1993
  ident: bib0022
  article-title: Constrained nonlinear 0–1 programming
  publication-title: INFORMS J. Comput.
– volume: 141
  start-page: 18
  year: 2018
  end-page: 30
  ident: bib0015
  article-title: A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem
  publication-title: Knowl. Based Syst.
– year: 1968
  ident: bib0020
  article-title: Boolean Methods in Operations Research
– year: 2014
  ident: bib0026
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
  publication-title: Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association
– volume: 26
  start-page: 237
  year: 2004
  end-page: 250
  ident: bib0018
  article-title: A unified modeling and solution framework for combinatorial optimization problems
  publication-title: OR Spectrum.
– year: 2017
  ident: bib0027
  article-title: Data-driven approximations to NP-hard problems
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– volume: 55
  start-page: 55
  year: 2010
  end-page: 73
  ident: bib0013
  article-title: Transition to epileptic seizures: optimization
  publication-title: DIMACS Series Discret. Math Theor. Comput. Sci.
– reference: M.X. Zhou, A benchmark generator for boolean quadratic programming, 2014. arXiv:
– volume: 8
  start-page: 3
  year: 1992
  end-page: 4
  ident: bib0024
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Mach. Learn.
– reference: .
– start-page: 2430
  year: 2017
  end-page: 2439
  ident: bib0007
  article-title: Device placement optimization with reinforcement learning
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 2692
  year: 2015
  end-page: 2700
  ident: bib0005
  article-title: Pointer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: bib0028
  article-title: Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2018
  ident: bib0010
  article-title: A Pointer Network Based Deep Learning Algorithm for the Max-cut Problem
  publication-title: International Conference on Neural Information Processing
– volume: 60
  start-page: 1097
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2019.06.111_bib0002
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– year: 2017
  ident: 10.1016/j.neucom.2019.06.111_bib0029
– start-page: 78
  year: 2017
  ident: 10.1016/j.neucom.2019.06.111_bib0016
  article-title: The Solution of Combinatorial Optimization Problems Based on Reinforcement Learning
– volume: 36
  start-page: 493
  issue: 3
  year: 1988
  ident: 10.1016/j.neucom.2019.06.111_bib0011
  article-title: An application of combinatorial optimization to statistical physics and circuit layout design
  publication-title: Oper. Res.
  doi: 10.1287/opre.36.3.493
– year: 2018
  ident: 10.1016/j.neucom.2019.06.111_sbref0007
  article-title: The Implementation of a Pointer Network Model for Traveling Salesman Problem on a Xilinx Pynq Board
– start-page: 6348
  year: 2017
  ident: 10.1016/j.neucom.2019.06.111_bib0017
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.neucom.2019.06.111_sbref0009
  article-title: A Pointer Network Based Deep Learning Algorithm for the Max-cut Problem
– volume: 8
  start-page: 3
  year: 1992
  ident: 10.1016/j.neucom.2019.06.111_bib0024
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022672621406
– volume: 26
  year: 1980
  ident: 10.1016/j.neucom.2019.06.111_bib0012
  article-title: An implicit enumeration algorithm for quadratic integer programming
  publication-title: Manag. Sci.
– start-page: 2430
  year: 2017
  ident: 10.1016/j.neucom.2019.06.111_bib0007
  article-title: Device placement optimization with reinforcement learning
– start-page: 4774
  year: 2018
  ident: 10.1016/j.neucom.2019.06.111_bib0001
  article-title: State-of-the-art speech recognition with sequence-to-sequence models
– volume: 141
  start-page: 18
  year: 2018
  ident: 10.1016/j.neucom.2019.06.111_bib0015
  article-title: A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.11.009
– ident: 10.1016/j.neucom.2019.06.111_bib0023
– volume: 149
  start-page: 13
  year: 2015
  ident: 10.1016/j.neucom.2019.06.111_bib0014
  article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.063
– ident: 10.1016/j.neucom.2019.06.111_bib0025
– start-page: 2692
  year: 2015
  ident: 10.1016/j.neucom.2019.06.111_bib0005
  article-title: Pointer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1968
  ident: 10.1016/j.neucom.2019.06.111_bib0020
– year: 2017
  ident: 10.1016/j.neucom.2019.06.111_sbref0025
  article-title: Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction
– year: 2014
  ident: 10.1016/j.neucom.2019.06.111_bib0026
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
– start-page: 726
  year: 2018
  ident: 10.1016/j.neucom.2019.06.111_bib0003
  article-title: Boosting dynamic programming with neural networks for solving NP-hard problems
– ident: 10.1016/j.neucom.2019.06.111_bib0006
– volume: 55
  start-page: 55
  year: 2010
  ident: 10.1016/j.neucom.2019.06.111_bib0013
  article-title: Transition to epileptic seizures: optimization
  publication-title: DIMACS Series Discret. Math Theor. Comput. Sci.
  doi: 10.1090/dimacs/055/05
– volume: 5
  issue: 2
  year: 1993
  ident: 10.1016/j.neucom.2019.06.111_bib0022
  article-title: Constrained nonlinear 0–1 programming
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.5.2.97
– year: 2018
  ident: 10.1016/j.neucom.2019.06.111_bib0009
  article-title: A Pointer Network Based Deep Learning Algorithm for 0-1 Knapsack Problem. Advanced Computational Intelligence (ICACI)
– start-page: 3104
  year: 2014
  ident: 10.1016/j.neucom.2019.06.111_bib0004
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 5
  start-page: 53
  year: 1979
  ident: 10.1016/j.neucom.2019.06.111_bib0021
  article-title: Methods of nonlinear 0–1 programming
  publication-title: Ann. Discret. Math.
  doi: 10.1016/S0167-5060(08)70343-1
– year: 2017
  ident: 10.1016/j.neucom.2019.06.111_bib0027
  article-title: Data-driven approximations to NP-hard problems
– volume: 26
  start-page: 237
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2019.06.111_bib0018
  article-title: A unified modeling and solution framework for combinatorial optimization problems
  publication-title: OR Spectrum.
  doi: 10.1007/s00291-003-0153-3
– volume: 28
  start-page: 58
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2019.06.111_bib0019
  article-title: The unconstrained binary quadratic programming problem: a survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-014-9734-0
SSID ssj0017129
Score 2.3873942
Snippet Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Deep reinforcement learning
Pointer network
Supervised learning
UBQP
Title A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem
URI https://dx.doi.org/10.1016/j.neucom.2019.06.111
Volume 390
WOSCitedRecordID wos000531729000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0h64WUaO33u0UCFwqDgEKTdrvI8mVeIEE1f9-cy-XIeiQg8okhWt4nWc-TLzzXgehLxHI5FyhE6oojwK04w3YZk2SVhK1YDKmIJUmWETxdlZuViwb5NJ72thLtdF25ZXV2z3X0WNayhsXTp7B3EPm-ICvkeh4xHFjsd_EnwV7La6CUQXtDbFO9CWSgRCyp0fEnEewPp82632y43JM0TjpnmiHhehGamt0f3Rg-hMQ1eXxLWxletmAs2Y1JoGH9yMh3CBh2qj-y8IDbYh0PC5N5HWJfrNy-v6sxmYWO0ctoP-sSszaDdyNQ5KxOZ5uq109tHFGBeS6YGiTexgUKcqpyOba_XtDW1uAwsXH1rZ69Qe5CpMN1v16vmgefZvRm1INfRZbBe13aXWu9RRrl2fe-Q4LjKGyvC4-nK6-Do8fiqmsW3S6O7C11yaxMCb3-bPnGbEU-aPyUPnYNDKAuMJmcj2KXnkh3dQp8ufEVVRhxPqcEINTqjGCfU4oQNOKOKEHuCEWpzQASd0hBPqcPKcfP90Ov84C93QjZCj97gPeS6ispk2BfJk5KqiAM7ypuRxKhIBIpVKAWMNL9IIRCmTJG1iUExISHIpkJy_IEfttpUvCY0ZQARQQCaaFF8M3V_IpMpEHCENlSck8T9bzV1Hen0H6_o2oZ2QcDhrZzuy_OXzhZdI7VilZYs1wuzWM1_d8UqvyYPr_8IbcrTvevmW3OeX-9XP7p3D2C8BU6Df
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pointer+network+based+deep+learning+algorithm+for+unconstrained+binary+quadratic+programming+problem&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gu%2C+Shenshen&rft.au=Hao%2C+Tao&rft.au=Yao%2C+Hanmei&rft.date=2020-05-21&rft.issn=0925-2312&rft.volume=390&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.neucom.2019.06.111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2019_06_111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon