Training Feed-Forward Artificial Neural Networks with a modified artificial bee colony algorithm

Deep learning is a branch of neural network which has been intensively developed in the last decade. Due to the high-accuracy classification ability, the deep learning algorithms have been widely used in many fields, such as speech recognition, image recognition, and natural speech processing. Howev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 416; s. 69 - 84
Hlavní autoři: Xu, Feiyi, Pun, Chi-Man, Li, Haolun, Zhang, Yushu, Song, Yurong, Gao, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 27.11.2020
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep learning is a branch of neural network which has been intensively developed in the last decade. Due to the high-accuracy classification ability, the deep learning algorithms have been widely used in many fields, such as speech recognition, image recognition, and natural speech processing. However, they also show some shortcomings especially on the selection of some parameters in the network, including hyper-parameters, which is still treated as a time consuming task. In this paper, a modified ABC (ABC-ISB) optimization algorithm is proposed to automatically train the parameters of Feed-Forward Artificial Neural Networks, which is a typical a neural network. In the proposed ABC algorithm, we utilize the information of neighbors with better performance to accelerate the convergence of employed and onlooker bees respectively. In addition, a new selection strategy and a gbest-guided strategy are introduced to enhance the global search capability and balance the exploration and exploitation of the algorithm separately. The experimental results show our ABC-ISB is generally leading and competitive.
AbstractList Deep learning is a branch of neural network which has been intensively developed in the last decade. Due to the high-accuracy classification ability, the deep learning algorithms have been widely used in many fields, such as speech recognition, image recognition, and natural speech processing. However, they also show some shortcomings especially on the selection of some parameters in the network, including hyper-parameters, which is still treated as a time consuming task. In this paper, a modified ABC (ABC-ISB) optimization algorithm is proposed to automatically train the parameters of Feed-Forward Artificial Neural Networks, which is a typical a neural network. In the proposed ABC algorithm, we utilize the information of neighbors with better performance to accelerate the convergence of employed and onlooker bees respectively. In addition, a new selection strategy and a gbest-guided strategy are introduced to enhance the global search capability and balance the exploration and exploitation of the algorithm separately. The experimental results show our ABC-ISB is generally leading and competitive.
Author Gao, Hao
Song, Yurong
Li, Haolun
Pun, Chi-Man
Xu, Feiyi
Zhang, Yushu
Author_xml – sequence: 1
  givenname: Feiyi
  surname: Xu
  fullname: Xu, Feiyi
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Chi-Man
  orcidid: 0000-0003-1788-3746
  surname: Pun
  fullname: Pun, Chi-Man
  organization: Department of Computer and Information Science, University of Macau, Macau
– sequence: 3
  givenname: Haolun
  surname: Li
  fullname: Li, Haolun
  organization: The Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 4
  givenname: Yushu
  surname: Zhang
  fullname: Zhang, Yushu
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Yurong
  surname: Song
  fullname: Song, Yurong
  email: songyr@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 6
  givenname: Hao
  orcidid: 0000-0003-0148-3713
  surname: Gao
  fullname: Gao, Hao
  email: tsgaohao@gmail.com
  organization: Department of Computer and Information Science, University of Macau, Macau
BookMark eNqFkM1KAzEYRYNUsK2-gYu8wIxJJvMTF0IpVoWim7qOmeRLTZ2ZSCa19O2dWkFwoau7uefCPRM06nwHCF1SklJCi6tN2sFW-zZlhIqU8JRUxQka06pkScWqYoTGRLA8YRllZ2jS9xtCaEmZGKOXVVCuc90aLwBMsvBhp4LBsxCdddqpBj_CNnxF3Pnw1uOdi69Y4daboQEGq59qDYC1b3y3x6pZ-zA023N0alXTw8V3TtHz4nY1v0-WT3cP89ky0RkpYlJbXpYlF0WmeVbnhtta5RYqDsJS4MxyDtYI0LnNCyYEyUWZK6GsyDkDY7Ip4sddHXzfB7DyPbhWhb2kRB4syY08WpIHS5JwOVgasOtfmHZRRee7OIhp_oNvjjAMxz4cBNlrB50G4wLoKI13fw98At-xiio
CitedBy_id crossref_primary_10_1080_08839514_2022_2031815
crossref_primary_10_1007_s13369_020_04872_1
crossref_primary_10_1007_s00521_024_10910_y
crossref_primary_10_1177_1088467X251356155
crossref_primary_10_3390_math10193487
crossref_primary_10_1007_s10489_023_04595_4
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1016_j_memsci_2023_121765
crossref_primary_10_1109_ACCESS_2023_3321023
crossref_primary_10_1007_s13042_020_01252_x
crossref_primary_10_1007_s13042_021_01348_y
crossref_primary_10_1016_j_apenergy_2024_124039
crossref_primary_10_1007_s11071_019_05309_7
crossref_primary_10_1109_ACCESS_2022_3233596
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s11227_023_05215_1
crossref_primary_10_1007_s11042_023_16161_8
crossref_primary_10_1155_2022_4533154
crossref_primary_10_1002_ett_4335
crossref_primary_10_3390_electronics9111979
crossref_primary_10_1016_j_asoc_2021_107444
crossref_primary_10_3389_frai_2020_583427
crossref_primary_10_1007_s00170_022_10466_y
Cites_doi 10.1016/j.knosys.2016.06.014
10.1109/TSMCB.2012.2222373
10.1109/TMAG.2013.2281818
10.1016/S0377-2217(98)00114-3
10.1016/j.asoc.2014.06.035
10.1109/4235.771163
10.1109/5.784219
10.1007/s10462-012-9328-0
10.1016/j.ins.2010.07.015
10.1016/j.asoc.2014.10.020
10.1016/j.knosys.2016.05.052
10.1162/neco.2006.18.7.1527
10.1016/j.ins.2014.12.043
10.1109/TSMC.2014.2351783
10.1016/j.asoc.2012.05.008
10.1016/j.asoc.2015.05.041
10.1016/j.eswa.2014.09.049
10.1016/j.ijepes.2012.04.009
10.1016/j.asoc.2014.11.040
10.1016/j.ins.2014.05.033
10.1109/TNNLS.2014.2342533
10.1038/ncomms5308
10.1109/TCYB.2015.2444383
10.1016/j.ipl.2011.06.002
10.1016/j.asoc.2017.01.031
10.1016/j.asoc.2016.07.039
10.1016/j.ins.2014.10.008
10.1016/j.asoc.2015.12.046
10.1007/s10898-004-9972-2
10.1016/j.knosys.2014.04.042
10.1109/TMAG.2013.2241447
10.1016/j.cor.2011.06.007
10.1109/MSP.2012.2205597
10.1016/S0377-2217(97)00292-0
10.1016/j.ins.2014.10.009
10.1109/TASE.2012.2204874
10.1016/j.ins.2014.12.042
10.1016/j.asoc.2009.12.025
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.04.086
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 84
ExternalDocumentID 10_1016_j_neucom_2019_04_086
S0925231219308689
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-bf47774963c43b5d4fba5fe84e9f1e42f44efd9ec5f5629905975a9af9542edd3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581754500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:16:31 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Parameter selection
Artificial bee colony
Feed-Forward Artificial Neural Networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-bf47774963c43b5d4fba5fe84e9f1e42f44efd9ec5f5629905975a9af9542edd3
ORCID 0000-0003-0148-3713
0000-0003-1788-3746
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_neucom_2019_04_086
crossref_citationtrail_10_1016_j_neucom_2019_04_086
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_04_086
PublicationCentury 2000
PublicationDate 2020-11-27
PublicationDateYYYYMMDD 2020-11-27
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-27
  day: 27
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References He, Zhang, Ren (bib0003) 2015
Bose, Biswas, Vasilakos (bib0022) 2014; 281
Blum, Socha (bib0047) 2005
Horng (bib0025) 2015; 45
Li, Pan (bib0026) 2015; 316
Sexton, Dorsey, Johnson (bib0049) 1999; 114
Karaboga, Gorkemli (bib0034) 2014; 23
Leung, Yuen, Chow (bib0043) 2012; 12
Kiran, Hakli, Gunduz (bib0036) 2015; 300
Song, Yan, Zhao (bib0051) 2017; 55
Karaboga, Akay, Ozturk (bib0050) 2007
Gao, Liu (bib0030) 2012; 39
Eggensperger, Hutter, Hoos (bib0007) 2015
Gao, Liu, Huang (bib0033) 2013; 43
Li, Yang (bib0037) 2016; 41
Liao, Zhou, Zhang (bib0028) 2012; 43
Ali, Ahn, Pant (bib0016) 2015; 301
Chu, Hu, Niu, Li, Chu (bib0052) 2016
Hinton, Osindero, Teh (bib0001) 2006; 18
Li, Pan, Duan (bib0038) 2016; 46
Karaboga, Gorkemli, Ozturk, Karaboga (bib0013) 2014; 42
Pan, Wang, Mao (bib0027) 2013; 10
Ozturk, Hancer, Karaboga (bib0018) 2015; 28
Bhandari, Kumar, Singh (bib0017) 2015; 42
Zhang, Zhang, Ho (bib0020) 2014; 50
Kuang, Jin, Xu (bib0039) 2014
Hinton (bib0004) 2012; 29
Zhang, Zhang, Yuen (bib0021) 2013; 49
Gu, Sheng, Tay (bib0023) 2015; 26
Akay, Karaboga (bib0031) 2012; 192
Li, Niu, Ma, Wang, Zhang (bib0055) 2014; 67
Karaboga (bib0012) 2005
Sexton, Alidaee, Dorsey (bib0048) 1998; 106
Zhu, Kwong (bib0029) 2010; 217
Yao, Liu, Lin (bib0042) 1999; 3
Yao (bib0046) 1999; 87
Bergstra, Yamins, Cox (bib0011) 2013
Baldi, Sadowski, Whiteson (bib0002) 2014; 5
Gao (bib0056) 2016; 109
Gao, Liu (bib0040) 2011; 111
Karaboga, Kaya (bib0054) 2016; 49
Ilievski, Akhtar, Feng (bib0009) 2017
Habbi, Boudouaoui, Karaboga (bib0024) 2015; 295
Ali, Khompatraporn, Zabinsky (bib0041) 2005; 31
Shi, Pun, Hu, Gao (bib0015) 2016; 107
Karaboga, Ozturk (bib0019) 2011; 11
Bergstra, Bengio (bib0005) 2012; 13
Li, Jamieson, DeSalvo (bib0006) 2017; 18
Babaoglu (bib0032) 2015; 34
Kishan, Mohan, Ranka (bib0045) 1997
Li, Yang, Kıran (bib0053) 2016; 2712-2717
Domhan, Springenberg, Hutter (bib0008) 2015; 15
Kıran, Fındık (bib0035) 2015; 26
Dayhoff (bib0044) 1990
Young, Rose, Karnowski (bib0010) 2015
Karaboga, Akay (bib0014) 2009; 214
Pan (10.1016/j.neucom.2019.04.086_bib0027) 2013; 10
Hinton (10.1016/j.neucom.2019.04.086_bib0001) 2006; 18
Karaboga (10.1016/j.neucom.2019.04.086_bib0012) 2005
Chu (10.1016/j.neucom.2019.04.086_bib0052) 2016
Eggensperger (10.1016/j.neucom.2019.04.086_bib0007) 2015
Karaboga (10.1016/j.neucom.2019.04.086_bib0014) 2009; 214
Kishan (10.1016/j.neucom.2019.04.086_bib0045) 1997
Zhang (10.1016/j.neucom.2019.04.086_bib0020) 2014; 50
Gao (10.1016/j.neucom.2019.04.086_bib0030) 2012; 39
Ilievski (10.1016/j.neucom.2019.04.086_bib0009) 2017
Li (10.1016/j.neucom.2019.04.086_bib0026) 2015; 316
Li (10.1016/j.neucom.2019.04.086_bib0038) 2016; 46
Baldi (10.1016/j.neucom.2019.04.086_bib0002) 2014; 5
Horng (10.1016/j.neucom.2019.04.086_bib0025) 2015; 45
Sexton (10.1016/j.neucom.2019.04.086_bib0049) 1999; 114
Ozturk (10.1016/j.neucom.2019.04.086_bib0018) 2015; 28
Bergstra (10.1016/j.neucom.2019.04.086_bib0011) 2013
Karaboga (10.1016/j.neucom.2019.04.086_bib0019) 2011; 11
Babaoglu (10.1016/j.neucom.2019.04.086_bib0032) 2015; 34
Li (10.1016/j.neucom.2019.04.086_bib0037) 2016; 41
Li (10.1016/j.neucom.2019.04.086_bib0055) 2014; 67
Gu (10.1016/j.neucom.2019.04.086_bib0023) 2015; 26
Sexton (10.1016/j.neucom.2019.04.086_bib0048) 1998; 106
Zhu (10.1016/j.neucom.2019.04.086_bib0029) 2010; 217
Yao (10.1016/j.neucom.2019.04.086_bib0046) 1999; 87
Song (10.1016/j.neucom.2019.04.086_bib0051) 2017; 55
Gao (10.1016/j.neucom.2019.04.086_bib0056) 2016; 109
Ali (10.1016/j.neucom.2019.04.086_bib0041) 2005; 31
Young (10.1016/j.neucom.2019.04.086_bib0010) 2015
Gao (10.1016/j.neucom.2019.04.086_bib0033) 2013; 43
Gao (10.1016/j.neucom.2019.04.086_bib0040) 2011; 111
Blum (10.1016/j.neucom.2019.04.086_bib0047) 2005
Dayhoff (10.1016/j.neucom.2019.04.086_bib0044) 1990
Kuang (10.1016/j.neucom.2019.04.086_bib0039) 2014
Bhandari (10.1016/j.neucom.2019.04.086_bib0017) 2015; 42
Ali (10.1016/j.neucom.2019.04.086_bib0016) 2015; 301
Li (10.1016/j.neucom.2019.04.086_bib0006) 2017; 18
Karaboga (10.1016/j.neucom.2019.04.086_bib0050) 2007
Yao (10.1016/j.neucom.2019.04.086_bib0042) 1999; 3
Karaboga (10.1016/j.neucom.2019.04.086_bib0034) 2014; 23
Habbi (10.1016/j.neucom.2019.04.086_bib0024) 2015; 295
He (10.1016/j.neucom.2019.04.086_bib0003) 2015
Domhan (10.1016/j.neucom.2019.04.086_bib0008) 2015; 15
Karaboga (10.1016/j.neucom.2019.04.086_bib0013) 2014; 42
Kıran (10.1016/j.neucom.2019.04.086_bib0035) 2015; 26
Shi (10.1016/j.neucom.2019.04.086_bib0015) 2016; 107
Leung (10.1016/j.neucom.2019.04.086_bib0043) 2012; 12
Li (10.1016/j.neucom.2019.04.086_bib0053) 2016; 2712-2717
Akay (10.1016/j.neucom.2019.04.086_bib0031) 2012; 192
Hinton (10.1016/j.neucom.2019.04.086_bib0004) 2012; 29
Zhang (10.1016/j.neucom.2019.04.086_bib0021) 2013; 49
Bose (10.1016/j.neucom.2019.04.086_bib0022) 2014; 281
Liao (10.1016/j.neucom.2019.04.086_bib0028) 2012; 43
Kiran (10.1016/j.neucom.2019.04.086_bib0036) 2015; 300
Karaboga (10.1016/j.neucom.2019.04.086_bib0054) 2016; 49
Bergstra (10.1016/j.neucom.2019.04.086_bib0005) 2012; 13
References_xml – volume: 31
  start-page: 635
  year: 2005
  end-page: 672
  ident: bib0041
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: J. Glob. Optim.
– volume: 316
  start-page: 487
  year: 2015
  end-page: 502
  ident: bib0026
  article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inf. Sci.
– volume: 41
  start-page: 362
  year: 2016
  end-page: 372
  ident: bib0037
  article-title: Artificial bee colony algorithm with memory
  publication-title: Appl. Soft. Comput.
– volume: 2712-2717
  start-page: 2524
  year: 2016
  end-page: 2531
  ident: bib0053
  article-title: Search experience-based search adaptation in artificial bee colony algorithm
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 34
  start-page: 851
  year: 2015
  end-page: 861
  ident: bib0032
  article-title: Artificial bee colony algorithm with distribution-based update rule
  publication-title: Appl. Soft. Comput.
– start-page: 1114
  year: 2015
  end-page: 1120
  ident: bib0007
  publication-title: Efficient benchmarking of hyperparameter optimizers via surrogates
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib0014
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 4811
  year: 2013
  end-page: 4816
  ident: bib0021
  article-title: An improved artificial bee colony algorithm for optimal design of electromagnetic devices
  publication-title: IEEE Trans. Magn.
– volume: 43
  start-page: 1340
  year: 2012
  end-page: 1345
  ident: bib0028
  article-title: An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems
  publication-title: Electr. Power Energy Syst.
– volume: 12
  start-page: 3063
  year: 2012
  end-page: 3078
  ident: bib0043
  article-title: Parameter control system of evolutionary algorithm that is aided by the entire search history
  publication-title: Appl. Soft. Comput.
– year: 2005
  ident: bib0012
  article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: bib0019
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft. Comput.
– start-page: 318
  year: 2007
  end-page: 329
  ident: bib0050
  article-title: Modeling Decisions for Artificial intelligence, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, LNCS 4617/2007
– start-page: 822
  year: 2017
  end-page: 829
  ident: bib0009
  article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates
  publication-title: AAAI.
– volume: 111
  start-page: 871
  year: 2011
  end-page: 882
  ident: bib0040
  article-title: Improved artificial bee colony algorithm for global optimization
  publication-title: Inf. Process. Lett.
– volume: 43
  start-page: 1011
  year: 2013
  end-page: 1024
  ident: bib0033
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: bib0029
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 423
  year: 2016
  end-page: 436
  ident: bib0054
  article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training
  publication-title: Appl. Soft. Comput.
– volume: 109
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0056
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowl. Based Syst.
– year: 1997
  ident: bib0045
  article-title: Elements of Artificial Neural Networks
– volume: 26
  start-page: 454
  year: 2015
  end-page: 462
  ident: bib0035
  article-title: A directed artificial bee colony algorithm
  publication-title: Appl. Soft. Comput.
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: bib0013
  article-title: A comprehensive survey: artificial bee colony (abc) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0001
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: bib0031
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
– volume: 10
  start-page: 307
  year: 2013
  end-page: 322
  ident: bib0027
  article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 106
  start-page: 570
  year: 1998
  end-page: 584
  ident: bib0048
  article-title: Global optimization for artificial neural networks: a tabu search application
  publication-title: Eur J Oper Res
– start-page: 235
  year: 2014
  end-page: 241
  ident: bib0039
  article-title: A novel chaotic artificial bee colony algorithm based on tent map
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 301
  start-page: 44
  year: 2015
  end-page: 60
  ident: bib0016
  article-title: An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony
  publication-title: Inf. Sci.
– volume: 46
  start-page: 1311
  year: 2016
  end-page: 1324
  ident: bib0038
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE Trans. Cybern.
– start-page: 16
  year: 2013
  end-page: 21
  ident: bib0011
  publication-title: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0003
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0005
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 373
  year: 2015
  end-page: 384
  ident: bib0025
  article-title: Combining artificial bee colony with ordinal optimization for stochastic economic lot scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 26
  start-page: 1403
  year: 2015
  end-page: 1416
  ident: bib0023
  article-title: Incremental support vector learning for ordinal regression
  publication-title: IEEE Trans. Neural Net. Learn. Syst.
– volume: 5
  start-page: 4308
  year: 2014
  ident: bib0002
  article-title: Searching for exotic particles in high-energy physics with deep learning
  publication-title: Nat. Commun.
– volume: 295
  start-page: 145
  year: 2015
  end-page: 159
  ident: bib0024
  article-title: Self-generated fuzzy systems design using artificial bee colony optimization
  publication-title: Inf. Sci.
– year: 2005
  ident: bib0047
  article-title: Training feed-forward neural networks with ant colony optimization: an application to pattern classification
  publication-title: Proceedings of the Fifth International Conference on Hybrid intelligent systems, HIS
– volume: 87
  start-page: 1423
  year: 1999
  end-page: 1447
  ident: bib0046
  article-title: Evolving artificial neural networks
  publication-title: Proc. IEEE
– volume: 15
  start-page: 3460
  year: 2015
  end-page: 3468
  ident: bib0008
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
  publication-title: IJCAI.
– volume: 50
  start-page: 737
  year: 2014
  end-page: 740
  ident: bib0020
  article-title: A modification of artificial bee colony algorithm applied to loudspeaker design problem
  publication-title: IEEE Trans. Magn.
– start-page: 2712
  year: 2016
  end-page: 2717
  ident: bib0052
  article-title: An superior tracking artificial bee colony for global optimization problems
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0004
  article-title: Deep neural networks for acoustic modelling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 55
  start-page: 384
  year: 2017
  end-page: 401
  ident: bib0051
  article-title: An adaptive artificial bee colony algorithm based on objective function value information
  publication-title: Appl. Soft. Comput.
– volume: 18
  start-page: 6765
  year: 2017
  end-page: 6816
  ident: bib0006
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: bib0030
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
– volume: 281
  start-page: 443
  year: 2014
  end-page: 461
  ident: bib0022
  article-title: Optimal filter design using an improved artificial bee colony algorithm
  publication-title: Inf. Sci.
– volume: 23
  start-page: 227
  year: 2014
  end-page: 238
  ident: bib0034
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft. Comput.
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: bib0042
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 69
  year: 2015
  end-page: 80
  ident: bib0018
  article-title: Dynamic clustering with improved binary artificial bee colony algorithm
  publication-title: Appl. Soft. Comput.
– volume: 42
  start-page: 1573
  year: 2015
  end-page: 1601
  ident: bib0017
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions
  publication-title: Expert Syst. Appl.
– volume: 67
  start-page: 278
  year: 2014
  end-page: 289
  ident: bib0055
  article-title: Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency
  publication-title: Knowl. Based Syst.
– start-page: 4
  year: 2015
  ident: bib0010
  article-title: Optimizing deep learning hyper-parameters through an evolutionary algorithm
  publication-title: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments
– volume: 300
  start-page: 140
  year: 2015
  end-page: 157
  ident: bib0036
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inf. Sci.
– year: 1990
  ident: bib0044
  article-title: Neural-Network Architectures: An Introduction
– volume: 107
  start-page: 14
  year: 2016
  end-page: 31
  ident: bib0015
  article-title: An improved artificial bee colony and its application
  publication-title: Knowl. Based Syst.
– volume: 114
  start-page: 589
  year: 1999
  end-page: 601
  ident: bib0049
  article-title: Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing
  publication-title: Eur. J. Oper. Res.
– volume: 217
  start-page: 3166
  issue: 7
  year: 2010
  ident: 10.1016/j.neucom.2019.04.086_bib0029
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0056
  article-title: Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.06.014
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2019.04.086_bib0014
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– year: 1990
  ident: 10.1016/j.neucom.2019.04.086_bib0044
– volume: 43
  start-page: 1011
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2019.04.086_bib0033
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2222373
– volume: 50
  start-page: 737
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0020
  article-title: A modification of artificial bee colony algorithm applied to loudspeaker design problem
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2281818
– volume: 114
  start-page: 589
  issue: 3
  year: 1999
  ident: 10.1016/j.neucom.2019.04.086_bib0049
  article-title: Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00114-3
– volume: 23
  start-page: 227
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0034
  article-title: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.06.035
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.neucom.2019.04.086_bib0042
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  ident: 10.1016/j.neucom.2019.04.086_bib0046
  article-title: Evolving artificial neural networks
  publication-title: Proc. IEEE
  doi: 10.1109/5.784219
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0013
  article-title: A comprehensive survey: artificial bee colony (abc) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0031
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.015
– volume: 26
  start-page: 454
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0035
  article-title: A directed artificial bee colony algorithm
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.10.020
– start-page: 822
  year: 2017
  ident: 10.1016/j.neucom.2019.04.086_bib0009
  article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates
  publication-title: AAAI.
– start-page: 2712
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0052
  article-title: An superior tracking artificial bee colony for global optimization problems
– start-page: 235
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0039
  article-title: A novel chaotic artificial bee colony algorithm based on tent map
– volume: 107
  start-page: 14
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0015
  article-title: An improved artificial bee colony and its application
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.05.052
– volume: 2712-2717
  start-page: 2524
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0053
  article-title: Search experience-based search adaptation in artificial bee colony algorithm
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0003
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2019.04.086_bib0001
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 300
  start-page: 140
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0036
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.12.043
– volume: 45
  start-page: 373
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0025
  article-title: Combining artificial bee colony with ordinal optimization for stochastic economic lot scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2014.2351783
– volume: 12
  start-page: 3063
  issue: 9
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0043
  article-title: Parameter control system of evolutionary algorithm that is aided by the entire search history
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2012.05.008
– volume: 34
  start-page: 851
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0032
  article-title: Artificial bee colony algorithm with distribution-based update rule
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2015.05.041
– volume: 42
  start-page: 1573
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0017
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.049
– volume: 43
  start-page: 1340
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0028
  article-title: An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.04.009
– volume: 28
  start-page: 69
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0018
  article-title: Dynamic clustering with improved binary artificial bee colony algorithm
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.11.040
– start-page: 1114
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0007
– volume: 281
  start-page: 443
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0022
  article-title: Optimal filter design using an improved artificial bee colony algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.033
– start-page: 318
  year: 2007
  ident: 10.1016/j.neucom.2019.04.086_bib0050
– volume: 26
  start-page: 1403
  issue: 7
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0023
  article-title: Incremental support vector learning for ordinal regression
  publication-title: IEEE Trans. Neural Net. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2342533
– volume: 5
  start-page: 4308
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0002
  article-title: Searching for exotic particles in high-energy physics with deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5308
– year: 2005
  ident: 10.1016/j.neucom.2019.04.086_bib0012
– volume: 46
  start-page: 1311
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0038
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2444383
– volume: 111
  start-page: 871
  issue: 17
  year: 2011
  ident: 10.1016/j.neucom.2019.04.086_bib0040
  article-title: Improved artificial bee colony algorithm for global optimization
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2011.06.002
– volume: 55
  start-page: 384
  year: 2017
  ident: 10.1016/j.neucom.2019.04.086_bib0051
  article-title: An adaptive artificial bee colony algorithm based on objective function value information
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2017.01.031
– volume: 49
  start-page: 423
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0054
  article-title: An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2016.07.039
– year: 1997
  ident: 10.1016/j.neucom.2019.04.086_bib0045
– volume: 295
  start-page: 145
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0024
  article-title: Self-generated fuzzy systems design using artificial bee colony optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.008
– volume: 41
  start-page: 362
  year: 2016
  ident: 10.1016/j.neucom.2019.04.086_bib0037
  article-title: Artificial bee colony algorithm with memory
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2015.12.046
– volume: 31
  start-page: 635
  issue: 4
  year: 2005
  ident: 10.1016/j.neucom.2019.04.086_bib0041
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-9972-2
– volume: 67
  start-page: 278
  year: 2014
  ident: 10.1016/j.neucom.2019.04.086_bib0055
  article-title: Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.04.042
– volume: 18
  start-page: 6765
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.04.086_bib0006
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 4811
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2019.04.086_bib0021
  article-title: An improved artificial bee colony algorithm for optimal design of electromagnetic devices
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2241447
– volume: 15
  start-page: 3460
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0008
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
  publication-title: IJCAI.
– start-page: 4
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0010
  article-title: Optimizing deep learning hyper-parameters through an evolutionary algorithm
– start-page: 16
  year: 2013
  ident: 10.1016/j.neucom.2019.04.086_bib0011
– volume: 39
  start-page: 687
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0030
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.06.007
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0004
  article-title: Deep neural networks for acoustic modelling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 106
  start-page: 570
  issue: 2-3
  year: 1998
  ident: 10.1016/j.neucom.2019.04.086_bib0048
  article-title: Global optimization for artificial neural networks: a tabu search application
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(97)00292-0
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2019.04.086_bib0005
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 316
  start-page: 487
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0026
  article-title: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.009
– volume: 10
  start-page: 307
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2019.04.086_bib0027
  article-title: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2204874
– volume: 301
  start-page: 44
  year: 2015
  ident: 10.1016/j.neucom.2019.04.086_bib0016
  article-title: An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.12.042
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2019.04.086_bib0019
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2009.12.025
– year: 2005
  ident: 10.1016/j.neucom.2019.04.086_bib0047
  article-title: Training feed-forward neural networks with ant colony optimization: an application to pattern classification
SSID ssj0017129
Score 2.4210525
Snippet Deep learning is a branch of neural network which has been intensively developed in the last decade. Due to the high-accuracy classification ability, the deep...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Artificial bee colony
Deep learning
Feed-Forward Artificial Neural Networks
Parameter selection
Title Training Feed-Forward Artificial Neural Networks with a modified artificial bee colony algorithm
URI https://dx.doi.org/10.1016/j.neucom.2019.04.086
Volume 416
WOSCitedRecordID wos000581754500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMXdkTZ5AO3yihx7Do5jlBHgKBCoqDhFBwvkGqaqaaTqv0R_Geet0xEKzaJS2ZkORnL75vn7728BaHnotBZJjNO9iQFA4U3oAe1zsleqcvMCp1rX0zn01txcFDO59X7yeR7yoU5W4iuK8_Pq5P_KmoYA2G71Nm_EPfwUBiA7yB0uILY4fpngo9NH3ZncDCR2XLl4mKdE76NxSJcPQ7_4QPAU3qb64kDM4B_ys3Uxrhg9sWyu9iVi6_LFcw8HtNZX9pD-cYQ0eUwPXaVF7SD2eBimPeeIpv2oh00cR9f9rfk3SgqKLTQlrA_w9jg0f7cn37rx04KsEjznISc_-A5u5Q9E1yQlBPgl0Ebm6CAS0F9avtYQ7N8rGNDa5d0WrMrz4Hgkjh60ZneBQUBy6l8Rdufy277g_yDW4hbB5BZmFFW19A2FbwCPb89fb0_fzO8lhI5DcUb48JTLqYPGLz8W1dznRF_ObyNbkbDA08DYO6gienuolupqQeOOv4e-pLwg8f4wRv84IAfnPCDHX6wxAk_eIMfDPjBAT94wM999HG2f_jyFYltOIgCe3JNGssEGAmgqRUrGq6ZbSS3pmSmsrlh1DJmrK6M4hbINLAbsFG5rKStOKNG6-IB2uqWnXmIsMpsxqXhsuCCwVNKWjRSGaGo0oqW2Q4q0obVKtaod61SFnUKRjyqwzbXbpvrjNWwzTuIDHedhBotv5kvkizqyDMDf6wBPr-889E_3_kY3dj8L56grfWqN0_RdXW2bk9XzyLOfgDXIqX3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Feed-Forward+Artificial+Neural+Networks+with+a+modified+artificial+bee+colony+algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Xu%2C+Feiyi&rft.au=Pun%2C+Chi-Man&rft.au=Li%2C+Haolun&rft.au=Zhang%2C+Yushu&rft.date=2020-11-27&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=416&rft.spage=69&rft.epage=84&rft_id=info:doi/10.1016%2Fj.neucom.2019.04.086&rft.externalDocID=S0925231219308689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon