Expectation–Maximization algorithm for finite mixture of α-stable distributions

A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for modelling the probability distribution in many fields of research nowadays. Nevertheless, in many real applications, the components are skewed...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 413; pp. 210 - 216
Main Authors: Castillo-Barnes, D., Martinez-Murcia, F.J., Ramírez, J., Górriz, J.M., Salas-Gonzalez, D.
Format: Journal Article
Language:English
Published: Elsevier B.V 06.11.2020
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for modelling the probability distribution in many fields of research nowadays. Nevertheless, in many real applications, the components are skewed or heavy tailed. For that reason, it is useful to model the mixtures as components with α-stable distribution. In this work, we present a mixture of skewed α-stable model where the parameters are estimated using the Expectation–Maximization algorithm. As the Gaussian distribution is a particular limiting case of α-stable distribution, the proposed model is a generalization of the widely used GMM. The proposed algorithm is much faster than the parameter estimation of the α-stable mixture model using a Bayesian approach and Markov chain Monte Carlo methods. Therefore, it is more suitable to be used for large vector observations.
AbstractList A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for modelling the probability distribution in many fields of research nowadays. Nevertheless, in many real applications, the components are skewed or heavy tailed. For that reason, it is useful to model the mixtures as components with α-stable distribution. In this work, we present a mixture of skewed α-stable model where the parameters are estimated using the Expectation–Maximization algorithm. As the Gaussian distribution is a particular limiting case of α-stable distribution, the proposed model is a generalization of the widely used GMM. The proposed algorithm is much faster than the parameter estimation of the α-stable mixture model using a Bayesian approach and Markov chain Monte Carlo methods. Therefore, it is more suitable to be used for large vector observations.
Author Górriz, J.M.
Ramírez, J.
Martinez-Murcia, F.J.
Salas-Gonzalez, D.
Castillo-Barnes, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Castillo-Barnes
  fullname: Castillo-Barnes, D.
  email: diegoc@ugr.es
  organization: Dpt. Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 2
  givenname: F.J.
  surname: Martinez-Murcia
  fullname: Martinez-Murcia, F.J.
  organization: Department of Communications Engineering, University of Malaga, Malaga, Spain
– sequence: 3
  givenname: J.
  surname: Ramírez
  fullname: Ramírez, J.
  organization: Dpt. Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 4
  givenname: J.M.
  surname: Górriz
  fullname: Górriz, J.M.
  organization: Dpt. Signal Theory, Networking and Communications, University of Granada, Granada, Spain
– sequence: 5
  givenname: D.
  surname: Salas-Gonzalez
  fullname: Salas-Gonzalez, D.
  email: dsalas@ugr.es
  organization: Dpt. Signal Theory, Networking and Communications, University of Granada, Granada, Spain
BookMark eNqFkE1KAzEcxYMo2FZv4GIuMGOSSTMTF4KU-gEVQXQdMsk_mjIfJUmluvIOnsSLeAhP4tRx5UJXj7f4PXi_MdptuxYQOiI4I5jw42XWwlp3TUYxxRnmGSFsB41IWdC0pCXfRSMs6DSlOaH7aBzCEmNSECpG6Ha-WYGOKrqu_Xx9u1Yb17iX75qo-qHzLj42ie18Yl3rIiSN28S1h6Szycd7GqKqakiMC9G7ar3FwgHas6oOcPiTE3R_Pr-bXaaLm4ur2dki1TnmMdWcMuA6F7RgxBADtCTVVIGtGNeVACMKanNOc1VRYkwOTHBOGBRTKwQ1LJ8gNuxq34XgwcqVd43yz5JgufUil3LwIrdeJOay99JjJ78w7Yb_0StX_wefDjD0x54ceBm0g1aDcb7XKE3n_h74AprxhxA
CitedBy_id crossref_primary_10_1016_j_dsp_2022_103440
crossref_primary_10_1016_j_probengmech_2023_103475
crossref_primary_10_1016_j_istruc_2022_12_028
crossref_primary_10_3390_app14093729
crossref_primary_10_1007_s13369_022_06932_0
crossref_primary_10_3390_fractalfract7090679
crossref_primary_10_1016_j_egyr_2021_11_068
crossref_primary_10_1016_j_compeleceng_2024_109436
crossref_primary_10_1109_LSP_2022_3226412
crossref_primary_10_1109_TNB_2021_3121278
crossref_primary_10_1007_s00158_023_03591_z
crossref_primary_10_3389_fams_2022_870080
crossref_primary_10_1080_02664763_2024_2434627
crossref_primary_10_1002_wics_1611
crossref_primary_10_1016_j_compstruct_2023_117085
crossref_primary_10_1016_j_bbe_2024_09_003
Cites_doi 10.1109/TNNLS.2018.2844399
10.1109/TNNLS.2019.2899613
10.1109/ICASSP.2018.8462095
10.1186/s13640-019-0412-0
10.1016/j.asoc.2009.12.033
10.1016/j.dsp.2007.11.004
10.1109/TPAMI.2014.2306426
10.1016/j.asoc.2010.08.012
10.1109/TCSVT.2010.2051282
10.4236/jsip.2012.31006
10.1080/03610918608812563
10.1109/ICASSP.2019.8682546
10.1016/j.asoc.2014.02.016
10.1109/TMI.2006.880668
10.1038/clpt.1993.124
10.1016/j.neucom.2014.01.080
10.1111/1467-9868.00095
10.1080/03610918108812189
10.1109/TAC.1974.1100705
10.1090/mmono/065
10.1016/j.pisc.2016.06.056
10.1016/j.patcog.2018.10.025
10.1016/j.asoc.2014.03.036
10.1016/j.neucom.2020.05.078
10.1080/01621459.1980.10477573
10.1126/science.abb7566
10.1214/aos/1176344136
10.1016/j.asoc.2012.06.004
10.1109/WACV.2017.96
10.1016/j.sigpro.2009.07.003
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.06.114
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 216
ExternalDocumentID 10_1016_j_neucom_2020_06_114
S0925231220311036
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-c624e6c392741d1de281b5aefb46cb9ed972f3623ab21dd3e496614e75f992d43
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579803700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:38 EST 2025
Tue Nov 18 20:33:51 EST 2025
Fri Feb 23 02:47:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Expectation–Maximization algorithm
Alpha-stable mixture model
Alpha-stable distribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c624e6c392741d1de281b5aefb46cb9ed972f3623ab21dd3e496614e75f992d43
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_06_114
crossref_citationtrail_10_1016_j_neucom_2020_06_114
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_114
PublicationCentury 2000
PublicationDate 2020-11-06
PublicationDateYYYYMMDD 2020-11-06
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-06
  day: 06
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ma, Lai, Kleijn, Song, Wang, Guo (b0015) 2019; 30
McLachlan, Peel (b0025) 2000
Padilla, Górriz, Ramírez, Salas-Gonzalez, Illán (b0070) 2015; 150
Chang, Lin, Hsieh, Weng (b0055) 2012; 12
Salas-Gonzalez, Kuruoglu, Ruiz (b0085) 2010; 90
V.M. Zolotarev, One dimensional stable distributions, translation on mathematical monographs 65. American Math. Soc., Providence, 1986.
S. Kogon, D. Williams, A Practical Guide to Heavy Tailed Data, Birkhäuser, Boston, MA, 1998, Ch. Characteristic function based estimation of stable parameters, pp. 311–338.
Sarkar, Rao (b0030) 2014; 19
S. Leglaive, U. Simsekli, A. Liutkus, L. Girin, R. Horaud, Speech enhancement with variational autoencoders and alpha-stable distributions, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019. doi:10.1109/icassp.2019.8682546.
European Centre For Disease Prevention And Control, Sonraí faoi choróinvíreas COVID-19, 2020. doi:10.2906/101099100099/1.
Azami, Mohammadi, Bozorgtabar (b0125) 2012; 03
Samorodnitsky, Taqqu (b0115) 1994
Bhaskar, Mihaylova, Achim (b0180) 2010; 20
Górriz, Segovia, Ramírez, Lassl, Salas-Gonzalez (b0065) 2011; 11
Taghia, Ma, Leijon (b0005) 2014; 36
McCulloch (b0110) 1986; 15
Nolan (b0090) 2001
D.M.H. Nguyen, H.T. Vu, H.Q. Ung, B.T. Nguyen, 3D-brain segmentation using deep neural network and Gaussian mixture model, in: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2017. doi:10.1109/wacv.2017.96.
Koutrouvelis (b0095) 1980; 75
Sarafrazi, Yazdi (b0050) 2019; 2019
Greenspan, Ruf, Goldberger (b0060) 2006; 25
Dhanalakshmi, Palanivel, Ramalingam (b0045) 2011; 11
Bechtel, Bonaiti-Pellie, Poisson, Magnette, Bechtel (b0165) 1993; 54
Salas-Gonzalez, Kuruoglu, Ruiz (b0080) 2009; 19
Ma, Xie, Lai, Taghia, Xue, Guo (b0020) 2019
Koutrouvelis (b0100) 1981; 10
Schwarz (b0140) 1978; 6
Richardson, Green (b0170) 1997; 59
Lin, Lee, Yen (b0175) 2007; 17
Akaike (b0145) 1974; 19
McLachlan, Rathnayake (b0135) 2014; 4
Jothilakshmi (b0035) 2014; 21
Liu, Li, Fu, Zhang, Datcu, Emery (b0010) 2019; 87
J. Nolan, Stable Distribution: Models for Heavy-Tailed Data, 2015.
D. Normile, Coronavirus cases have dropped sharply in South Korea. What’s the secret to its success?, Science doi:10.1126/science.abb7566.
N. Keriven, A. Deleforge, A. Liutkus, Blind source separation using mixtures of alpha-stable distributions, in: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018. doi:10.1109/icassp.2018.8462095.
Acharya, Rani, Agarwal, Singh (b0130) 2016; 8
Górriz, Ramírez, Ortíz, Martínez-Murcia, Segovia, Suckling, Leming, Zhang, Álvarez-Sánchez, Bologna, Bonomini, Casado, Charte, Charte, Contreras, Cuesta-Infante, Duro, Fernández-Caballero, Fernández-Jover, Gómez-Vilda, Graña, Herrera, Iglesias, Lekova, de Lope, López-Rubio, Martínez-Tomás, Molina-Cabello, Montemayor, Novais, Palacios-Alonso, Pantrigo, Payne, la Paz, López, Pinninghoff, Santos, Thurnhofer-Hemsi, Tsanas, Varela, Ferrández (b9005) 2020; 410
10.1016/j.neucom.2020.06.114_b0160
Acharya (10.1016/j.neucom.2020.06.114_b0130) 2016; 8
10.1016/j.neucom.2020.06.114_b0040
Salas-Gonzalez (10.1016/j.neucom.2020.06.114_b0080) 2009; 19
10.1016/j.neucom.2020.06.114_b0120
Koutrouvelis (10.1016/j.neucom.2020.06.114_b0100) 1981; 10
10.1016/j.neucom.2020.06.114_b0185
Bechtel (10.1016/j.neucom.2020.06.114_b0165) 1993; 54
Koutrouvelis (10.1016/j.neucom.2020.06.114_b0095) 1980; 75
10.1016/j.neucom.2020.06.114_b0105
Schwarz (10.1016/j.neucom.2020.06.114_b0140) 1978; 6
Taghia (10.1016/j.neucom.2020.06.114_b0005) 2014; 36
Padilla (10.1016/j.neucom.2020.06.114_b0070) 2015; 150
Sarafrazi (10.1016/j.neucom.2020.06.114_b0050) 2019; 2019
Chang (10.1016/j.neucom.2020.06.114_b0055) 2012; 12
Samorodnitsky (10.1016/j.neucom.2020.06.114_b0115) 1994
Ma (10.1016/j.neucom.2020.06.114_b0020) 2019
Jothilakshmi (10.1016/j.neucom.2020.06.114_b0035) 2014; 21
McLachlan (10.1016/j.neucom.2020.06.114_b0135) 2014; 4
Salas-Gonzalez (10.1016/j.neucom.2020.06.114_b0085) 2010; 90
Nolan (10.1016/j.neucom.2020.06.114_b0090) 2001
10.1016/j.neucom.2020.06.114_b0150
Azami (10.1016/j.neucom.2020.06.114_b0125) 2012; 03
Dhanalakshmi (10.1016/j.neucom.2020.06.114_b0045) 2011; 11
10.1016/j.neucom.2020.06.114_b0075
10.1016/j.neucom.2020.06.114_b0155
Liu (10.1016/j.neucom.2020.06.114_b0010) 2019; 87
Sarkar (10.1016/j.neucom.2020.06.114_b0030) 2014; 19
Górriz (10.1016/j.neucom.2020.06.114_b9005) 2020; 410
Ma (10.1016/j.neucom.2020.06.114_b0015) 2019; 30
Akaike (10.1016/j.neucom.2020.06.114_b0145) 1974; 19
Bhaskar (10.1016/j.neucom.2020.06.114_b0180) 2010; 20
McLachlan (10.1016/j.neucom.2020.06.114_b0025) 2000
Richardson (10.1016/j.neucom.2020.06.114_b0170) 1997; 59
Lin (10.1016/j.neucom.2020.06.114_b0175) 2007; 17
Greenspan (10.1016/j.neucom.2020.06.114_b0060) 2006; 25
McCulloch (10.1016/j.neucom.2020.06.114_b0110) 1986; 15
Górriz (10.1016/j.neucom.2020.06.114_b0065) 2011; 11
References_xml – reference: N. Keriven, A. Deleforge, A. Liutkus, Blind source separation using mixtures of alpha-stable distributions, in: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018. doi:10.1109/icassp.2018.8462095.
– volume: 4
  start-page: 341
  year: 2014
  end-page: 355
  ident: b0135
  article-title: On the number of components in a Gaussian mixture model
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 25
  start-page: 1233
  year: 2006
  end-page: 1245
  ident: b0060
  article-title: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 75
  start-page: 918
  year: 1980
  end-page: 928
  ident: b0095
  article-title: Regression-type estimation of the parameters of stable laws
  publication-title: Journal of the American Statistical Association
– volume: 03
  start-page: 39
  year: 2012
  end-page: 44
  ident: b0125
  article-title: An improved signal segmentation using moving average and Savitzky–Golay filter
  publication-title: Journal of Signal and Information Processing
– volume: 150
  start-page: 4
  year: 2015
  end-page: 15
  ident: b0070
  article-title: Intensity normalization in the analysis of functional DaTSCAN SPECT images: The
  publication-title: Neurocomputing
– reference: D. Normile, Coronavirus cases have dropped sharply in South Korea. What’s the secret to its success?, Science doi:10.1126/science.abb7566.
– volume: 20
  start-page: 1133
  year: 2010
  end-page: 1138
  ident: b0180
  article-title: Video foreground detection based on symmetric alpha-stable mixture models
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: S. Leglaive, U. Simsekli, A. Liutkus, L. Girin, R. Horaud, Speech enhancement with variational autoencoders and alpha-stable distributions, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019. doi:10.1109/icassp.2019.8682546.
– volume: 54
  start-page: 134
  year: 1993
  end-page: 141
  ident: b0165
  article-title: A population and family study of n-acetyltransferase using caffeine urinary metabolities
  publication-title: Clinical Pharmacology and Therapeutics
– volume: 2019
  start-page: 52
  year: 2019
  ident: b0050
  article-title: Skewed alpha-stable distribution for natural texture modeling and segmentation in contourlet domain
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 10
  start-page: 17
  year: 1981
  end-page: 28
  ident: b0100
  article-title: An iterative procedure for the estimation of the parameters of stable laws
  publication-title: Communications in Statistics – Simulation and Computation
– volume: 17
  start-page: 909
  year: 2007
  end-page: 927
  ident: b0175
  article-title: Finite mixture modelling using the skew normal distribution
  publication-title: Statistica Sinica
– volume: 21
  start-page: 244
  year: 2014
  end-page: 249
  ident: b0035
  article-title: Automatic system to detect the type of voice pathology
  publication-title: Applied Soft Computing
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  ident: b0170
  article-title: Bayesian analysis of mixtures with an unknown number of components
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– year: 1994
  ident: b0115
  article-title: Stable non-Gaussian random processes: stochastic models with infinite variance
– volume: 30
  start-page: 449
  year: 2019
  end-page: 463
  ident: b0015
  article-title: Variational bayesian learning for Dirichlet process mixture of inverted dirichlet distributions in non-gaussian image feature modeling
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 15
  start-page: 1109
  year: 1986
  end-page: 1136
  ident: b0110
  article-title: Simple consistent estimators of stable distribution parameters
  publication-title: Communications in Statistics – Simulation and Computation
– volume: 11
  start-page: 2313
  year: 2011
  end-page: 2325
  ident: b0065
  article-title: GMM based SPECT image classification for the diagnosis of alzheimer’s disease
  publication-title: Applied Soft Computing
– reference: European Centre For Disease Prevention And Control, Sonraí faoi choróinvíreas COVID-19, 2020. doi:10.2906/101099100099/1.
– volume: 87
  start-page: 269
  year: 2019
  end-page: 284
  ident: b0010
  article-title: Bayesian estimation of generalized gamma mixture model based on variational EM algorithm
  publication-title: Pattern Recognition
– reference: S. Kogon, D. Williams, A Practical Guide to Heavy Tailed Data, Birkhäuser, Boston, MA, 1998, Ch. Characteristic function based estimation of stable parameters, pp. 311–338.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b0020
  article-title: Insights into multiple/single lower bound approximation for extended variational inference in non-gaussian structured data modeling
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 11
  start-page: 716
  year: 2011
  end-page: 723
  ident: b0045
  article-title: Classification of audio signals using AANN and GMM
  publication-title: Applied Soft Computing
– reference: J. Nolan, Stable Distribution: Models for Heavy-Tailed Data, 2015.
– volume: 410
  start-page: 237
  year: 2020
  end-page: 270
  ident: b9005
  article-title: Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications
  publication-title: Neurocomputing
– volume: 19
  start-page: 198
  year: 2014
  end-page: 214
  ident: b0030
  article-title: Stochastic feature compensation methods for speaker verification in noisy environments
  publication-title: Applied Soft Computing
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: b0145
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 8
  start-page: 677
  year: 2016
  end-page: 679
  ident: b0130
  article-title: Application of adaptive Savitzky–Golay filter for EEG signal processing
  publication-title: Perspectives in Science
– reference: V.M. Zolotarev, One dimensional stable distributions, translation on mathematical monographs 65. American Math. Soc., Providence, 1986.
– volume: 19
  start-page: 250
  year: 2009
  end-page: 264
  ident: b0080
  article-title: Finite mixture of
  publication-title: Digital Signal Processing
– volume: 36
  start-page: 1701
  year: 2014
  end-page: 1715
  ident: b0005
  article-title: Bayesian estimation of the Von-Mises fisher mixture model with variational inference
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 90
  start-page: 774
  year: 2010
  end-page: 783
  ident: b0085
  article-title: Modelling with mixture of symmetric stable distributions using Gibbs sampling
  publication-title: Signal Processing
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: b0140
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– year: 2000
  ident: b0025
  article-title: Finite Mixture Models
– reference: D.M.H. Nguyen, H.T. Vu, H.Q. Ung, B.T. Nguyen, 3D-brain segmentation using deep neural network and Gaussian mixture model, in: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2017. doi:10.1109/wacv.2017.96.
– year: 2001
  ident: b0090
  article-title: Ch. Maximum likelihood estimation of stable parameters
  publication-title: Lévy Processes: Theory and Applications
– volume: 12
  start-page: 3165
  year: 2012
  end-page: 3175
  ident: b0055
  article-title: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models
  publication-title: Applied Soft Computing
– volume: 30
  start-page: 449
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2020.06.114_b0015
  article-title: Variational bayesian learning for Dirichlet process mixture of inverted dirichlet distributions in non-gaussian image feature modeling
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2844399
– year: 1994
  ident: 10.1016/j.neucom.2020.06.114_b0115
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.06.114_b0020
  article-title: Insights into multiple/single lower bound approximation for extended variational inference in non-gaussian structured data modeling
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2899613
– volume: 4
  start-page: 341
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2020.06.114_b0135
  article-title: On the number of components in a Gaussian mixture model
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– ident: 10.1016/j.neucom.2020.06.114_b0185
  doi: 10.1109/ICASSP.2018.8462095
– volume: 2019
  start-page: 52
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.06.114_b0050
  article-title: Skewed alpha-stable distribution for natural texture modeling and segmentation in contourlet domain
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/s13640-019-0412-0
– volume: 11
  start-page: 716
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2020.06.114_b0045
  article-title: Classification of audio signals using AANN and GMM
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.12.033
– volume: 19
  start-page: 250
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2020.06.114_b0080
  article-title: Finite mixture of α-stable distributions
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2007.11.004
– volume: 36
  start-page: 1701
  issue: 9
  year: 2014
  ident: 10.1016/j.neucom.2020.06.114_b0005
  article-title: Bayesian estimation of the Von-Mises fisher mixture model with variational inference
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2306426
– volume: 11
  start-page: 2313
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2020.06.114_b0065
  article-title: GMM based SPECT image classification for the diagnosis of alzheimer’s disease
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.08.012
– volume: 17
  start-page: 909
  year: 2007
  ident: 10.1016/j.neucom.2020.06.114_b0175
  article-title: Finite mixture modelling using the skew normal distribution
  publication-title: Statistica Sinica
– volume: 20
  start-page: 1133
  year: 2010
  ident: 10.1016/j.neucom.2020.06.114_b0180
  article-title: Video foreground detection based on symmetric alpha-stable mixture models
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2010.2051282
– volume: 03
  start-page: 39
  issue: 01
  year: 2012
  ident: 10.1016/j.neucom.2020.06.114_b0125
  article-title: An improved signal segmentation using moving average and Savitzky–Golay filter
  publication-title: Journal of Signal and Information Processing
  doi: 10.4236/jsip.2012.31006
– volume: 15
  start-page: 1109
  issue: 4
  year: 1986
  ident: 10.1016/j.neucom.2020.06.114_b0110
  article-title: Simple consistent estimators of stable distribution parameters
  publication-title: Communications in Statistics – Simulation and Computation
  doi: 10.1080/03610918608812563
– ident: 10.1016/j.neucom.2020.06.114_b0040
  doi: 10.1109/ICASSP.2019.8682546
– volume: 19
  start-page: 198
  year: 2014
  ident: 10.1016/j.neucom.2020.06.114_b0030
  article-title: Stochastic feature compensation methods for speaker verification in noisy environments
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.02.016
– volume: 25
  start-page: 1233
  issue: 9
  year: 2006
  ident: 10.1016/j.neucom.2020.06.114_b0060
  article-title: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2006.880668
– volume: 54
  start-page: 134
  issue: 2
  year: 1993
  ident: 10.1016/j.neucom.2020.06.114_b0165
  article-title: A population and family study of n-acetyltransferase using caffeine urinary metabolities
  publication-title: Clinical Pharmacology and Therapeutics
  doi: 10.1038/clpt.1993.124
– volume: 150
  start-page: 4
  year: 2015
  ident: 10.1016/j.neucom.2020.06.114_b0070
  article-title: Intensity normalization in the analysis of functional DaTSCAN SPECT images: The α-stable distribution-based normalization method vs other approaches
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.080
– ident: 10.1016/j.neucom.2020.06.114_b0155
– ident: 10.1016/j.neucom.2020.06.114_b0120
– volume: 59
  start-page: 731
  issue: 4
  year: 1997
  ident: 10.1016/j.neucom.2020.06.114_b0170
  article-title: Bayesian analysis of mixtures with an unknown number of components
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/1467-9868.00095
– year: 2000
  ident: 10.1016/j.neucom.2020.06.114_b0025
– volume: 10
  start-page: 17
  issue: 1
  year: 1981
  ident: 10.1016/j.neucom.2020.06.114_b0100
  article-title: An iterative procedure for the estimation of the parameters of stable laws
  publication-title: Communications in Statistics – Simulation and Computation
  doi: 10.1080/03610918108812189
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.neucom.2020.06.114_b0145
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– year: 2001
  ident: 10.1016/j.neucom.2020.06.114_b0090
  article-title: Ch. Maximum likelihood estimation of stable parameters
– ident: 10.1016/j.neucom.2020.06.114_b0105
  doi: 10.1090/mmono/065
– volume: 8
  start-page: 677
  year: 2016
  ident: 10.1016/j.neucom.2020.06.114_b0130
  article-title: Application of adaptive Savitzky–Golay filter for EEG signal processing
  publication-title: Perspectives in Science
  doi: 10.1016/j.pisc.2016.06.056
– volume: 87
  start-page: 269
  year: 2019
  ident: 10.1016/j.neucom.2020.06.114_b0010
  article-title: Bayesian estimation of generalized gamma mixture model based on variational EM algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.10.025
– volume: 21
  start-page: 244
  year: 2014
  ident: 10.1016/j.neucom.2020.06.114_b0035
  article-title: Automatic system to detect the type of voice pathology
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.03.036
– volume: 410
  start-page: 237
  year: 2020
  ident: 10.1016/j.neucom.2020.06.114_b9005
  article-title: Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.078
– volume: 75
  start-page: 918
  issue: 372
  year: 1980
  ident: 10.1016/j.neucom.2020.06.114_b0095
  article-title: Regression-type estimation of the parameters of stable laws
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1980.10477573
– ident: 10.1016/j.neucom.2020.06.114_b0160
  doi: 10.1126/science.abb7566
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.neucom.2020.06.114_b0140
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 12
  start-page: 3165
  issue: 10
  year: 2012
  ident: 10.1016/j.neucom.2020.06.114_b0055
  article-title: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.06.004
– ident: 10.1016/j.neucom.2020.06.114_b0075
  doi: 10.1109/WACV.2017.96
– volume: 90
  start-page: 774
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2020.06.114_b0085
  article-title: Modelling with mixture of symmetric stable distributions using Gibbs sampling
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2009.07.003
– ident: 10.1016/j.neucom.2020.06.114_b0150
SSID ssj0017129
Score 2.4191375
Snippet A Gaussian Mixture Model (GMM) is a parametric probability density function built as a weighted sum of Gaussian distributions. Gaussian mixtures are used for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms Alpha-stable distribution
Alpha-stable mixture model
Expectation–Maximization algorithm
Title Expectation–Maximization algorithm for finite mixture of α-stable distributions
URI https://dx.doi.org/10.1016/j.neucom.2020.06.114
Volume 413
WOSCitedRecordID wos000579803700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKxgU3G7_a-JMv2FXlqnGcH1-2XQdMbEIwUO8ix3EgU5pOWTdVu-IdeASeYC-yh-BJOI6dNGVosAtuoshunDTny_Hn4_OD0CsVh1wCUSY-dRhhLO2TmMuYCDcAtp96YVila_r8Ljg8DCcT_r7T-VHHwpznQVGEiwU_-a-ihjYQtg6dvYW4m0GhAc5B6HAEscPxnwSvkxdLs8FeezK4B2KRTW3EZVfkX2ZlNv86rVwM00yzzu40W1R7CcAdd0bjnaHTJcAbq7AqnVrXVsU6bXPZKq-HrKpCWHvDYKrTLiQaY419YSRAieT5jAxFacsC7PaWdnCdxEBdEJC3NG67e739pvsDjKQ38ndLY-de9rzW7UO3LDPbcdBr2y9gsaptsn7bEEk9AixzRSczx13Rqv3WBE1NcOY13W_MEMe9Qp1pRyB9L52a1TFBqquptn-bAhvHxNrn7Tgyo0R6lKjv6-DtO2idBh4H1bk-eDue7DebVYFDTUpH-0fqCM3KjfD60_yZAbVYzdF9tGGXI3hgYPQAdVTxEG3WpT6w1fyP0McWqn5--97GE27whAFP2OAJWzzhWYqvLrHFEl7B0mP0aW98NHpDbD0OImFhOSfwTTPlS2DUQEMTJ1EU1jyeUGnMfBlzlfCApkCIXBFTJ0lcxbhmfyrwUs5pwtwnaK2YFWoLYR-IutCmhCQJWSwcmDW8MBZSuU7MqAi2kVu_o0jaZPW6Zkoe3SShbUSaq05Mspa__D6oX39kCachkhFg6sYrn97yTs_QvSX2n6O1eXmmXqC78nyenZYvLaB-AQveoqc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation%E2%80%93Maximization+algorithm+for+finite+mixture+of+%CE%B1+-stable+distributions&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Castillo-Barnes%2C+D.&rft.au=Martinez-Murcia%2C+F.J.&rft.au=Ram%C3%ADrez%2C+J.&rft.au=G%C3%B3rriz%2C+J.M.&rft.date=2020-11-06&rft.issn=0925-2312&rft.volume=413&rft.spage=210&rft.epage=216&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_06_114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon