A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem
Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 390; pp. 1 - 11 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
21.05.2020
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will also contribute to solving other combinatorial optimization problems. Pointer network is an end-to-end sequential decision structure and combines with deep learning technology. With the utilization of the structural characteristics of combinatorial optimization problems and the ability to extract the rule behind the data by deep learning, pointer network has been successfully applied to solve several classical combinatorial optimization problems. In this paper, a pointer network based algorithm is designed to solve UBQP problems. The network model is trained by supervised learning (SL) and deep reinforcement learning (DRL) respectively. Trained pointer network models are evaluated by self-generated benchmark dataset and ORLIB dataset respectively. Experimental results show that pointer network model trained by SL has strong learning ability to specific distributed dataset. Pointer network model trained by DRL can learn more general distribution data characteristics. In other words, it can quickly solve problems with great generalization ability. As a result, the framework proposed in this paper for UBQP has great potential to solve large scale combinatorial optimization problems. |
|---|---|
| AbstractList | Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the model of unconstrained binary quadratic programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will also contribute to solving other combinatorial optimization problems. Pointer network is an end-to-end sequential decision structure and combines with deep learning technology. With the utilization of the structural characteristics of combinatorial optimization problems and the ability to extract the rule behind the data by deep learning, pointer network has been successfully applied to solve several classical combinatorial optimization problems. In this paper, a pointer network based algorithm is designed to solve UBQP problems. The network model is trained by supervised learning (SL) and deep reinforcement learning (DRL) respectively. Trained pointer network models are evaluated by self-generated benchmark dataset and ORLIB dataset respectively. Experimental results show that pointer network model trained by SL has strong learning ability to specific distributed dataset. Pointer network model trained by DRL can learn more general distribution data characteristics. In other words, it can quickly solve problems with great generalization ability. As a result, the framework proposed in this paper for UBQP has great potential to solve large scale combinatorial optimization problems. |
| Author | Gu, Shenshen Hao, Tao Yao, Hanmei |
| Author_xml | – sequence: 1 givenname: Shenshen surname: Gu fullname: Gu, Shenshen email: gushenshen@shu.edu.cn – sequence: 2 givenname: Tao surname: Hao fullname: Hao, Tao – sequence: 3 givenname: Hanmei surname: Yao fullname: Yao, Hanmei |
| BookMark | eNqFkMtOwzAQRS1UJErhD1j4BxL8IolZIFUVL6kSG1hbfkyKS2IXxwXx9yQqKxawmlnMubpzTtEsxAAIXVBSUkKry20ZYG9jXzJCZUmqklJ6hOa0qVnRsKaaoTmR7KpgnLITdDoMW0JoTZmco3aJd9GHDAkHyJ8xvWGjB3DYAexwBzoFHzZYd5uYfH7tcRsT3gcbw5CT9mG8ND7o9IXf99olnb3FuxQ3Sff9BI676aA_Q8et7gY4_5kL9HJ3-7x6KNZP94-r5bqwnFS5sJUjjaGmFoJyWbtaW1mZxjLhuNNOQNtqKY2tBdGuAc6FYbqVDjSvwAnGF-j6kGtTHIYErbI-j6VimNp2ihI1GVNbdTCmJmOKVGo0NsLiF7xLvh9_-w-7OWAwPvbhIanBeggWnE9gs3LR_x3wDXoYjes |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2022_08_005 crossref_primary_10_1109_TAI_2024_3499946 crossref_primary_10_1109_TCST_2025_3552543 crossref_primary_10_1016_j_jpdc_2022_06_007 crossref_primary_10_3390_math8020298 crossref_primary_10_1007_s00521_022_07604_8 crossref_primary_10_4018_IJCINI_361012 crossref_primary_10_1007_s11590_023_02009_5 crossref_primary_10_1088_1742_6596_2181_1_012002 crossref_primary_10_1007_s10898_024_01364_6 crossref_primary_10_1007_s00500_023_08381_9 crossref_primary_10_3390_pr11041203 crossref_primary_10_1016_j_neunet_2020_07_033 crossref_primary_10_1109_TCSS_2024_3462934 crossref_primary_10_1109_TKDE_2021_3057361 crossref_primary_10_1016_j_jestch_2025_102031 crossref_primary_10_1007_s10586_021_03454_6 crossref_primary_10_1109_TETCI_2024_3405370 crossref_primary_10_3390_ijgi11050270 |
| Cites_doi | 10.1287/opre.36.3.493 10.1023/A:1022672621406 10.1016/j.knosys.2017.11.009 10.1016/j.neucom.2013.12.063 10.1090/dimacs/055/05 10.1287/ijoc.5.2.97 10.1016/S0167-5060(08)70343-1 10.1007/s00291-003-0153-3 10.1007/s10878-014-9734-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2019.06.111 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 11 |
| ExternalDocumentID | 10_1016_j_neucom_2019_06_111 S0925231220303398 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-c6d08b1b7441397d7ac96b8c24d3dad4effa99bc740ad8e334b2af9dea36ed423 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531729000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:12:58 EST 2025 Tue Nov 18 21:44:12 EST 2025 Fri Feb 23 02:47:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep reinforcement learning Pointer network UBQP Supervised learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-c6d08b1b7441397d7ac96b8c24d3dad4effa99bc740ad8e334b2af9dea36ed423 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2019_06_111 crossref_primary_10_1016_j_neucom_2019_06_111 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_06_111 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-21 |
| PublicationDateYYYYMMDD | 2020-05-21 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hansen (bib0021) 1979; 5 Gu, Cui (bib0014) 2015; 149 Gu, Hao (bib0009) 2018 Sak, Senior, Beaufays (bib0026) 2014 McBride, Yormack (bib0012) 1980; 26 M.X. Zhou, A benchmark generator for boolean quadratic programming, 2014. arXiv Chiu, Sainath, Wu (bib0001) 2018 Kochenberger, Glover, Alidaee (bib0018) 2004; 26 Vinyals, Fortunato, Jaitly (bib0005) 2015 Zhou, Wang, Wu (bib0015) 2018; 141 Hansen, Jaumard, Mathon (bib0022) 1993; 5 I. Bello, H. Pham, Q.V. Le, et al., Neural combinatorial optimization with reinforcement learning[j]. arXiv preprint arXiv Gu, Yang (bib0010) 2018 Zaccone, R. Karim, Menshawy (bib0029) 2017 Iasemidis, Shiau, Sackellares, Pardalos (bib0013) 2010; 55 Sutskever, Vinyals, Le (bib0004) 2014 Kochenberger, Hao, Glover (bib0019) 2014; 28 Hammer, Rudeanu (bib0020) 1968 J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming problem, 1998. London, England. . Williams (bib0024) 1992; 8 Krizhevsky, Sutskever, Hinton (bib0002) 2012; 60 Khalil, Dai, Zhang (bib0017) 2017 Gu, Hao, Yang (bib0008) 2018 Milan, Rezatofighi, Garg (bib0027) 2017 Mirhoseini, Pham, Le (bib0007) 2017 (2016). Nakajima, Iima (bib0016) 2017 Yang, Jin, Liu (bib0003) 2018 Grotschel, Junger, Reinelt (bib0011) 1988; 36 Mottini, Acuna-Agost (bib0028) 2017 Williams (10.1016/j.neucom.2019.06.111_bib0024) 1992; 8 10.1016/j.neucom.2019.06.111_bib0006 Grotschel (10.1016/j.neucom.2019.06.111_bib0011) 1988; 36 Gu (10.1016/j.neucom.2019.06.111_sbref0009) 2018 McBride (10.1016/j.neucom.2019.06.111_bib0012) 1980; 26 10.1016/j.neucom.2019.06.111_bib0025 Nakajima (10.1016/j.neucom.2019.06.111_bib0016) 2017 Krizhevsky (10.1016/j.neucom.2019.06.111_bib0002) 2012; 60 10.1016/j.neucom.2019.06.111_bib0023 Sak (10.1016/j.neucom.2019.06.111_bib0026) 2014 Gu (10.1016/j.neucom.2019.06.111_bib0009) 2018 Zhou (10.1016/j.neucom.2019.06.111_bib0015) 2018; 141 Hansen (10.1016/j.neucom.2019.06.111_bib0021) 1979; 5 Hammer (10.1016/j.neucom.2019.06.111_bib0020) 1968 Gu (10.1016/j.neucom.2019.06.111_bib0014) 2015; 149 Sutskever (10.1016/j.neucom.2019.06.111_bib0004) 2014 Zaccone (10.1016/j.neucom.2019.06.111_bib0029) 2017 Chiu (10.1016/j.neucom.2019.06.111_bib0001) 2018 Kochenberger (10.1016/j.neucom.2019.06.111_bib0018) 2004; 26 Yang (10.1016/j.neucom.2019.06.111_bib0003) 2018 Iasemidis (10.1016/j.neucom.2019.06.111_bib0013) 2010; 55 Vinyals (10.1016/j.neucom.2019.06.111_bib0005) 2015 Mirhoseini (10.1016/j.neucom.2019.06.111_bib0007) 2017 Kochenberger (10.1016/j.neucom.2019.06.111_bib0019) 2014; 28 Hansen (10.1016/j.neucom.2019.06.111_bib0022) 1993; 5 Mottini (10.1016/j.neucom.2019.06.111_sbref0025) 2017 Milan (10.1016/j.neucom.2019.06.111_bib0027) 2017 Gu (10.1016/j.neucom.2019.06.111_sbref0007) 2018 Khalil (10.1016/j.neucom.2019.06.111_bib0017) 2017 |
| References_xml | – volume: 5 start-page: 53 year: 1979 end-page: 70 ident: bib0021 article-title: Methods of nonlinear 0–1 programming publication-title: Ann. Discret. Math. – year: 2018 ident: bib0008 article-title: The Implementation of a Pointer Network Model for Traveling Salesman Problem on a Xilinx Pynq Board publication-title: Proceedings of the International Symposium on Neural Networks – year: 2017 ident: bib0029 article-title: Deep Learning with Tensorflow – volume: 60 start-page: 1097 year: 2012 end-page: C1105 ident: bib0002 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – reference: J.E. Beasley, Heuristic algorithms for the unconstrained binary quadratic programming problem, 1998. London, England. – reference: I. Bello, H. Pham, Q.V. Le, et al., Neural combinatorial optimization with reinforcement learning[j]. arXiv preprint arXiv: – volume: 36 start-page: 493 year: 1988 end-page: 513 ident: bib0011 article-title: An application of combinatorial optimization to statistical physics and circuit layout design publication-title: Oper. Res. – volume: 149 start-page: 13 year: 2015 end-page: 21 ident: bib0014 article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network publication-title: Neurocomputing – reference: (2016). – volume: 28 start-page: 58 year: 2014 end-page: 81 ident: bib0019 article-title: The unconstrained binary quadratic programming problem: a survey publication-title: J. Comb. Optim. – volume: 26 year: 1980 ident: bib0012 article-title: An implicit enumeration algorithm for quadratic integer programming publication-title: Manag. Sci. – start-page: 6348 year: 2017 end-page: 6358 ident: bib0017 article-title: Learning combinatorial optimization algorithms over graphs publication-title: Adv. Neural Inf. Process. Syst. – start-page: 726 year: 2018 end-page: 739 ident: bib0003 article-title: Boosting dynamic programming with neural networks for solving NP-hard problems publication-title: Proceedings of the Asian Conference on Machine Learning – year: 2018 ident: bib0009 article-title: A Pointer Network Based Deep Learning Algorithm for 0-1 Knapsack Problem. Advanced Computational Intelligence (ICACI) publication-title: 2018 Tenth International Conference on. pp. 473–477 – start-page: 4774 year: 2018 end-page: 4778 ident: bib0001 article-title: State-of-the-art speech recognition with sequence-to-sequence models publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 3104 year: 2014 end-page: 3112 ident: bib0004 article-title: Sequence to sequence learning with neural networks publication-title: Adv. Neural Inf. Process. Syst – start-page: 78 year: 2017 end-page: 82 ident: bib0016 article-title: The Solution of Combinatorial Optimization Problems Based on Reinforcement Learning publication-title: Proceedings of the International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence – volume: 5 year: 1993 ident: bib0022 article-title: Constrained nonlinear 0–1 programming publication-title: INFORMS J. Comput. – volume: 141 start-page: 18 year: 2018 end-page: 30 ident: bib0015 article-title: A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem publication-title: Knowl. Based Syst. – year: 1968 ident: bib0020 article-title: Boolean Methods in Operations Research – year: 2014 ident: bib0026 article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling publication-title: Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association – volume: 26 start-page: 237 year: 2004 end-page: 250 ident: bib0018 article-title: A unified modeling and solution framework for combinatorial optimization problems publication-title: OR Spectrum. – year: 2017 ident: bib0027 article-title: Data-driven approximations to NP-hard problems publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence – volume: 55 start-page: 55 year: 2010 end-page: 73 ident: bib0013 article-title: Transition to epileptic seizures: optimization publication-title: DIMACS Series Discret. Math Theor. Comput. Sci. – reference: M.X. Zhou, A benchmark generator for boolean quadratic programming, 2014. arXiv: – volume: 8 start-page: 3 year: 1992 end-page: 4 ident: bib0024 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. – reference: . – start-page: 2430 year: 2017 end-page: 2439 ident: bib0007 article-title: Device placement optimization with reinforcement learning publication-title: Proceedings of the International Conference on Machine Learning – start-page: 2692 year: 2015 end-page: 2700 ident: bib0005 article-title: Pointer networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: bib0028 article-title: Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2018 ident: bib0010 article-title: A Pointer Network Based Deep Learning Algorithm for the Max-cut Problem publication-title: International Conference on Neural Information Processing – volume: 60 start-page: 1097 issue: 2 year: 2012 ident: 10.1016/j.neucom.2019.06.111_bib0002 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – year: 2017 ident: 10.1016/j.neucom.2019.06.111_bib0029 – start-page: 78 year: 2017 ident: 10.1016/j.neucom.2019.06.111_bib0016 article-title: The Solution of Combinatorial Optimization Problems Based on Reinforcement Learning – volume: 36 start-page: 493 issue: 3 year: 1988 ident: 10.1016/j.neucom.2019.06.111_bib0011 article-title: An application of combinatorial optimization to statistical physics and circuit layout design publication-title: Oper. Res. doi: 10.1287/opre.36.3.493 – year: 2018 ident: 10.1016/j.neucom.2019.06.111_sbref0007 article-title: The Implementation of a Pointer Network Model for Traveling Salesman Problem on a Xilinx Pynq Board – start-page: 6348 year: 2017 ident: 10.1016/j.neucom.2019.06.111_bib0017 article-title: Learning combinatorial optimization algorithms over graphs publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: 10.1016/j.neucom.2019.06.111_sbref0009 article-title: A Pointer Network Based Deep Learning Algorithm for the Max-cut Problem – volume: 8 start-page: 3 year: 1992 ident: 10.1016/j.neucom.2019.06.111_bib0024 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. doi: 10.1023/A:1022672621406 – volume: 26 year: 1980 ident: 10.1016/j.neucom.2019.06.111_bib0012 article-title: An implicit enumeration algorithm for quadratic integer programming publication-title: Manag. Sci. – start-page: 2430 year: 2017 ident: 10.1016/j.neucom.2019.06.111_bib0007 article-title: Device placement optimization with reinforcement learning – start-page: 4774 year: 2018 ident: 10.1016/j.neucom.2019.06.111_bib0001 article-title: State-of-the-art speech recognition with sequence-to-sequence models – volume: 141 start-page: 18 year: 2018 ident: 10.1016/j.neucom.2019.06.111_bib0015 article-title: A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.11.009 – ident: 10.1016/j.neucom.2019.06.111_bib0023 – volume: 149 start-page: 13 year: 2015 ident: 10.1016/j.neucom.2019.06.111_bib0014 article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.063 – ident: 10.1016/j.neucom.2019.06.111_bib0025 – start-page: 2692 year: 2015 ident: 10.1016/j.neucom.2019.06.111_bib0005 article-title: Pointer networks publication-title: Adv. Neural Inf. Process. Syst. – year: 1968 ident: 10.1016/j.neucom.2019.06.111_bib0020 – year: 2017 ident: 10.1016/j.neucom.2019.06.111_sbref0025 article-title: Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction – year: 2014 ident: 10.1016/j.neucom.2019.06.111_bib0026 article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling – start-page: 726 year: 2018 ident: 10.1016/j.neucom.2019.06.111_bib0003 article-title: Boosting dynamic programming with neural networks for solving NP-hard problems – ident: 10.1016/j.neucom.2019.06.111_bib0006 – volume: 55 start-page: 55 year: 2010 ident: 10.1016/j.neucom.2019.06.111_bib0013 article-title: Transition to epileptic seizures: optimization publication-title: DIMACS Series Discret. Math Theor. Comput. Sci. doi: 10.1090/dimacs/055/05 – volume: 5 issue: 2 year: 1993 ident: 10.1016/j.neucom.2019.06.111_bib0022 article-title: Constrained nonlinear 0–1 programming publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.5.2.97 – year: 2018 ident: 10.1016/j.neucom.2019.06.111_bib0009 article-title: A Pointer Network Based Deep Learning Algorithm for 0-1 Knapsack Problem. Advanced Computational Intelligence (ICACI) – start-page: 3104 year: 2014 ident: 10.1016/j.neucom.2019.06.111_bib0004 article-title: Sequence to sequence learning with neural networks publication-title: Adv. Neural Inf. Process. Syst – volume: 5 start-page: 53 year: 1979 ident: 10.1016/j.neucom.2019.06.111_bib0021 article-title: Methods of nonlinear 0–1 programming publication-title: Ann. Discret. Math. doi: 10.1016/S0167-5060(08)70343-1 – year: 2017 ident: 10.1016/j.neucom.2019.06.111_bib0027 article-title: Data-driven approximations to NP-hard problems – volume: 26 start-page: 237 issue: 2 year: 2004 ident: 10.1016/j.neucom.2019.06.111_bib0018 article-title: A unified modeling and solution framework for combinatorial optimization problems publication-title: OR Spectrum. doi: 10.1007/s00291-003-0153-3 – volume: 28 start-page: 58 issue: 1 year: 2014 ident: 10.1016/j.neucom.2019.06.111_bib0019 article-title: The unconstrained binary quadratic programming problem: a survey publication-title: J. Comb. Optim. doi: 10.1007/s10878-014-9734-0 |
| SSID | ssj0017129 |
| Score | 2.3873942 |
| Snippet | Combinatorial optimization problems have been widely used in various fields. And many types of combinatorial optimization problems can be generalized into the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Deep reinforcement learning Pointer network Supervised learning UBQP |
| Title | A pointer network based deep learning algorithm for unconstrained binary quadratic programming problem |
| URI | https://dx.doi.org/10.1016/j.neucom.2019.06.111 |
| Volume | 390 |
| WOSCitedRecordID | wos000531729000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0h64WUaO33u0UCFwqDgEKTdrvI8mVeIEE1f9-cy-XIeiQg8okhWt4nWc-TLzzXgehLxHI5FyhE6oojwK04w3YZk2SVhK1YDKmIJUmWETxdlZuViwb5NJ72thLtdF25ZXV2z3X0WNayhsXTp7B3EPm-ICvkeh4xHFjsd_EnwV7La6CUQXtDbFO9CWSgRCyp0fEnEewPp82632y43JM0TjpnmiHhehGamt0f3Rg-hMQ1eXxLWxletmAs2Y1JoGH9yMh3CBh2qj-y8IDbYh0PC5N5HWJfrNy-v6sxmYWO0ctoP-sSszaDdyNQ5KxOZ5uq109tHFGBeS6YGiTexgUKcqpyOba_XtDW1uAwsXH1rZ69Qe5CpMN1v16vmgefZvRm1INfRZbBe13aXWu9RRrl2fe-Q4LjKGyvC4-nK6-Do8fiqmsW3S6O7C11yaxMCb3-bPnGbEU-aPyUPnYNDKAuMJmcj2KXnkh3dQp8ufEVVRhxPqcEINTqjGCfU4oQNOKOKEHuCEWpzQASd0hBPqcPKcfP90Ov84C93QjZCj97gPeS6ispk2BfJk5KqiAM7ypuRxKhIBIpVKAWMNL9IIRCmTJG1iUExISHIpkJy_IEfttpUvCY0ZQARQQCaaFF8M3V_IpMpEHCENlSck8T9bzV1Hen0H6_o2oZ2QcDhrZzuy_OXzhZdI7VilZYs1wuzWM1_d8UqvyYPr_8IbcrTvevmW3OeX-9XP7p3D2C8BU6Df |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pointer+network+based+deep+learning+algorithm+for+unconstrained+binary+quadratic+programming+problem&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gu%2C+Shenshen&rft.au=Hao%2C+Tao&rft.au=Yao%2C+Hanmei&rft.date=2020-05-21&rft.issn=0925-2312&rft.volume=390&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.neucom.2019.06.111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2019_06_111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |