A semi-supervised learning algorithm via adaptive Laplacian graph

Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classif...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 426; pp. 162 - 173
Main Authors: Yuan, Yuan, Li, Xin, Wang, Qi, Nie, Feiping
Format: Journal Article
Language:English
Published: Elsevier B.V 22.02.2021
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classification accuracy. However, graph-based algorithms mostly use k-Nearest Neighbor to construct the graph. And the directly constructed graph is inaccurate due to outliers and erroneous features in the data. Secondly, the amount of labeled data is a small part of all data. It cannot be guaranteed that all categories of data are included in the labeled data and the labels of data are not totally correct in practice. To address the aforementioned problems, we propose a new graph-based semi-supervised method named ALGSSL via adaptive Laplacian graph. In the algorithm, we adaptively update the graph to reduce the sensitiveness of the construction of initial graph. Meanwhile, we use the regularization parameters to set confidence on existing labels, which can reduce the impact of the error labels on the result and discover the new category. Experiments on three toy datasets and nine benchmark datasets demonstrate the proposed method can achieve good performance.
AbstractList Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classification accuracy. However, graph-based algorithms mostly use k-Nearest Neighbor to construct the graph. And the directly constructed graph is inaccurate due to outliers and erroneous features in the data. Secondly, the amount of labeled data is a small part of all data. It cannot be guaranteed that all categories of data are included in the labeled data and the labels of data are not totally correct in practice. To address the aforementioned problems, we propose a new graph-based semi-supervised method named ALGSSL via adaptive Laplacian graph. In the algorithm, we adaptively update the graph to reduce the sensitiveness of the construction of initial graph. Meanwhile, we use the regularization parameters to set confidence on existing labels, which can reduce the impact of the error labels on the result and discover the new category. Experiments on three toy datasets and nine benchmark datasets demonstrate the proposed method can achieve good performance.
Author Wang, Qi
Yuan, Yuan
Li, Xin
Nie, Feiping
Author_xml – sequence: 1
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
– sequence: 2
  givenname: Xin
  surname: Li
  fullname: Li, Xin
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: crabwq@gmail.com
– sequence: 4
  givenname: Feiping
  surname: Nie
  fullname: Nie, Feiping
BookMark eNqFkM1KAzEURoNUsFbfwEVeYMabzG9cCKX4BwU3ug63yZ02ZSYzJNMB396WunKhq291Dnznms1874mxOwGpAFHe71NPB9N3qQQJKagUSnXB5qKuZFLLupyxOShZJDIT8opdx7gHEJWQas6WSx6pc0k8DBQmF8nyljB457cc220f3Ljr-OSQo8VhdBPxNQ4tGoeebwMOuxt22WAb6fZnF-zz-elj9Zqs31_eVst1YjIox8QIo-oKC7Upm4xMJgFq2WBBCBYKgaLM8rJAiQDSqKayubLCUoFFviFlVLZg-dlrQh9joEYPwXUYvrQAfcqg9_qcQZ8yaFD6mOGIPfzCjBtxdL0fA7r2P_jxDNPx2OQo6GgceUPWBTKjtr37W_ANQtt-Rg
CitedBy_id crossref_primary_10_1016_j_partic_2024_05_011
crossref_primary_10_1109_ACCESS_2024_3440915
crossref_primary_10_1016_j_scs_2021_102874
crossref_primary_10_1016_j_saa_2023_122354
crossref_primary_10_1016_j_neucom_2025_131223
crossref_primary_10_1109_TCSVT_2022_3197230
crossref_primary_10_1016_j_aei_2024_102902
crossref_primary_10_1016_j_asoc_2023_111164
crossref_primary_10_1016_j_sigpro_2024_109436
crossref_primary_10_1109_JSTARS_2023_3335286
crossref_primary_10_1109_TPAMI_2021_3104733
crossref_primary_10_1007_s11063_021_10687_4
crossref_primary_10_1109_TSC_2024_3407601
crossref_primary_10_1109_TIM_2023_3343772
crossref_primary_10_1016_j_ins_2024_120132
crossref_primary_10_1049_ipr2_12308
crossref_primary_10_3390_sym13112040
crossref_primary_10_1007_s10462_023_10397_4
crossref_primary_10_1007_s11227_023_05474_y
crossref_primary_10_1145_3643645
crossref_primary_10_1016_j_measurement_2022_112194
Cites_doi 10.1109/TNNLS.2016.2597444
10.1109/TPAMI.2018.2875002
10.1109/TKDE.2017.2749574
10.1609/aaai.v32i1.11513
10.1109/IJCNN.2018.8489487
10.1016/j.neucom.2018.04.031
10.1023/A:1007692713085
10.1145/1553374.1553456
10.1007/s10994-016-5607-3
10.1109/CVPR.2017.238
10.1145/3097983.3098141
10.24963/ijcai.2017/475
10.1007/s00521-009-0305-8
10.1126/science.290.5500.2319
10.1109/WNYIPW.2014.6999481
10.1109/TKDE.2005.186
10.1609/aaai.v31i1.10909
10.1609/aaai.v30i1.10302
10.1109/TKDE.2016.2535367
10.1109/INDIN.2017.8104913
10.1109/TNNLS.2019.2939637
10.1109/SSCI.2018.8628663
10.1145/279943.279962
10.1016/j.eswa.2018.04.031
10.1109/TIP.2017.2754939
10.1126/science.290.5500.2323
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.09.069
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 173
ExternalDocumentID 10_1016_j_neucom_2020_09_069
S0925231220316003
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-c1c987a59b6f3ec320082fa5ea0d051a163465a2a002c9f7d49d1de5a54be9c93
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606709400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:08:38 EST 2025
Sat Nov 29 07:11:01 EST 2025
Fri Feb 23 02:48:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Semi-supervised learning
Adaptive graph
Pattern recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c1c987a59b6f3ec320082fa5ea0d051a163465a2a002c9f7d49d1de5a54be9c93
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_09_069
crossref_citationtrail_10_1016_j_neucom_2020_09_069
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_09_069
PublicationCentury 2000
PublicationDate 2021-02-22
PublicationDateYYYYMMDD 2021-02-22
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-22
  day: 22
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Karasuyama, Mamitsuka (b0140) 2017; 106
W. Zhan, M.L. Zhang, Inductive semi-supervised multi-label learning with co-training, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1305–1314.
L.P. Valem, D.C. Pedronette, F. Breve, I.R. Guilherme, Manifold correlation graph for semi-supervised learning, in: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–7.
Tenenbaum, Silva, Langford (b0025) 2000; 290
J. Y. Wang, I. Almasri, X. Gao, Adaptive graph regularized nonnegative matrix factorization via feature selection, in: International Conference on Pattern Recognition, 2012, pp. 963–966.
D.P. Kingma, S. Mohamed, D.J. Rezende, M. Welling, Semi-supervised learning with deep generative models, in: Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.
Gan, Li, Wu, Luo, Huang (b0195) 2018; 107
Joachims (b0175) 2002
Y. Kuznietsov, J. Stückler, B. Leibe, Semi-supervised deep learning for monocular depth map prediction, in: IEEE Conference on Computer Vision & Pattern Recognition, 2017.
Li, Chen, Qi (bib201) 2017
O. Chapelle, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics, 2004.
Chapelle, Schlkopf, Zien (b0200) 2006
F. Nie, G. Cai, X. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in: AAAI, 2017, pp. 2408–2414.
Huang, Nie, Huang (b0165) 2015
Nigam, Mccallum, Thrun, Mitchell (b0105) 2000; 39
A. Fujino, N. Ueda, K. Saito, A hybrid generative/discriminative approach to semi-supervised classifier design, in: National Conference on Artificial Intelligence, 2005, pp. 764–769.
Y.-F. Li, S.-B. Wang, Z.-H. Zhou, Graph quality judgement: a large margin expedition, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 1725–1731.
Y. Meng, R. Shang, F. Shang, L. Jiao, S. Yang, R. Stolkin, Semi-supervised graph regularized deep nmf with bi-orthogonal constraints for data representation, IEEE Trans. Neural Networks Learn. Syst. (2019).
Li, Chen, Nie, Wang (b0045) 2017
K. Atarashi, S. Oyama, M. Kurihara, Semi-supervised learning from crowds using deep generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
F. Nie, X. Wang, M.I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based clustering., in: AAAI, 2016, pp. 1969–1976.
Wang, Fu, Hao, Tao, Wu (b0010) 2016; 28
Miller (b0100) 1997; 9
L. Zhang, Q. Zhang, B. Du, J. You, D. Tao, Adaptive manifold regularized matrix factorization for data clustering, in: Twenty-sixth International Joint Conference on Artificial Intelligence, 2017, pp. 3399–3405.
Chen, Wang, Li (b0065) 2018; 306
Nie, Cai, Li, Li (b0055) 2017; 27
M. Zhao, Z. Zhang, C. Zhan, W. Wang, Graph based semi-supervised classification via capped l 2, 1-norm regularized dictionary learning, in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), IEEE, 2017, pp. 1019–1024
A.K. Ziemann, D.W. Messinger, P.S. Wenger, An adaptive k-nearest neighbor graph building technique with applications to hyperspectral imagery, in: Image and Signal Processing Workshop, 2015, pp. 32–36.
C.-Y. Chang, T.-Y. Chen, P.-C. Chung, Semi-supervised learning using generative adversarial networks, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 892–896.
Zhu (b0005) 2007
Roweis, Saul (b0030) 2000; 290
Zhou, Li (b0125) 2005; 17
D. Zhou, O. Bousquet, T.N. Lal, J. Weston, Learning with local and global consistency, in: International Conference on Neural Information Processing Systems, 2003, pp. 321–328.
Nie, Xiang, Liu, Zhang (b0095) 2010; 19
Wang, Chen, Nie, Li (b0050) 2018; 42
Jiang, Chen, Bo (b0015) 2017; 29
R. Fierimonte, S. Scardapane, A. Uncini, M. Panella, Fully decentralized semi-supervised learning via privacy-preserving matrix completion, IEEE Trans. Neural Networks Learn. Syst. 28 (11) (2017) 2699–2711.
Y.-F. Li, J. T. Kwok, Z.-H. Zhou, Semi-supervised learning using label mean, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, pp. 633–640.
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Conference on Computational Learning Theory, 1998, pp. 92–100.
Belkin, Niyogi, Sindhwani (b0135) 2006; 7
S.A. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data (2000) 327–334
10.1016/j.neucom.2020.09.069_b0115
Chen (10.1016/j.neucom.2020.09.069_b0065) 2018; 306
10.1016/j.neucom.2020.09.069_b0035
10.1016/j.neucom.2020.09.069_b0155
10.1016/j.neucom.2020.09.069_b0110
Zhu (10.1016/j.neucom.2020.09.069_b0005) 2007
10.1016/j.neucom.2020.09.069_b0075
10.1016/j.neucom.2020.09.069_b0130
10.1016/j.neucom.2020.09.069_b0150
Li (10.1016/j.neucom.2020.09.069_b0045) 2017
10.1016/j.neucom.2020.09.069_b0170
10.1016/j.neucom.2020.09.069_b0070
Belkin (10.1016/j.neucom.2020.09.069_b0135) 2006; 7
10.1016/j.neucom.2020.09.069_b0190
10.1016/j.neucom.2020.09.069_b0090
Jiang (10.1016/j.neucom.2020.09.069_b0015) 2017; 29
Chapelle (10.1016/j.neucom.2020.09.069_b0200) 2006
Nigam (10.1016/j.neucom.2020.09.069_b0105) 2000; 39
Joachims (10.1016/j.neucom.2020.09.069_b0175) 2002
Li (10.1016/j.neucom.2020.09.069_bib201) 2017
Nie (10.1016/j.neucom.2020.09.069_b0055) 2017; 27
Huang (10.1016/j.neucom.2020.09.069_b0165) 2015
Roweis (10.1016/j.neucom.2020.09.069_b0030) 2000; 290
10.1016/j.neucom.2020.09.069_b0145
10.1016/j.neucom.2020.09.069_b0120
10.1016/j.neucom.2020.09.069_b0020
10.1016/j.neucom.2020.09.069_b0185
10.1016/j.neucom.2020.09.069_b0085
10.1016/j.neucom.2020.09.069_b0040
10.1016/j.neucom.2020.09.069_b0160
Wang (10.1016/j.neucom.2020.09.069_b0010) 2016; 28
10.1016/j.neucom.2020.09.069_b0060
Karasuyama (10.1016/j.neucom.2020.09.069_b0140) 2017; 106
10.1016/j.neucom.2020.09.069_b0180
Gan (10.1016/j.neucom.2020.09.069_b0195) 2018; 107
10.1016/j.neucom.2020.09.069_b0080
Wang (10.1016/j.neucom.2020.09.069_b0050) 2018; 42
Zhou (10.1016/j.neucom.2020.09.069_b0125) 2005; 17
Tenenbaum (10.1016/j.neucom.2020.09.069_b0025) 2000; 290
Nie (10.1016/j.neucom.2020.09.069_b0095) 2010; 19
Miller (10.1016/j.neucom.2020.09.069_b0100) 1997; 9
References_xml – year: 2002
  ident: b0175
  article-title: Learning to Classify Text Using Support Vector Machines
– volume: 106
  start-page: 307
  year: 2017
  end-page: 335
  ident: b0140
  article-title: Adaptive edge weighting for graph-based learning algorithms
  publication-title: Mach. Learn.
– reference: Y. Meng, R. Shang, F. Shang, L. Jiao, S. Yang, R. Stolkin, Semi-supervised graph regularized deep nmf with bi-orthogonal constraints for data representation, IEEE Trans. Neural Networks Learn. Syst. (2019).
– start-page: 4147
  year: 2017
  end-page: 4153
  ident: bib201
  article-title: A multiview-based parameter free framework for group detection
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: b0135
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 107
  start-page: 243
  year: 2018
  end-page: 254
  ident: b0195
  article-title: Safety-aware graph-based semi-supervised learning
  publication-title: Expert Syst. Appl.
– year: 2007
  ident: b0005
  publication-title: Semi-supervised learning literature survey
– start-page: 3569
  year: 2015
  end-page: 3575
  ident: b0165
  article-title: A new simplex sparse learning model to measure data similarity for clustering
  publication-title: IJCAI
– volume: 29
  start-page: 2758
  year: 2017
  end-page: 2771
  ident: b0015
  article-title: Scalable graph-based semi-supervised learning through sparse bayesian model
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: b0025
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 28
  start-page: 1864
  year: 2016
  end-page: 1877
  ident: b0010
  article-title: Scalable semi-supervised learning by efficient anchor graph regularization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: b0030
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– reference: R. Fierimonte, S. Scardapane, A. Uncini, M. Panella, Fully decentralized semi-supervised learning via privacy-preserving matrix completion, IEEE Trans. Neural Networks Learn. Syst. 28 (11) (2017) 2699–2711.
– year: 2006
  ident: b0200
  publication-title: Semi-supervised learning
– reference: L.P. Valem, D.C. Pedronette, F. Breve, I.R. Guilherme, Manifold correlation graph for semi-supervised learning, in: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–7.
– volume: 39
  start-page: 103
  year: 2000
  end-page: 134
  ident: b0105
  article-title: Text classification from labeled and unlabeled documents using EM
  publication-title: Mach. Learn.
– reference: D. Zhou, O. Bousquet, T.N. Lal, J. Weston, Learning with local and global consistency, in: International Conference on Neural Information Processing Systems, 2003, pp. 321–328.
– reference: D.P. Kingma, S. Mohamed, D.J. Rezende, M. Welling, Semi-supervised learning with deep generative models, in: Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.
– reference: O. Chapelle, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics, 2004.
– reference: L. Zhang, Q. Zhang, B. Du, J. You, D. Tao, Adaptive manifold regularized matrix factorization for data clustering, in: Twenty-sixth International Joint Conference on Artificial Intelligence, 2017, pp. 3399–3405.
– reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Conference on Computational Learning Theory, 1998, pp. 92–100.
– reference: Y. Kuznietsov, J. Stückler, B. Leibe, Semi-supervised deep learning for monocular depth map prediction, in: IEEE Conference on Computer Vision & Pattern Recognition, 2017.
– reference: F. Nie, G. Cai, X. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in: AAAI, 2017, pp. 2408–2414.
– volume: 19
  start-page: 549
  year: 2010
  end-page: 555
  ident: b0095
  article-title: A general graph-based semi-supervised learning with novel class discovery
  publication-title: Neural Comput. Appl.
– reference: S.A. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data (2000) 327–334
– reference: Y.-F. Li, J. T. Kwok, Z.-H. Zhou, Semi-supervised learning using label mean, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, pp. 633–640.
– reference: A.K. Ziemann, D.W. Messinger, P.S. Wenger, An adaptive k-nearest neighbor graph building technique with applications to hyperspectral imagery, in: Image and Signal Processing Workshop, 2015, pp. 32–36.
– reference: A. Fujino, N. Ueda, K. Saito, A hybrid generative/discriminative approach to semi-supervised classifier design, in: National Conference on Artificial Intelligence, 2005, pp. 764–769.
– volume: 306
  start-page: 182
  year: 2018
  end-page: 188
  ident: b0065
  article-title: Adaptive projected matrix factorization method for data clustering
  publication-title: Neurocomputing
– reference: C.-Y. Chang, T.-Y. Chen, P.-C. Chung, Semi-supervised learning using generative adversarial networks, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 892–896.
– reference: J. Y. Wang, I. Almasri, X. Gao, Adaptive graph regularized nonnegative matrix factorization via feature selection, in: International Conference on Pattern Recognition, 2012, pp. 963–966.
– reference: F. Nie, X. Wang, M.I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based clustering., in: AAAI, 2016, pp. 1969–1976.
– volume: 42
  start-page: 46
  year: 2018
  end-page: 58
  ident: b0050
  article-title: Detecting coherent groups in crowd scenes by multiview clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 1529
  year: 2005
  end-page: 1541
  ident: b0125
  article-title: Tri-training: exploiting unlabeled data using three classifiers
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Y.-F. Li, S.-B. Wang, Z.-H. Zhou, Graph quality judgement: a large margin expedition, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 1725–1731.
– start-page: 2201
  year: 2017
  end-page: 2207
  ident: b0045
  article-title: Locality Adaptive Discriminant Analysis Locality Adaptive Discriminant Analysis
  publication-title: Locality Adaptive Discriminant Analysis, Proceeding of International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 27
  start-page: 1501
  year: 2017
  end-page: 1511
  ident: b0055
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Transactions on Image Processing
– volume: 9
  start-page: 571
  year: 1997
  end-page: 577
  ident: b0100
  article-title: A mixture of experts classifier with learning based on both labelled and unlabeled data
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: K. Atarashi, S. Oyama, M. Kurihara, Semi-supervised learning from crowds using deep generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– reference: M. Zhao, Z. Zhang, C. Zhan, W. Wang, Graph based semi-supervised classification via capped l 2, 1-norm regularized dictionary learning, in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), IEEE, 2017, pp. 1019–1024
– reference: W. Zhan, M.L. Zhang, Inductive semi-supervised multi-label learning with co-training, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1305–1314.
– ident: 10.1016/j.neucom.2020.09.069_b0090
  doi: 10.1109/TNNLS.2016.2597444
– volume: 42
  start-page: 46
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.09.069_b0050
  article-title: Detecting coherent groups in crowd scenes by multiview clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2875002
– ident: 10.1016/j.neucom.2020.09.069_b0070
– volume: 29
  start-page: 2758
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2020.09.069_b0015
  article-title: Scalable graph-based semi-supervised learning through sparse bayesian model
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2749574
– ident: 10.1016/j.neucom.2020.09.069_b0155
  doi: 10.1609/aaai.v32i1.11513
– year: 2002
  ident: 10.1016/j.neucom.2020.09.069_b0175
– year: 2007
  ident: 10.1016/j.neucom.2020.09.069_b0005
– ident: 10.1016/j.neucom.2020.09.069_b0080
  doi: 10.1109/IJCNN.2018.8489487
– volume: 306
  start-page: 182
  year: 2018
  ident: 10.1016/j.neucom.2020.09.069_b0065
  article-title: Adaptive projected matrix factorization method for data clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.031
– volume: 39
  start-page: 103
  issue: 2–3
  year: 2000
  ident: 10.1016/j.neucom.2020.09.069_b0105
  article-title: Text classification from labeled and unlabeled documents using EM
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007692713085
– ident: 10.1016/j.neucom.2020.09.069_b0180
  doi: 10.1145/1553374.1553456
– ident: 10.1016/j.neucom.2020.09.069_b0110
– volume: 106
  start-page: 307
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2020.09.069_b0140
  article-title: Adaptive edge weighting for graph-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5607-3
– ident: 10.1016/j.neucom.2020.09.069_b0190
– ident: 10.1016/j.neucom.2020.09.069_b0085
  doi: 10.1109/CVPR.2017.238
– volume: 9
  start-page: 571
  issue: 5
  year: 1997
  ident: 10.1016/j.neucom.2020.09.069_b0100
  article-title: A mixture of experts classifier with learning based on both labelled and unlabeled data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4147
  year: 2017
  ident: 10.1016/j.neucom.2020.09.069_bib201
  article-title: A multiview-based parameter free framework for group detection
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– year: 2006
  ident: 10.1016/j.neucom.2020.09.069_b0200
– ident: 10.1016/j.neucom.2020.09.069_b0035
  doi: 10.1145/3097983.3098141
– ident: 10.1016/j.neucom.2020.09.069_b0060
  doi: 10.24963/ijcai.2017/475
– volume: 19
  start-page: 549
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2020.09.069_b0095
  article-title: A general graph-based semi-supervised learning with novel class discovery
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-009-0305-8
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.neucom.2020.09.069_b0025
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 7
  start-page: 2399
  issue: Nov.
  year: 2006
  ident: 10.1016/j.neucom.2020.09.069_b0135
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2020.09.069_b0075
  doi: 10.1109/WNYIPW.2014.6999481
– volume: 17
  start-page: 1529
  issue: 11
  year: 2005
  ident: 10.1016/j.neucom.2020.09.069_b0125
  article-title: Tri-training: exploiting unlabeled data using three classifiers
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.186
– start-page: 3569
  year: 2015
  ident: 10.1016/j.neucom.2020.09.069_b0165
  article-title: A new simplex sparse learning model to measure data similarity for clustering
  publication-title: IJCAI
– start-page: 2201
  year: 2017
  ident: 10.1016/j.neucom.2020.09.069_b0045
  article-title: Locality Adaptive Discriminant Analysis Locality Adaptive Discriminant Analysis
  publication-title: Locality Adaptive Discriminant Analysis, Proceeding of International Joint Conference on Artificial Intelligence (IJCAI)
– ident: 10.1016/j.neucom.2020.09.069_b0040
  doi: 10.1609/aaai.v31i1.10909
– ident: 10.1016/j.neucom.2020.09.069_b0170
  doi: 10.1609/aaai.v30i1.10302
– volume: 28
  start-page: 1864
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2020.09.069_b0010
  article-title: Scalable semi-supervised learning by efficient anchor graph regularization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2535367
– ident: 10.1016/j.neucom.2020.09.069_b0020
  doi: 10.1109/INDIN.2017.8104913
– ident: 10.1016/j.neucom.2020.09.069_b0130
– ident: 10.1016/j.neucom.2020.09.069_b0160
  doi: 10.1109/TNNLS.2019.2939637
– ident: 10.1016/j.neucom.2020.09.069_b0150
  doi: 10.1109/SSCI.2018.8628663
– ident: 10.1016/j.neucom.2020.09.069_b0115
  doi: 10.1145/279943.279962
– volume: 107
  start-page: 243
  year: 2018
  ident: 10.1016/j.neucom.2020.09.069_b0195
  article-title: Safety-aware graph-based semi-supervised learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.031
– ident: 10.1016/j.neucom.2020.09.069_b0185
– volume: 27
  start-page: 1501
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.09.069_b0055
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2754939
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.neucom.2020.09.069_b0030
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: 10.1016/j.neucom.2020.09.069_b0145
– ident: 10.1016/j.neucom.2020.09.069_b0120
SSID ssj0017129
Score 2.4575872
Snippet Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Adaptive graph
Pattern recognition
Semi-supervised learning
Title A semi-supervised learning algorithm via adaptive Laplacian graph
URI https://dx.doi.org/10.1016/j.neucom.2020.09.069
Volume 426
WOSCitedRecordID wos000606709400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb7TxJR-4TUa1E8f1MUJDgNAE0hDlFDm2O1K1WdU00_58nj_idhsa7MAlrazGaf1-fX5-_vn9EHoLawRrtFAkq7Ul-azgRHItiS2oYtoUtWbGi02I4-PJdCq_xo32zssJiLadXFzI1X81NbSBsd3R2VuYO3UKDfAejA5XMDtc_8nw5WFnlw3p-pVzAx0ElIsh_aEWp2frZvNreXjuzmIZtfLEoS_KMbPcP32rQDEfqjr1MMN55YeYUyiXrrSCcThKOYSffUijutfE8PE0gWmTGn7EzPS3ZrsXErjF1ulnn-7mHxj157l3U5KScQJR4iWfmrNdr0ijww0TLA3aJdd8d0gjzN-1tndEHnjW2JegDVIul0tlX5nCErFw4KzNq9BL5XqpxrKCXu6iPSa4nIzQXvnpaPo5bTYJykJJxvhDhhOWngZ4_dv8OYLZiUpOHqEHcTmBywCDx-iObZ-gh4NUB46e-ykqS3wFFXhABU6owIAKPKACJ1Rgj4pn6PuHo5P3H0lUzyAaloEboqmWE6G4rItZZnXmiC5sprhVYwOeWEEgnhdcMQVzopYzYXJpqLFc8by2UsvsORq1Z63dR9hoy4yAhbLbQaBW1XVNNdcKxqSmltEDlA0jUulYWt4pnCyqm-xxgEi6axVKq_zl82IY7CqGhyHsqwBBN9754pZPeonub5H-Co02696-Rvf0-abp1m8ifH4DN42ImQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+learning+algorithm+via+adaptive+Laplacian+graph&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yuan%2C+Yuan&rft.au=Li%2C+Xin&rft.au=Wang%2C+Qi&rft.au=Nie%2C+Feiping&rft.date=2021-02-22&rft.issn=0925-2312&rft.volume=426&rft.spage=162&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neucom.2020.09.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_09_069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon