Self-adversarial variational autoencoder with spectral residual for time series anomaly detection

Detecting anomalies accurately in time series data has been receiving considerable attention due to its enormous potential for a wide array of applications. Numerous unsupervised anomaly detection methods for time series have been developed because of the difficulty of obtaining accurate labels. How...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 458; s. 349 - 363
Hlavní autoři: Liu, Yunxiao, Lin, Youfang, Xiao, QinFeng, Hu, Ganghui, Wang, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 11.10.2021
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detecting anomalies accurately in time series data has been receiving considerable attention due to its enormous potential for a wide array of applications. Numerous unsupervised anomaly detection methods for time series have been developed because of the difficulty of obtaining accurate labels. However, most existing unsupervised approaches suffer from the problem of anomaly contamination, which results in models that are unable to learn the normal pattern well and further deteriorate the performance of detection methods. To this end, a novel unsupervised method, called Self-adversarial Variational Autoencoder with Spectral Residual (SaVAE-SR), is introduced for time series anomaly detection in this paper. The SaVAE-SR first produces labels for unlabeled training data using the spectral residual technique to identify the most critical anomalies. A VAE model with a modified loss that can leverage label information to remove the influence of anomalous points is then trained in a self-adversarial manner, enabling the model to self-evaluate the learning of complex data distribution and improve itself accordingly. Specifically, the encoder acts as an encoder to approximate the posterior of latent variables and as a discriminator to evaluate the generative ability of the generator and improve itself accordingly. The generator is trained to capture the underlying data distribution and attempts to produce real samples to deceive the discriminator. The encoder and generator of the model compete with each other just like the behavior of GANs but work together under the theoretical framework of VAEs. As a result, the SaVAE-SR model combines the respective strengths of the VAE and adversarial training but does not require an additional discriminator, which makes the whole model very compact. Extensive experiments on five datasets demonstrate the superiority of the proposed method over the existing state-of-the-art methods.
AbstractList Detecting anomalies accurately in time series data has been receiving considerable attention due to its enormous potential for a wide array of applications. Numerous unsupervised anomaly detection methods for time series have been developed because of the difficulty of obtaining accurate labels. However, most existing unsupervised approaches suffer from the problem of anomaly contamination, which results in models that are unable to learn the normal pattern well and further deteriorate the performance of detection methods. To this end, a novel unsupervised method, called Self-adversarial Variational Autoencoder with Spectral Residual (SaVAE-SR), is introduced for time series anomaly detection in this paper. The SaVAE-SR first produces labels for unlabeled training data using the spectral residual technique to identify the most critical anomalies. A VAE model with a modified loss that can leverage label information to remove the influence of anomalous points is then trained in a self-adversarial manner, enabling the model to self-evaluate the learning of complex data distribution and improve itself accordingly. Specifically, the encoder acts as an encoder to approximate the posterior of latent variables and as a discriminator to evaluate the generative ability of the generator and improve itself accordingly. The generator is trained to capture the underlying data distribution and attempts to produce real samples to deceive the discriminator. The encoder and generator of the model compete with each other just like the behavior of GANs but work together under the theoretical framework of VAEs. As a result, the SaVAE-SR model combines the respective strengths of the VAE and adversarial training but does not require an additional discriminator, which makes the whole model very compact. Extensive experiments on five datasets demonstrate the superiority of the proposed method over the existing state-of-the-art methods.
Author Lin, Youfang
Hu, Ganghui
Wang, Jing
Liu, Yunxiao
Xiao, QinFeng
Author_xml – sequence: 1
  givenname: Yunxiao
  surname: Liu
  fullname: Liu, Yunxiao
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Youfang
  surname: Lin
  fullname: Lin, Youfang
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: QinFeng
  surname: Xiao
  fullname: Xiao, QinFeng
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Ganghui
  surname: Hu
  fullname: Hu, Ganghui
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
BookMark eNqFUE1LAzEUDFLBtvoPPOwf2DUv2WazHgQpfkHBg3oOMXmLKbubkqSV_ntT68mDnt7AmxlmZkYmox-RkEugFVAQV-tqxK3xQ8Uog4qKinJ6QqYgG1ZKJsWETGnLFiXjwM7ILMY1pdAAa6dEv2DfldruMEQdnO6L3eEk58eM9TZ5HI23GIpPlz6KuEGTQv4EjM5uM-h8KJIbsIgYHMZCj37Q_b6wmDI125yT0073ES9-7py83d-9Lh_L1fPD0_J2VRpORSoNdG0LuhYNWG5bLrXVYBm1rAbMWVEKCcI09h1kzTqrOW9M7rmoJbaZxufk-uhrgo8xYKeMS99FcmDXK6DqMJZaq-NY6jCWokJlkyyuf4k3wQ067P-T3RxlmIvtHAYVjcuDoXUht1fWu78NvgAmQYpN
CitedBy_id crossref_primary_10_3390_s23021009
crossref_primary_10_1016_j_physa_2024_129602
crossref_primary_10_1016_j_asr_2024_09_050
crossref_primary_10_1109_TNSM_2023_3299846
crossref_primary_10_1177_09544070241227089
crossref_primary_10_1016_j_cosrev_2025_100787
crossref_primary_10_1016_j_ins_2023_119914
crossref_primary_10_1109_ACCESS_2024_3460971
crossref_primary_10_1109_ACCESS_2024_3516198
crossref_primary_10_1109_TNSM_2024_3353772
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_1016_j_neucom_2022_06_042
crossref_primary_10_1109_ACCESS_2024_3361672
crossref_primary_10_1016_j_neucom_2024_127791
crossref_primary_10_1080_03772063_2024_2448588
crossref_primary_10_1016_j_neucom_2024_128441
crossref_primary_10_1089_big_2021_0471
Cites_doi 10.1007/978-3-030-30490-4_56
10.1145/3178876.3185996
10.1109/INFCOM.2012.6195498
10.1609/aaai.v32i1.11829
10.1109/IJCNN.2003.1223670
10.1145/2534169.2486035
10.1109/BigData50022.2020.9378139
10.1109/CVPR.2007.383267
10.1145/2815675.2815679
10.1109/INFCOM.2012.6195694
10.1109/TNNLS.2020.2980749
10.1002/stc.2136
10.1016/j.knosys.2019.105187
10.1561/2200000056
10.1023/A:1010933404324
10.1109/SSCI47803.2020.9308512
10.1111/j.2517-6161.1972.tb00912.x
10.1109/MNET.2009.4804320
10.1016/j.eswa.2018.01.037
10.1145/3292500.3330680
10.1109/PIC.2010.5687485
10.1016/j.eswa.2019.06.028
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.06.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 363
ExternalDocumentID 10_1016_j_neucom_2021_06_030
S0925231221009346
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-c1f991a4671d3d938ada1d20d241e712e86816c7db1842fda337c030548e920d3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691561400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:13:46 EST 2025
Tue Nov 18 21:59:09 EST 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Adversarial training
Spectral residual
Anomaly detection
Time series
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c1f991a4671d3d938ada1d20d241e712e86816c7db1842fda337c030548e920d3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_06_030
crossref_primary_10_1016_j_neucom_2021_06_030
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_06_030
PublicationCentury 2000
PublicationDate 2021-10-11
PublicationDateYYYYMMDD 2021-10-11
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-11
  day: 11
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Clark, Birke, Schönborn, Trigoni, Roberts (b0185) 2020
Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, Kalyan Veeramachaneni, Tadgan: time series anomaly detection using generative adversarial networks, in: 2020 IEEE International Conference on Big Data (IEEE BigData), IEEE, 2020.
Sudipto Guha, Nina Mishra, Gourav Roy, Okke Schrijvers, Robust random cut forest based anomaly detection on streams, in: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, 2016, pp. 2712–2721.
Dan Li, Dacheng Chen, Jonathan Goh, See-kiong Ng, Anomaly detection with generative adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758, 2018.
Kieu, Yang, Guo, Jensen (b0235) 2019
Suk-Bok Lee, Dan Pei, MohammadTaghi Hajiaghayi, Ioannis Pefkianakis, Songwu Lu, He Yan, Zihui Ge, Jennifer Yates, Mario Kosseifi, Threshold compression for 3g scalable monitoring, in: 2012 Proceedings IEEE INFOCOM, IEEE, 2012, pp. 1350–1358.
Krishnamurthy, Sen, Zhang, Chen (b0105) 2003
Hundman, Constantinou, Laporte, Colwell, Soderstrom (b0180) 2018
Qi, Chu, He (b0120) 2018
Diederik P. Kingma, Max Welling, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
Shanbhag, Wolf (b0145) 2009; 23
Lavin, Ahmad (b0295) 2015
Rui Zhang, Shaoyan Zhang, Sethuraman Muthuraman, Jianmin Jiang, One class support vector machine for anomaly detection in the communication network performance data, in: Proceedings of the 5th conference on Applied electromagnetics, wireless and optical communications, Citeseer, 2007, pp. 31–37.
Pena, de Assis, Proença (b0115) 2013
Mihaela Rosca, Balaji Lakshminarayanan, Shakir Mohamed, Distribution matching in variational inference. arXiv preprint arXiv:1802.06847, 2018.
Jordan Hochenbaum, Owen S. Vallis, Arun Kejariwal, Automatic anomaly detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706, 2017.
Choffnes, Bustamante, Ge (b0100) 2010
Nguyen, Goulet (b0035) 2018; 25
Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, See-Kiong Ng, Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks, in: International Conference on Artificial Neural Networks, Springer, 2019, pp. 703–716.
Li, Yan, Wang, Jin (b0250) 2021; 32
Choudhary, Hiranandani, Saini (b0135) 2018
Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al., Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications, in: Proceedings of the 2018 World Wide Web Conference, pages 187–196. International World Wide Web Conferences Steering Committee, 2018.
Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt, Support vector method for novelty detection, in: Advances in Neural Information Processing Systems, 2000, pp. 582–588.
Zhou, Liu, Hooi, Cheng, Ye (b0040) 2019
He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Papadopoulos, Hiren Shah, Jennifer Yates, Argus: end-to-end service anomaly detection and localization from an isp’s point of view, in: 2012 Proceedings IEEE INFOCOM, IEEE, 2012, pp. 2756–2760.
Li, Chen, Pei (b0015) 2018
Md Abul Bashar, Richi Nayak, Tanogan: time series anomaly detection with generative adversarial networks. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2020, pp. 1778–1785.
Chunyong Yin, Sun Zhang, Jin Wang, Neal N. Xiong, Anomaly detection based on convolutional recurrent autoencoder for iot time series, IEEE Trans. Syst. Man Cybern.: Syst. (2020) 1–11.
Kingma, Welling (b0065) 2019; 12
Breunig, Kriegel, Ng, Sander (b0220) 2000
Nga Nguyen Thi, Van Loi Cao, Nhien-An Le-Khac, One-class collective anomaly detection based on long short-term memory recurrent neural networks. arXiv preprint arXiv:1802.00324, 2018.
Guo, Liao, Wang, Lixing, Ji, Li (b0210) 2018; 95
Xiaodi Hou, Liqing Zhang, Saliency detection: a spectral residual approach, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007, pp. 1–8.
Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al., Introvae: introspective variational autoencoders for photographic image synthesis, in: Advances in Neural Information Processing Systems, 2018, pp. 52–63.
Tolga Ergen, Ali Hassan Mirza, and Suleyman Serdar Kozat. Unsupervised and semi-supervised anomaly detection with lstm neural networks. arXiv preprint arXiv:1710.09207, 2017.
Ya, Zhao, Niu, Liu, Sun, Pei (b0205) 2019
Fontugne, Borgnat, Abry, Fukuda (b0140) 2010
Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton, Caelen (b0045) 2018; 100
Audibert, Michiardi, Guyard, Marti, Zuluaga (b0245) 2020
Fox (b0080) 1972; 34
Ian Goodfellow, Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160, 2016.
Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, Qi Zhang, Time-series anomaly detection service at microsoft, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–3017.
Workshop on Hot Topics in Cloud Computing (HotCloud 14), 2014.
Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei Jing, Mei Feng, Opprentice: Towards practical and automatic anomaly detection through machine learning, in: Proceedings of the 2015 Internet Measurement Conference, ACM, 2015, pp. 211–224.
Breiman (b0165) 2001; 45
An, Cho (b0060) 2015; 2
Aditya Grover, Manik Dhar, Stefano Ermon, Flow-gan: Combining maximum likelihood and adversarial learning in generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala, Pytorch: an imperative style, high-performance deep learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol. 32. Curran Associates Inc, 2019.
Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based generative adversarial networks, in: 5th International Conference on Learning Representations, ICLR 2017, 2017.
Laptev, Amizadeh, Flint (b0050) 2015
Wang, Jing, Qi, Feng, Liao (b0155) 2019; 136
Leonid Portnoy, Intrusion detection with unlabeled data using clustering (Ph.D. thesis), Columbia University, 2000.
Wang, Du, Lin, Cui, Shen, Yang (b0255) 2020; 190
Mingyan Teng, Anomaly detection on time series, in: 2010 IEEE International Conference on Progress in Informatics and Computing, vol. 1, IEEE, 2010, pp. 603–608.
Owen Vallis, Jordan Hochenbaum, Arun Kejariwal, A novel technique for long-term anomaly detection in the cloud, in: 6th
Siffer, Fouque, Termier, Largouet (b0125) 2017
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.
Junshui Ma, Simon Perkins, Time-series novelty detection using one-class support vector machines, in: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, IEEE, 2003, pp. 1741–1745.
Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra, Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.
Yingying Chen, Ratul Mahajan, Baskar Sridharan, Zhi-Li Zhang, A provider-side view of web search response time, in: ACM SIGCOMM Computer Communication Review, vol. 43, ACM, 2013, pp. 243–254.
Kingma (10.1016/j.neucom.2021.06.030_b0065) 2019; 12
Qi (10.1016/j.neucom.2021.06.030_b0120) 2018
Choudhary (10.1016/j.neucom.2021.06.030_b0135) 2018
Kieu (10.1016/j.neucom.2021.06.030_b0235) 2019
Pena (10.1016/j.neucom.2021.06.030_b0115) 2013
10.1016/j.neucom.2021.06.030_b0190
10.1016/j.neucom.2021.06.030_b0070
10.1016/j.neucom.2021.06.030_b0030
Lavin (10.1016/j.neucom.2021.06.030_b0295) 2015
Breunig (10.1016/j.neucom.2021.06.030_b0220) 2000
10.1016/j.neucom.2021.06.030_b0230
Wang (10.1016/j.neucom.2021.06.030_b0255) 2020; 190
10.1016/j.neucom.2021.06.030_b0110
Guo (10.1016/j.neucom.2021.06.030_b0210) 2018; 95
10.1016/j.neucom.2021.06.030_b0275
Fox (10.1016/j.neucom.2021.06.030_b0080) 1972; 34
An (10.1016/j.neucom.2021.06.030_b0060) 2015; 2
10.1016/j.neucom.2021.06.030_b0270
10.1016/j.neucom.2021.06.030_b0150
10.1016/j.neucom.2021.06.030_b0075
10.1016/j.neucom.2021.06.030_b0195
10.1016/j.neucom.2021.06.030_b0005
Nguyen (10.1016/j.neucom.2021.06.030_b0035) 2018; 25
10.1016/j.neucom.2021.06.030_b0200
Hundman (10.1016/j.neucom.2021.06.030_b0180) 2018
Fontugne (10.1016/j.neucom.2021.06.030_b0140) 2010
Lin (10.1016/j.neucom.2021.06.030_b0185) 2020
Laptev (10.1016/j.neucom.2021.06.030_b0050) 2015
10.1016/j.neucom.2021.06.030_b0085
10.1016/j.neucom.2021.06.030_b0240
10.1016/j.neucom.2021.06.030_b0285
Wang (10.1016/j.neucom.2021.06.030_b0155) 2019; 136
10.1016/j.neucom.2021.06.030_b0280
Siffer (10.1016/j.neucom.2021.06.030_b0125) 2017
10.1016/j.neucom.2021.06.030_b0160
10.1016/j.neucom.2021.06.030_b0215
Jurgovsky (10.1016/j.neucom.2021.06.030_b0045) 2018; 100
Li (10.1016/j.neucom.2021.06.030_b0250) 2021; 32
Breiman (10.1016/j.neucom.2021.06.030_b0165) 2001; 45
Choffnes (10.1016/j.neucom.2021.06.030_b0100) 2010
Li (10.1016/j.neucom.2021.06.030_b0015) 2018
10.1016/j.neucom.2021.06.030_b0290
10.1016/j.neucom.2021.06.030_b0090
10.1016/j.neucom.2021.06.030_b0130
10.1016/j.neucom.2021.06.030_b0095
10.1016/j.neucom.2021.06.030_b0175
Zhou (10.1016/j.neucom.2021.06.030_b0040) 2019
10.1016/j.neucom.2021.06.030_b0170
Ya (10.1016/j.neucom.2021.06.030_b0205) 2019
10.1016/j.neucom.2021.06.030_b0055
10.1016/j.neucom.2021.06.030_b0010
Krishnamurthy (10.1016/j.neucom.2021.06.030_b0105) 2003
10.1016/j.neucom.2021.06.030_b0025
10.1016/j.neucom.2021.06.030_b0225
Audibert (10.1016/j.neucom.2021.06.030_b0245) 2020
10.1016/j.neucom.2021.06.030_b0265
Shanbhag (10.1016/j.neucom.2021.06.030_b0145) 2009; 23
10.1016/j.neucom.2021.06.030_b0260
10.1016/j.neucom.2021.06.030_b0020
References_xml – reference: Jordan Hochenbaum, Owen S. Vallis, Arun Kejariwal, Automatic anomaly detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706, 2017.
– reference: Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, See-Kiong Ng, Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks, in: International Conference on Artificial Neural Networks, Springer, 2019, pp. 703–716.
– volume: 100
  start-page: 234
  year: 2018
  end-page: 245
  ident: b0045
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Syst. Appl.
– reference: Yingying Chen, Ratul Mahajan, Baskar Sridharan, Zhi-Li Zhang, A provider-side view of web search response time, in: ACM SIGCOMM Computer Communication Review, vol. 43, ACM, 2013, pp. 243–254.
– reference: Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al., Introvae: introspective variational autoencoders for photographic image synthesis, in: Advances in Neural Information Processing Systems, 2018, pp. 52–63.
– reference: Aditya Grover, Manik Dhar, Stefano Ermon, Flow-gan: Combining maximum likelihood and adversarial learning in generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0165
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra, Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.
– reference: Leonid Portnoy, Intrusion detection with unlabeled data using clustering (Ph.D. thesis), Columbia University, 2000.
– reference: Chunyong Yin, Sun Zhang, Jin Wang, Neal N. Xiong, Anomaly detection based on convolutional recurrent autoencoder for iot time series, IEEE Trans. Syst. Man Cybern.: Syst. (2020) 1–11.
– start-page: 38
  year: 2015
  end-page: 44
  ident: b0295
  article-title: Evaluating real-time anomaly detection algorithms–the numenta anomaly benchmark
  publication-title: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), IEEE
– volume: 2
  year: 2015
  ident: b0060
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Special Lecture on IE
– start-page: 4322
  year: 2020
  end-page: 4326
  ident: b0185
  article-title: Anomaly detection for time series using vae-lstm hybrid model
  publication-title: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE
– start-page: 234
  year: 2003
  end-page: 247
  ident: b0105
  article-title: Sketch-based change detection: methods, evaluation, and applications
  publication-title: Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement
– volume: 190
  year: 2020
  ident: b0255
  article-title: advae: a self-adversarial variational autoencoder with gaussian anomaly prior knowledge for anomaly detection
  publication-title: Knowl.-Based Syst.
– reference: Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al., Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications, in: Proceedings of the 2018 World Wide Web Conference, pages 187–196. International World Wide Web Conferences Steering Committee, 2018.
– reference: Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, Qi Zhang, Time-series anomaly detection service at microsoft, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–3017.
– reference: Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala, Pytorch: an imperative style, high-performance deep learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol. 32. Curran Associates Inc, 2019.
– volume: 136
  start-page: 94
  year: 2019
  end-page: 104
  ident: b0155
  article-title: Alsr: an adaptive label screening and relearning approach for interval-oriented anomaly detection
  publication-title: Expert Syst. Appl.
– start-page: 1939
  year: 2015
  end-page: 1947
  ident: b0050
  article-title: Generic and scalable framework for automated time-series anomaly detection
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
– reference: Nga Nguyen Thi, Van Loi Cao, Nhien-An Le-Khac, One-class collective anomaly detection based on long short-term memory recurrent neural networks. arXiv preprint arXiv:1802.00324, 2018.
– start-page: 548
  year: 2018
  end-page: 552
  ident: b0120
  article-title: Iterative anomaly detection algorithm based on time series analysis
  publication-title: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), IEEE
– reference: Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, Kalyan Veeramachaneni, Tadgan: time series anomaly detection using generative adversarial networks, in: 2020 IEEE International Conference on Big Data (IEEE BigData), IEEE, 2020.
– reference: Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based generative adversarial networks, in: 5th International Conference on Learning Representations, ICLR 2017, 2017.
– start-page: 2828
  year: 2019
  end-page: 2837
  ident: b0205
  article-title: Robust anomaly detection for multivariate time series through stochastic recurrent neural network
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: Mingyan Teng, Anomaly detection on time series, in: 2010 IEEE International Conference on Progress in Informatics and Computing, vol. 1, IEEE, 2010, pp. 603–608.
– reference: Dan Li, Dacheng Chen, Jonathan Goh, See-kiong Ng, Anomaly detection with generative adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758, 2018.
– reference: Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei Jing, Mei Feng, Opprentice: Towards practical and automatic anomaly detection through machine learning, in: Proceedings of the 2015 Internet Measurement Conference, ACM, 2015, pp. 211–224.
– start-page: 522
  year: 2018
  end-page: 530
  ident: b0135
  article-title: Sparse decomposition for time series forecasting and anomaly detection
  publication-title: Proceedings of the 2018 SIAM International Conference on Data Mining, SIAM
– reference: Workshop on Hot Topics in Cloud Computing (HotCloud 14), 2014.
– reference: Ian Goodfellow, Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160, 2016.
– start-page: 93
  year: 2000
  end-page: 104
  ident: b0220
  article-title: Lof: Identifying density-based local outliers
  publication-title: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
– reference: Diederik P. Kingma, Max Welling, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
– reference: He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Papadopoulos, Hiren Shah, Jennifer Yates, Argus: end-to-end service anomaly detection and localization from an isp’s point of view, in: 2012 Proceedings IEEE INFOCOM, IEEE, 2012, pp. 2756–2760.
– reference: Tolga Ergen, Ali Hassan Mirza, and Suleyman Serdar Kozat. Unsupervised and semi-supervised anomaly detection with lstm neural networks. arXiv preprint arXiv:1710.09207, 2017.
– reference: Owen Vallis, Jordan Hochenbaum, Arun Kejariwal, A novel technique for long-term anomaly detection in the cloud, in: 6th
– start-page: 1
  year: 2010
  end-page: 12
  ident: b0140
  article-title: Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking
  publication-title: Proceedings of the 6th International COnference
– reference: Xiaodi Hou, Liqing Zhang, Saliency detection: a spectral residual approach, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007, pp. 1–8.
– reference: Rui Zhang, Shaoyan Zhang, Sethuraman Muthuraman, Jianmin Jiang, One class support vector machine for anomaly detection in the communication network performance data, in: Proceedings of the 5th conference on Applied electromagnetics, wireless and optical communications, Citeseer, 2007, pp. 31–37.
– reference: Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.
– start-page: 3395
  year: 2020
  end-page: 3404
  ident: b0245
  article-title: Usad: unsupervised anomaly detection on multivariate time series
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: Mihaela Rosca, Balaji Lakshminarayanan, Shakir Mohamed, Distribution matching in variational inference. arXiv preprint arXiv:1802.06847, 2018.
– start-page: 63
  year: 2013
  end-page: 66
  ident: b0115
  article-title: Anomaly detection using forecasting methods arima and hwds
  publication-title: 2013 32nd International Conference of the Chilean Computer Science Society (SCCC), IEEE
– reference: Junshui Ma, Simon Perkins, Time-series novelty detection using one-class support vector machines, in: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, IEEE, 2003, pp. 1741–1745.
– start-page: 4433
  year: 2019
  end-page: 4439
  ident: b0040
  article-title: Beatgan: anomalous rhythm detection using adversarially generated time series
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– reference: Suk-Bok Lee, Dan Pei, MohammadTaghi Hajiaghayi, Ioannis Pefkianakis, Songwu Lu, He Yan, Zihui Ge, Jennifer Yates, Mario Kosseifi, Threshold compression for 3g scalable monitoring, in: 2012 Proceedings IEEE INFOCOM, IEEE, 2012, pp. 1350–1358.
– volume: 34
  start-page: 350
  year: 1972
  end-page: 363
  ident: b0080
  article-title: Outliers in time series
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– reference: Sudipto Guha, Nina Mishra, Gourav Roy, Okke Schrijvers, Robust random cut forest based anomaly detection on streams, in: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, 2016, pp. 2712–2721.
– reference: Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt, Support vector method for novelty detection, in: Advances in Neural Information Processing Systems, 2000, pp. 582–588.
– volume: 95
  start-page: 97
  year: 2018
  end-page: 112
  ident: b0210
  article-title: Multidimensional time series anomaly detection: a gru-based gaussian mixture variational autoencoder approach
  publication-title: Asian Conference on Machine Learning
– reference: Md Abul Bashar, Richi Nayak, Tanogan: time series anomaly detection with generative adversarial networks. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2020, pp. 1778–1785.
– volume: 23
  start-page: 22
  year: 2009
  end-page: 28
  ident: b0145
  article-title: Accurate anomaly detection through parallelism
  publication-title: IEEE Network
– start-page: 387
  year: 2010
  end-page: 398
  ident: b0100
  article-title: Crowdsourcing service-level network event monitoring
  publication-title: Proceedings of the ACM SIGCOMM 2010 Conference
– volume: 25
  year: 2018
  ident: b0035
  article-title: Anomaly detection with the switching kalman filter for structural health monitoring
  publication-title: Struct. Control Health Monit.
– start-page: 2725
  year: 2019
  end-page: 2732
  ident: b0235
  article-title: Outlier detection for time series with recurrent autoencoder ensembles
  publication-title: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
– start-page: 387
  year: 2018
  end-page: 395
  ident: b0180
  article-title: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding
  publication-title: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining
– volume: 32
  start-page: 1177
  year: 2021
  end-page: 1191
  ident: b0250
  article-title: Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: b0065
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
– start-page: 1
  year: 2018
  end-page: 9
  ident: b0015
  article-title: Robust and unsupervised kpi anomaly detection based on conditional variational autoencoder
  publication-title: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), IEEE
– start-page: 1067
  year: 2017
  end-page: 1075
  ident: b0125
  article-title: Anomaly detection in streams with extreme value theory
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– ident: 10.1016/j.neucom.2021.06.030_b0150
– ident: 10.1016/j.neucom.2021.06.030_b0195
  doi: 10.1007/978-3-030-30490-4_56
– ident: 10.1016/j.neucom.2021.06.030_b0020
  doi: 10.1145/3178876.3185996
– start-page: 234
  year: 2003
  ident: 10.1016/j.neucom.2021.06.030_b0105
  article-title: Sketch-based change detection: methods, evaluation, and applications
– ident: 10.1016/j.neucom.2021.06.030_b0240
– ident: 10.1016/j.neucom.2021.06.030_b0160
– ident: 10.1016/j.neucom.2021.06.030_b0070
– ident: 10.1016/j.neucom.2021.06.030_b0090
  doi: 10.1109/INFCOM.2012.6195498
– ident: 10.1016/j.neucom.2021.06.030_b0075
  doi: 10.1609/aaai.v32i1.11829
– start-page: 387
  year: 2010
  ident: 10.1016/j.neucom.2021.06.030_b0100
  article-title: Crowdsourcing service-level network event monitoring
– start-page: 93
  year: 2000
  ident: 10.1016/j.neucom.2021.06.030_b0220
  article-title: Lof: Identifying density-based local outliers
– ident: 10.1016/j.neucom.2021.06.030_b0005
  doi: 10.1109/IJCNN.2003.1223670
– start-page: 548
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0120
  article-title: Iterative anomaly detection algorithm based on time series analysis
– ident: 10.1016/j.neucom.2021.06.030_b0095
  doi: 10.1145/2534169.2486035
– volume: 95
  start-page: 97
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0210
  article-title: Multidimensional time series anomaly detection: a gru-based gaussian mixture variational autoencoder approach
  publication-title: Asian Conference on Machine Learning
– ident: 10.1016/j.neucom.2021.06.030_b0230
  doi: 10.1109/BigData50022.2020.9378139
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0015
  article-title: Robust and unsupervised kpi anomaly detection based on conditional variational autoencoder
– ident: 10.1016/j.neucom.2021.06.030_b0285
– start-page: 63
  year: 2013
  ident: 10.1016/j.neucom.2021.06.030_b0115
  article-title: Anomaly detection using forecasting methods arima and hwds
– ident: 10.1016/j.neucom.2021.06.030_b0130
– start-page: 387
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0180
  article-title: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding
– volume: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.06.030_b0060
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Special Lecture on IE
– ident: 10.1016/j.neucom.2021.06.030_b0200
– ident: 10.1016/j.neucom.2021.06.030_b0260
  doi: 10.1109/CVPR.2007.383267
– ident: 10.1016/j.neucom.2021.06.030_b0010
– ident: 10.1016/j.neucom.2021.06.030_b0025
  doi: 10.1145/2815675.2815679
– ident: 10.1016/j.neucom.2021.06.030_b0225
– ident: 10.1016/j.neucom.2021.06.030_b0270
– ident: 10.1016/j.neucom.2021.06.030_b0110
  doi: 10.1109/INFCOM.2012.6195694
– ident: 10.1016/j.neucom.2021.06.030_b0215
– ident: 10.1016/j.neucom.2021.06.030_b0175
– volume: 32
  start-page: 1177
  issue: 3
  year: 2021
  ident: 10.1016/j.neucom.2021.06.030_b0250
  article-title: Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.2980749
– start-page: 38
  year: 2015
  ident: 10.1016/j.neucom.2021.06.030_b0295
  article-title: Evaluating real-time anomaly detection algorithms–the numenta anomaly benchmark
– volume: 25
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0035
  article-title: Anomaly detection with the switching kalman filter for structural health monitoring
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2136
– start-page: 4322
  year: 2020
  ident: 10.1016/j.neucom.2021.06.030_b0185
  article-title: Anomaly detection for time series using vae-lstm hybrid model
– ident: 10.1016/j.neucom.2021.06.030_b0280
– ident: 10.1016/j.neucom.2021.06.030_b0290
– ident: 10.1016/j.neucom.2021.06.030_b0030
– start-page: 2828
  year: 2019
  ident: 10.1016/j.neucom.2021.06.030_b0205
  article-title: Robust anomaly detection for multivariate time series through stochastic recurrent neural network
– volume: 190
  year: 2020
  ident: 10.1016/j.neucom.2021.06.030_b0255
  article-title: advae: a self-adversarial variational autoencoder with gaussian anomaly prior knowledge for anomaly detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105187
– start-page: 4433
  year: 2019
  ident: 10.1016/j.neucom.2021.06.030_b0040
  article-title: Beatgan: anomalous rhythm detection using adversarially generated time series
– start-page: 522
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0135
  article-title: Sparse decomposition for time series forecasting and anomaly detection
– start-page: 3395
  year: 2020
  ident: 10.1016/j.neucom.2021.06.030_b0245
  article-title: Usad: unsupervised anomaly detection on multivariate time series
– start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2021.06.030_b0140
  article-title: Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking
– start-page: 2725
  year: 2019
  ident: 10.1016/j.neucom.2021.06.030_b0235
  article-title: Outlier detection for time series with recurrent autoencoder ensembles
– volume: 12
  start-page: 307
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2021.06.030_b0065
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.neucom.2021.06.030_b0165
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 10.1016/j.neucom.2021.06.030_b0190
  doi: 10.1109/SSCI47803.2020.9308512
– ident: 10.1016/j.neucom.2021.06.030_b0275
– volume: 34
  start-page: 350
  issue: 3
  year: 1972
  ident: 10.1016/j.neucom.2021.06.030_b0080
  article-title: Outliers in time series
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1972.tb00912.x
– volume: 23
  start-page: 22
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2021.06.030_b0145
  article-title: Accurate anomaly detection through parallelism
  publication-title: IEEE Network
  doi: 10.1109/MNET.2009.4804320
– start-page: 1067
  year: 2017
  ident: 10.1016/j.neucom.2021.06.030_b0125
  article-title: Anomaly detection in streams with extreme value theory
– volume: 100
  start-page: 234
  year: 2018
  ident: 10.1016/j.neucom.2021.06.030_b0045
  article-title: Sequence classification for credit-card fraud detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.037
– ident: 10.1016/j.neucom.2021.06.030_b0055
  doi: 10.1145/3292500.3330680
– ident: 10.1016/j.neucom.2021.06.030_b0170
  doi: 10.1109/PIC.2010.5687485
– ident: 10.1016/j.neucom.2021.06.030_b0265
– start-page: 1939
  year: 2015
  ident: 10.1016/j.neucom.2021.06.030_b0050
  article-title: Generic and scalable framework for automated time-series anomaly detection
– ident: 10.1016/j.neucom.2021.06.030_b0085
– volume: 136
  start-page: 94
  year: 2019
  ident: 10.1016/j.neucom.2021.06.030_b0155
  article-title: Alsr: an adaptive label screening and relearning approach for interval-oriented anomaly detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.028
SSID ssj0017129
Score 2.4542975
Snippet Detecting anomalies accurately in time series data has been receiving considerable attention due to its enormous potential for a wide array of applications....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms Adversarial training
Anomaly detection
Spectral residual
Time series
Variational autoencoder
Title Self-adversarial variational autoencoder with spectral residual for time series anomaly detection
URI https://dx.doi.org/10.1016/j.neucom.2021.06.030
Volume 458
WOSCitedRecordID wos000691561400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvbHyJ8SU_8DYZJXGTOI8V2gQTmkAMqW-RE9uQqU2nNqnKP8HfzJ3tpNmGBnvgJa0sx0l9v96dz-ffEfKWJ0kgeWiYFlIwsHgFk4UIWaFjDgZLloEytthEenYmZrPs82j0qzsLs5mndS222-zyv4oa2kDYeHT2DuLuB4UG-A5ChyuIHa7_JPivem6YxDrLa2lLcmzww4f8ZNsskboSGSRcdjqetFxZdv-1O5dl8w6rhT7Ct9VI4bxcyPnPI6Ubm7ZVD_1Zy-1R2soQPuYwXSD1gkKc9TGGT1VrVX1bbyu53LVajQf6xkhvP6F1Bj2w-UtVw7R-38HORvCh44-2GoYqIpsr51WpjzlGMQOH8or6nTjqdq9AuSMw9baYO-V3Q827iMPFu1q3mPODz7IsrH6L5wqr9jVr1-cgdultF7kbJcdRcszy48E9shelcSbGZG_68Xh22u9LpWHk2Bv9D-kOY9qMwZtv82dnZ-DAnB-Qh37lQacOMY_ISNePyX5X1YN6Jf-EyOsAogMA0QGAKAKIdgCiHYAoAIgigKgDEPUAoj2AnpJvJ8fn7z8wX4iDlbCibFgZGlhGSLCpoeIq40IqGaooUOD-aZgSLRIRJmWqilBMIqMk52mJlmQidAbd-DMyrpe1fk5oWATGRCaCgQvcopfgP4ukiINCGXBG40PCuxnLS89Sj8VS5vlt8jokrL_r0rG0_KV_2gkj956m8yBzQNitd76445Nekge7f8IrMm5WrX5N7pebplqv3nh4_QZIF6Uh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adversarial+variational+autoencoder+with+spectral+residual+for+time+series+anomaly+detection&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Yunxiao&rft.au=Lin%2C+Youfang&rft.au=Xiao%2C+QinFeng&rft.au=Hu%2C+Ganghui&rft.date=2021-10-11&rft.issn=0925-2312&rft.volume=458&rft.spage=349&rft.epage=363&rft_id=info:doi/10.1016%2Fj.neucom.2021.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_06_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon