A semi-supervised learning algorithm via adaptive Laplacian graph
Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classif...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 426; pp. 162 - 173 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
22.02.2021
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classification accuracy. However, graph-based algorithms mostly use k-Nearest Neighbor to construct the graph. And the directly constructed graph is inaccurate due to outliers and erroneous features in the data. Secondly, the amount of labeled data is a small part of all data. It cannot be guaranteed that all categories of data are included in the labeled data and the labels of data are not totally correct in practice. To address the aforementioned problems, we propose a new graph-based semi-supervised method named ALGSSL via adaptive Laplacian graph. In the algorithm, we adaptively update the graph to reduce the sensitiveness of the construction of initial graph. Meanwhile, we use the regularization parameters to set confidence on existing labels, which can reduce the impact of the error labels on the result and discover the new category. Experiments on three toy datasets and nine benchmark datasets demonstrate the proposed method can achieve good performance. |
|---|---|
| AbstractList | Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classification accuracy. However, graph-based algorithms mostly use k-Nearest Neighbor to construct the graph. And the directly constructed graph is inaccurate due to outliers and erroneous features in the data. Secondly, the amount of labeled data is a small part of all data. It cannot be guaranteed that all categories of data are included in the labeled data and the labels of data are not totally correct in practice. To address the aforementioned problems, we propose a new graph-based semi-supervised method named ALGSSL via adaptive Laplacian graph. In the algorithm, we adaptively update the graph to reduce the sensitiveness of the construction of initial graph. Meanwhile, we use the regularization parameters to set confidence on existing labels, which can reduce the impact of the error labels on the result and discover the new category. Experiments on three toy datasets and nine benchmark datasets demonstrate the proposed method can achieve good performance. |
| Author | Wang, Qi Yuan, Yuan Li, Xin Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Yuan surname: Yuan fullname: Yuan, Yuan – sequence: 2 givenname: Xin surname: Li fullname: Li, Xin – sequence: 3 givenname: Qi surname: Wang fullname: Wang, Qi email: crabwq@gmail.com – sequence: 4 givenname: Feiping surname: Nie fullname: Nie, Feiping |
| BookMark | eNqFkM1KAzEURoNUsFbfwEVeYMabzG9cCKX4BwU3ug63yZ02ZSYzJNMB396WunKhq291Dnznms1874mxOwGpAFHe71NPB9N3qQQJKagUSnXB5qKuZFLLupyxOShZJDIT8opdx7gHEJWQas6WSx6pc0k8DBQmF8nyljB457cc220f3Ljr-OSQo8VhdBPxNQ4tGoeebwMOuxt22WAb6fZnF-zz-elj9Zqs31_eVst1YjIox8QIo-oKC7Upm4xMJgFq2WBBCBYKgaLM8rJAiQDSqKayubLCUoFFviFlVLZg-dlrQh9joEYPwXUYvrQAfcqg9_qcQZ8yaFD6mOGIPfzCjBtxdL0fA7r2P_jxDNPx2OQo6GgceUPWBTKjtr37W_ANQtt-Rg |
| CitedBy_id | crossref_primary_10_1016_j_partic_2024_05_011 crossref_primary_10_1109_ACCESS_2024_3440915 crossref_primary_10_1016_j_scs_2021_102874 crossref_primary_10_1016_j_saa_2023_122354 crossref_primary_10_1016_j_neucom_2025_131223 crossref_primary_10_1109_TCSVT_2022_3197230 crossref_primary_10_1016_j_aei_2024_102902 crossref_primary_10_1016_j_asoc_2023_111164 crossref_primary_10_1016_j_sigpro_2024_109436 crossref_primary_10_1109_JSTARS_2023_3335286 crossref_primary_10_1109_TPAMI_2021_3104733 crossref_primary_10_1007_s11063_021_10687_4 crossref_primary_10_1109_TSC_2024_3407601 crossref_primary_10_1109_TIM_2023_3343772 crossref_primary_10_1016_j_ins_2024_120132 crossref_primary_10_1049_ipr2_12308 crossref_primary_10_3390_sym13112040 crossref_primary_10_1007_s10462_023_10397_4 crossref_primary_10_1007_s11227_023_05474_y crossref_primary_10_1145_3643645 crossref_primary_10_1016_j_measurement_2022_112194 |
| Cites_doi | 10.1109/TNNLS.2016.2597444 10.1109/TPAMI.2018.2875002 10.1109/TKDE.2017.2749574 10.1609/aaai.v32i1.11513 10.1109/IJCNN.2018.8489487 10.1016/j.neucom.2018.04.031 10.1023/A:1007692713085 10.1145/1553374.1553456 10.1007/s10994-016-5607-3 10.1109/CVPR.2017.238 10.1145/3097983.3098141 10.24963/ijcai.2017/475 10.1007/s00521-009-0305-8 10.1126/science.290.5500.2319 10.1109/WNYIPW.2014.6999481 10.1109/TKDE.2005.186 10.1609/aaai.v31i1.10909 10.1609/aaai.v30i1.10302 10.1109/TKDE.2016.2535367 10.1109/INDIN.2017.8104913 10.1109/TNNLS.2019.2939637 10.1109/SSCI.2018.8628663 10.1145/279943.279962 10.1016/j.eswa.2018.04.031 10.1109/TIP.2017.2754939 10.1126/science.290.5500.2323 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.09.069 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 173 |
| ExternalDocumentID | 10_1016_j_neucom_2020_09_069 S0925231220316003 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-c1c987a59b6f3ec320082fa5ea0d051a163465a2a002c9f7d49d1de5a54be9c93 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606709400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 21:08:38 EST 2025 Sat Nov 29 07:11:01 EST 2025 Fri Feb 23 02:48:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Semi-supervised learning Adaptive graph Pattern recognition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-c1c987a59b6f3ec320082fa5ea0d051a163465a2a002c9f7d49d1de5a54be9c93 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_09_069 crossref_citationtrail_10_1016_j_neucom_2020_09_069 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_09_069 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-22 |
| PublicationDateYYYYMMDD | 2021-02-22 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Karasuyama, Mamitsuka (b0140) 2017; 106 W. Zhan, M.L. Zhang, Inductive semi-supervised multi-label learning with co-training, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1305–1314. L.P. Valem, D.C. Pedronette, F. Breve, I.R. Guilherme, Manifold correlation graph for semi-supervised learning, in: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–7. Tenenbaum, Silva, Langford (b0025) 2000; 290 J. Y. Wang, I. Almasri, X. Gao, Adaptive graph regularized nonnegative matrix factorization via feature selection, in: International Conference on Pattern Recognition, 2012, pp. 963–966. D.P. Kingma, S. Mohamed, D.J. Rezende, M. Welling, Semi-supervised learning with deep generative models, in: Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. Gan, Li, Wu, Luo, Huang (b0195) 2018; 107 Joachims (b0175) 2002 Y. Kuznietsov, J. Stückler, B. Leibe, Semi-supervised deep learning for monocular depth map prediction, in: IEEE Conference on Computer Vision & Pattern Recognition, 2017. Li, Chen, Qi (bib201) 2017 O. Chapelle, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics, 2004. Chapelle, Schlkopf, Zien (b0200) 2006 F. Nie, G. Cai, X. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in: AAAI, 2017, pp. 2408–2414. Huang, Nie, Huang (b0165) 2015 Nigam, Mccallum, Thrun, Mitchell (b0105) 2000; 39 A. Fujino, N. Ueda, K. Saito, A hybrid generative/discriminative approach to semi-supervised classifier design, in: National Conference on Artificial Intelligence, 2005, pp. 764–769. Y.-F. Li, S.-B. Wang, Z.-H. Zhou, Graph quality judgement: a large margin expedition, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 1725–1731. Y. Meng, R. Shang, F. Shang, L. Jiao, S. Yang, R. Stolkin, Semi-supervised graph regularized deep nmf with bi-orthogonal constraints for data representation, IEEE Trans. Neural Networks Learn. Syst. (2019). Li, Chen, Nie, Wang (b0045) 2017 K. Atarashi, S. Oyama, M. Kurihara, Semi-supervised learning from crowds using deep generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. F. Nie, X. Wang, M.I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based clustering., in: AAAI, 2016, pp. 1969–1976. Wang, Fu, Hao, Tao, Wu (b0010) 2016; 28 Miller (b0100) 1997; 9 L. Zhang, Q. Zhang, B. Du, J. You, D. Tao, Adaptive manifold regularized matrix factorization for data clustering, in: Twenty-sixth International Joint Conference on Artificial Intelligence, 2017, pp. 3399–3405. Chen, Wang, Li (b0065) 2018; 306 Nie, Cai, Li, Li (b0055) 2017; 27 M. Zhao, Z. Zhang, C. Zhan, W. Wang, Graph based semi-supervised classification via capped l 2, 1-norm regularized dictionary learning, in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), IEEE, 2017, pp. 1019–1024 A.K. Ziemann, D.W. Messinger, P.S. Wenger, An adaptive k-nearest neighbor graph building technique with applications to hyperspectral imagery, in: Image and Signal Processing Workshop, 2015, pp. 32–36. C.-Y. Chang, T.-Y. Chen, P.-C. Chung, Semi-supervised learning using generative adversarial networks, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 892–896. Zhu (b0005) 2007 Roweis, Saul (b0030) 2000; 290 Zhou, Li (b0125) 2005; 17 D. Zhou, O. Bousquet, T.N. Lal, J. Weston, Learning with local and global consistency, in: International Conference on Neural Information Processing Systems, 2003, pp. 321–328. Nie, Xiang, Liu, Zhang (b0095) 2010; 19 Wang, Chen, Nie, Li (b0050) 2018; 42 Jiang, Chen, Bo (b0015) 2017; 29 R. Fierimonte, S. Scardapane, A. Uncini, M. Panella, Fully decentralized semi-supervised learning via privacy-preserving matrix completion, IEEE Trans. Neural Networks Learn. Syst. 28 (11) (2017) 2699–2711. Y.-F. Li, J. T. Kwok, Z.-H. Zhou, Semi-supervised learning using label mean, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, pp. 633–640. A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Conference on Computational Learning Theory, 1998, pp. 92–100. Belkin, Niyogi, Sindhwani (b0135) 2006; 7 S.A. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data (2000) 327–334 10.1016/j.neucom.2020.09.069_b0115 Chen (10.1016/j.neucom.2020.09.069_b0065) 2018; 306 10.1016/j.neucom.2020.09.069_b0035 10.1016/j.neucom.2020.09.069_b0155 10.1016/j.neucom.2020.09.069_b0110 Zhu (10.1016/j.neucom.2020.09.069_b0005) 2007 10.1016/j.neucom.2020.09.069_b0075 10.1016/j.neucom.2020.09.069_b0130 10.1016/j.neucom.2020.09.069_b0150 Li (10.1016/j.neucom.2020.09.069_b0045) 2017 10.1016/j.neucom.2020.09.069_b0170 10.1016/j.neucom.2020.09.069_b0070 Belkin (10.1016/j.neucom.2020.09.069_b0135) 2006; 7 10.1016/j.neucom.2020.09.069_b0190 10.1016/j.neucom.2020.09.069_b0090 Jiang (10.1016/j.neucom.2020.09.069_b0015) 2017; 29 Chapelle (10.1016/j.neucom.2020.09.069_b0200) 2006 Nigam (10.1016/j.neucom.2020.09.069_b0105) 2000; 39 Joachims (10.1016/j.neucom.2020.09.069_b0175) 2002 Li (10.1016/j.neucom.2020.09.069_bib201) 2017 Nie (10.1016/j.neucom.2020.09.069_b0055) 2017; 27 Huang (10.1016/j.neucom.2020.09.069_b0165) 2015 Roweis (10.1016/j.neucom.2020.09.069_b0030) 2000; 290 10.1016/j.neucom.2020.09.069_b0145 10.1016/j.neucom.2020.09.069_b0120 10.1016/j.neucom.2020.09.069_b0020 10.1016/j.neucom.2020.09.069_b0185 10.1016/j.neucom.2020.09.069_b0085 10.1016/j.neucom.2020.09.069_b0040 10.1016/j.neucom.2020.09.069_b0160 Wang (10.1016/j.neucom.2020.09.069_b0010) 2016; 28 10.1016/j.neucom.2020.09.069_b0060 Karasuyama (10.1016/j.neucom.2020.09.069_b0140) 2017; 106 10.1016/j.neucom.2020.09.069_b0180 Gan (10.1016/j.neucom.2020.09.069_b0195) 2018; 107 10.1016/j.neucom.2020.09.069_b0080 Wang (10.1016/j.neucom.2020.09.069_b0050) 2018; 42 Zhou (10.1016/j.neucom.2020.09.069_b0125) 2005; 17 Tenenbaum (10.1016/j.neucom.2020.09.069_b0025) 2000; 290 Nie (10.1016/j.neucom.2020.09.069_b0095) 2010; 19 Miller (10.1016/j.neucom.2020.09.069_b0100) 1997; 9 |
| References_xml | – year: 2002 ident: b0175 article-title: Learning to Classify Text Using Support Vector Machines – volume: 106 start-page: 307 year: 2017 end-page: 335 ident: b0140 article-title: Adaptive edge weighting for graph-based learning algorithms publication-title: Mach. Learn. – reference: Y. Meng, R. Shang, F. Shang, L. Jiao, S. Yang, R. Stolkin, Semi-supervised graph regularized deep nmf with bi-orthogonal constraints for data representation, IEEE Trans. Neural Networks Learn. Syst. (2019). – start-page: 4147 year: 2017 end-page: 4153 ident: bib201 article-title: A multiview-based parameter free framework for group detection publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: b0135 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – volume: 107 start-page: 243 year: 2018 end-page: 254 ident: b0195 article-title: Safety-aware graph-based semi-supervised learning publication-title: Expert Syst. Appl. – year: 2007 ident: b0005 publication-title: Semi-supervised learning literature survey – start-page: 3569 year: 2015 end-page: 3575 ident: b0165 article-title: A new simplex sparse learning model to measure data similarity for clustering publication-title: IJCAI – volume: 29 start-page: 2758 year: 2017 end-page: 2771 ident: b0015 article-title: Scalable graph-based semi-supervised learning through sparse bayesian model publication-title: IEEE Trans. Knowl. Data Eng. – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: b0025 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – volume: 28 start-page: 1864 year: 2016 end-page: 1877 ident: b0010 article-title: Scalable semi-supervised learning by efficient anchor graph regularization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: b0030 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – reference: R. Fierimonte, S. Scardapane, A. Uncini, M. Panella, Fully decentralized semi-supervised learning via privacy-preserving matrix completion, IEEE Trans. Neural Networks Learn. Syst. 28 (11) (2017) 2699–2711. – year: 2006 ident: b0200 publication-title: Semi-supervised learning – reference: L.P. Valem, D.C. Pedronette, F. Breve, I.R. Guilherme, Manifold correlation graph for semi-supervised learning, in: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–7. – volume: 39 start-page: 103 year: 2000 end-page: 134 ident: b0105 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. – reference: D. Zhou, O. Bousquet, T.N. Lal, J. Weston, Learning with local and global consistency, in: International Conference on Neural Information Processing Systems, 2003, pp. 321–328. – reference: D.P. Kingma, S. Mohamed, D.J. Rezende, M. Welling, Semi-supervised learning with deep generative models, in: Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. – reference: O. Chapelle, Semi-supervised classification by low density separation, in: Tenth International Workshop on Artificial Intelligence and Statistics, 2004. – reference: L. Zhang, Q. Zhang, B. Du, J. You, D. Tao, Adaptive manifold regularized matrix factorization for data clustering, in: Twenty-sixth International Joint Conference on Artificial Intelligence, 2017, pp. 3399–3405. – reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Conference on Computational Learning Theory, 1998, pp. 92–100. – reference: Y. Kuznietsov, J. Stückler, B. Leibe, Semi-supervised deep learning for monocular depth map prediction, in: IEEE Conference on Computer Vision & Pattern Recognition, 2017. – reference: F. Nie, G. Cai, X. Li, Multi-view clustering and semi-supervised classification with adaptive neighbours, in: AAAI, 2017, pp. 2408–2414. – volume: 19 start-page: 549 year: 2010 end-page: 555 ident: b0095 article-title: A general graph-based semi-supervised learning with novel class discovery publication-title: Neural Comput. Appl. – reference: S.A. Goldman, Y. Zhou, Enhancing supervised learning with unlabeled data (2000) 327–334 – reference: Y.-F. Li, J. T. Kwok, Z.-H. Zhou, Semi-supervised learning using label mean, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, pp. 633–640. – reference: A.K. Ziemann, D.W. Messinger, P.S. Wenger, An adaptive k-nearest neighbor graph building technique with applications to hyperspectral imagery, in: Image and Signal Processing Workshop, 2015, pp. 32–36. – reference: A. Fujino, N. Ueda, K. Saito, A hybrid generative/discriminative approach to semi-supervised classifier design, in: National Conference on Artificial Intelligence, 2005, pp. 764–769. – volume: 306 start-page: 182 year: 2018 end-page: 188 ident: b0065 article-title: Adaptive projected matrix factorization method for data clustering publication-title: Neurocomputing – reference: C.-Y. Chang, T.-Y. Chen, P.-C. Chung, Semi-supervised learning using generative adversarial networks, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 892–896. – reference: J. Y. Wang, I. Almasri, X. Gao, Adaptive graph regularized nonnegative matrix factorization via feature selection, in: International Conference on Pattern Recognition, 2012, pp. 963–966. – reference: F. Nie, X. Wang, M.I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based clustering., in: AAAI, 2016, pp. 1969–1976. – volume: 42 start-page: 46 year: 2018 end-page: 58 ident: b0050 article-title: Detecting coherent groups in crowd scenes by multiview clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 1529 year: 2005 end-page: 1541 ident: b0125 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. – reference: Y.-F. Li, S.-B. Wang, Z.-H. Zhou, Graph quality judgement: a large margin expedition, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, AAAI Press, 2016, pp. 1725–1731. – start-page: 2201 year: 2017 end-page: 2207 ident: b0045 article-title: Locality Adaptive Discriminant Analysis Locality Adaptive Discriminant Analysis publication-title: Locality Adaptive Discriminant Analysis, Proceeding of International Joint Conference on Artificial Intelligence (IJCAI) – volume: 27 start-page: 1501 year: 2017 end-page: 1511 ident: b0055 article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification publication-title: IEEE Transactions on Image Processing – volume: 9 start-page: 571 year: 1997 end-page: 577 ident: b0100 article-title: A mixture of experts classifier with learning based on both labelled and unlabeled data publication-title: Adv. Neural Inf. Process. Syst. – reference: K. Atarashi, S. Oyama, M. Kurihara, Semi-supervised learning from crowds using deep generative models, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. – reference: M. Zhao, Z. Zhang, C. Zhan, W. Wang, Graph based semi-supervised classification via capped l 2, 1-norm regularized dictionary learning, in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), IEEE, 2017, pp. 1019–1024 – reference: W. Zhan, M.L. Zhang, Inductive semi-supervised multi-label learning with co-training, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1305–1314. – ident: 10.1016/j.neucom.2020.09.069_b0090 doi: 10.1109/TNNLS.2016.2597444 – volume: 42 start-page: 46 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.09.069_b0050 article-title: Detecting coherent groups in crowd scenes by multiview clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2875002 – ident: 10.1016/j.neucom.2020.09.069_b0070 – volume: 29 start-page: 2758 issue: 12 year: 2017 ident: 10.1016/j.neucom.2020.09.069_b0015 article-title: Scalable graph-based semi-supervised learning through sparse bayesian model publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2749574 – ident: 10.1016/j.neucom.2020.09.069_b0155 doi: 10.1609/aaai.v32i1.11513 – year: 2002 ident: 10.1016/j.neucom.2020.09.069_b0175 – year: 2007 ident: 10.1016/j.neucom.2020.09.069_b0005 – ident: 10.1016/j.neucom.2020.09.069_b0080 doi: 10.1109/IJCNN.2018.8489487 – volume: 306 start-page: 182 year: 2018 ident: 10.1016/j.neucom.2020.09.069_b0065 article-title: Adaptive projected matrix factorization method for data clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.031 – volume: 39 start-page: 103 issue: 2–3 year: 2000 ident: 10.1016/j.neucom.2020.09.069_b0105 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. doi: 10.1023/A:1007692713085 – ident: 10.1016/j.neucom.2020.09.069_b0180 doi: 10.1145/1553374.1553456 – ident: 10.1016/j.neucom.2020.09.069_b0110 – volume: 106 start-page: 307 issue: 2 year: 2017 ident: 10.1016/j.neucom.2020.09.069_b0140 article-title: Adaptive edge weighting for graph-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/s10994-016-5607-3 – ident: 10.1016/j.neucom.2020.09.069_b0190 – ident: 10.1016/j.neucom.2020.09.069_b0085 doi: 10.1109/CVPR.2017.238 – volume: 9 start-page: 571 issue: 5 year: 1997 ident: 10.1016/j.neucom.2020.09.069_b0100 article-title: A mixture of experts classifier with learning based on both labelled and unlabeled data publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4147 year: 2017 ident: 10.1016/j.neucom.2020.09.069_bib201 article-title: A multiview-based parameter free framework for group detection publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence – year: 2006 ident: 10.1016/j.neucom.2020.09.069_b0200 – ident: 10.1016/j.neucom.2020.09.069_b0035 doi: 10.1145/3097983.3098141 – ident: 10.1016/j.neucom.2020.09.069_b0060 doi: 10.24963/ijcai.2017/475 – volume: 19 start-page: 549 issue: 4 year: 2010 ident: 10.1016/j.neucom.2020.09.069_b0095 article-title: A general graph-based semi-supervised learning with novel class discovery publication-title: Neural Comput. Appl. doi: 10.1007/s00521-009-0305-8 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.neucom.2020.09.069_b0025 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 7 start-page: 2399 issue: Nov. year: 2006 ident: 10.1016/j.neucom.2020.09.069_b0135 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2020.09.069_b0075 doi: 10.1109/WNYIPW.2014.6999481 – volume: 17 start-page: 1529 issue: 11 year: 2005 ident: 10.1016/j.neucom.2020.09.069_b0125 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.186 – start-page: 3569 year: 2015 ident: 10.1016/j.neucom.2020.09.069_b0165 article-title: A new simplex sparse learning model to measure data similarity for clustering publication-title: IJCAI – start-page: 2201 year: 2017 ident: 10.1016/j.neucom.2020.09.069_b0045 article-title: Locality Adaptive Discriminant Analysis Locality Adaptive Discriminant Analysis publication-title: Locality Adaptive Discriminant Analysis, Proceeding of International Joint Conference on Artificial Intelligence (IJCAI) – ident: 10.1016/j.neucom.2020.09.069_b0040 doi: 10.1609/aaai.v31i1.10909 – ident: 10.1016/j.neucom.2020.09.069_b0170 doi: 10.1609/aaai.v30i1.10302 – volume: 28 start-page: 1864 issue: 7 year: 2016 ident: 10.1016/j.neucom.2020.09.069_b0010 article-title: Scalable semi-supervised learning by efficient anchor graph regularization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2535367 – ident: 10.1016/j.neucom.2020.09.069_b0020 doi: 10.1109/INDIN.2017.8104913 – ident: 10.1016/j.neucom.2020.09.069_b0130 – ident: 10.1016/j.neucom.2020.09.069_b0160 doi: 10.1109/TNNLS.2019.2939637 – ident: 10.1016/j.neucom.2020.09.069_b0150 doi: 10.1109/SSCI.2018.8628663 – ident: 10.1016/j.neucom.2020.09.069_b0115 doi: 10.1145/279943.279962 – volume: 107 start-page: 243 year: 2018 ident: 10.1016/j.neucom.2020.09.069_b0195 article-title: Safety-aware graph-based semi-supervised learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.031 – ident: 10.1016/j.neucom.2020.09.069_b0185 – volume: 27 start-page: 1501 issue: 3 year: 2017 ident: 10.1016/j.neucom.2020.09.069_b0055 article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2754939 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.neucom.2020.09.069_b0030 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 10.1016/j.neucom.2020.09.069_b0145 – ident: 10.1016/j.neucom.2020.09.069_b0120 |
| SSID | ssj0017129 |
| Score | 2.4575872 |
| Snippet | Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 162 |
| SubjectTerms | Adaptive graph Pattern recognition Semi-supervised learning |
| Title | A semi-supervised learning algorithm via adaptive Laplacian graph |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.09.069 |
| Volume | 426 |
| WOSCitedRecordID | wos000606709400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb7TxJR-4TUa1E8f1MUJDgNAE0hDlFDm2O1K1WdU00_58nj_idhsa7MAlrazGaf1-fX5-_vn9EHoLawRrtFAkq7Ul-azgRHItiS2oYtoUtWbGi02I4-PJdCq_xo32zssJiLadXFzI1X81NbSBsd3R2VuYO3UKDfAejA5XMDtc_8nw5WFnlw3p-pVzAx0ElIsh_aEWp2frZvNreXjuzmIZtfLEoS_KMbPcP32rQDEfqjr1MMN55YeYUyiXrrSCcThKOYSffUijutfE8PE0gWmTGn7EzPS3ZrsXErjF1ulnn-7mHxj157l3U5KScQJR4iWfmrNdr0ijww0TLA3aJdd8d0gjzN-1tndEHnjW2JegDVIul0tlX5nCErFw4KzNq9BL5XqpxrKCXu6iPSa4nIzQXvnpaPo5bTYJykJJxvhDhhOWngZ4_dv8OYLZiUpOHqEHcTmBywCDx-iObZ-gh4NUB46e-ykqS3wFFXhABU6owIAKPKACJ1Rgj4pn6PuHo5P3H0lUzyAaloEboqmWE6G4rItZZnXmiC5sprhVYwOeWEEgnhdcMQVzopYzYXJpqLFc8by2UsvsORq1Z63dR9hoy4yAhbLbQaBW1XVNNdcKxqSmltEDlA0jUulYWt4pnCyqm-xxgEi6axVKq_zl82IY7CqGhyHsqwBBN9754pZPeonub5H-Co02696-Rvf0-abp1m8ifH4DN42ImQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+learning+algorithm+via+adaptive+Laplacian+graph&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yuan%2C+Yuan&rft.au=Li%2C+Xin&rft.au=Wang%2C+Qi&rft.au=Nie%2C+Feiping&rft.date=2021-02-22&rft.issn=0925-2312&rft.volume=426&rft.spage=162&rft.epage=173&rft_id=info:doi/10.1016%2Fj.neucom.2020.09.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_09_069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |