Expectation–Maximization algorithm for finite mixture of α-stable distributions

A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for modelling the probability distribution in many fields of research nowadays. Nevertheless, in many real applications, the components are skewed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 413; s. 210 - 216
Hlavní autoři: Castillo-Barnes, D., Martinez-Murcia, F.J., Ramírez, J., Górriz, J.M., Salas-Gonzalez, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 06.11.2020
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for modelling the probability distribution in many fields of research nowadays. Nevertheless, in many real applications, the components are skewed or heavy tailed. For that reason, it is useful to model the mixtures as components with α-stable distribution. In this work, we present a mixture of skewed α-stable model where the parameters are estimated using the Expectation–Maximization algorithm. As the Gaussian distribution is a particular limiting case of α-stable distribution, the proposed model is a generalization of the widely used GMM. The proposed algorithm is much faster than the parameter estimation of the α-stable mixture model using a Bayesian approach and Markov chain Monte Carlo methods. Therefore, it is more suitable to be used for large vector observations.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2020.06.114